[CRYPTO] lrw: Liskov Rivest Wagner, a tweakable narrow block cipher mode
Main module, this implements the Liskov Rivest Wagner block cipher mode in the new blockcipher API. The implementation is based on ecb.c. The LRW-32-AES specification I used can be found at: http://grouper.ieee.org/groups/1619/email/pdf00017.pdf It implements the optimization specified as optional in the specification, and in addition it uses optimized multiplication routines from gf128mul.c. Since gf128mul.[ch] is not tested on bigendian, this cipher mode may currently fail badly on bigendian machines. Signed-off-by: Rik Snel <rsnel@cube.dyndns.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
c494e0705d
commit
64470f1b85
@ -168,6 +168,19 @@ config CRYPTO_CBC
|
||||
CBC: Cipher Block Chaining mode
|
||||
This block cipher algorithm is required for IPSec.
|
||||
|
||||
config CRYPTO_LRW
|
||||
tristate "LRW support (EXPERIMENTAL)"
|
||||
depends on EXPERIMENTAL
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_MANAGER
|
||||
select CRYPTO_GF128MUL
|
||||
help
|
||||
LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
|
||||
narrow block cipher mode for dm-crypt. Use it with cipher
|
||||
specification string aes-lrw-benbi, the key must be 256, 320 or 384.
|
||||
The first 128, 192 or 256 bits in the key are used for AES and the
|
||||
rest is used to tie each cipher block to its logical position.
|
||||
|
||||
config CRYPTO_DES
|
||||
tristate "DES and Triple DES EDE cipher algorithms"
|
||||
select CRYPTO_ALGAPI
|
||||
|
@ -27,6 +27,7 @@ obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o
|
||||
obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o
|
||||
obj-$(CONFIG_CRYPTO_ECB) += ecb.o
|
||||
obj-$(CONFIG_CRYPTO_CBC) += cbc.o
|
||||
obj-$(CONFIG_CRYPTO_LRW) += lrw.o
|
||||
obj-$(CONFIG_CRYPTO_DES) += des.o
|
||||
obj-$(CONFIG_CRYPTO_BLOWFISH) += blowfish.o
|
||||
obj-$(CONFIG_CRYPTO_TWOFISH) += twofish.o
|
||||
|
301
crypto/lrw.c
Normal file
301
crypto/lrw.c
Normal file
@ -0,0 +1,301 @@
|
||||
/* LRW: as defined by Cyril Guyot in
|
||||
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
|
||||
*
|
||||
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
|
||||
*
|
||||
* Based om ecb.c
|
||||
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the Free
|
||||
* Software Foundation; either version 2 of the License, or (at your option)
|
||||
* any later version.
|
||||
*/
|
||||
/* This implementation is checked against the test vectors in the above
|
||||
* document and by a test vector provided by Ken Buchanan at
|
||||
* http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
|
||||
*
|
||||
* The test vectors are included in the testing module tcrypt.[ch] */
|
||||
#include <crypto/algapi.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <crypto/b128ops.h>
|
||||
#include <crypto/gf128mul.h>
|
||||
|
||||
struct priv {
|
||||
struct crypto_cipher *child;
|
||||
/* optimizes multiplying a random (non incrementing, as at the
|
||||
* start of a new sector) value with key2, we could also have
|
||||
* used 4k optimization tables or no optimization at all. In the
|
||||
* latter case we would have to store key2 here */
|
||||
struct gf128mul_64k *table;
|
||||
/* stores:
|
||||
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
|
||||
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
|
||||
* key2*{ 0,0,...1,1,1,1,1 }, etc
|
||||
* needed for optimized multiplication of incrementing values
|
||||
* with key2 */
|
||||
be128 mulinc[128];
|
||||
};
|
||||
|
||||
static inline void setbit128_bbe(void *b, int bit)
|
||||
{
|
||||
__set_bit(bit ^ 0x78, b);
|
||||
}
|
||||
|
||||
static int setkey(struct crypto_tfm *parent, const u8 *key,
|
||||
unsigned int keylen)
|
||||
{
|
||||
struct priv *ctx = crypto_tfm_ctx(parent);
|
||||
struct crypto_cipher *child = ctx->child;
|
||||
int err, i;
|
||||
be128 tmp = { 0 };
|
||||
int bsize = crypto_cipher_blocksize(child);
|
||||
|
||||
crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
||||
crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
|
||||
CRYPTO_TFM_REQ_MASK);
|
||||
if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
|
||||
return err;
|
||||
crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
|
||||
CRYPTO_TFM_RES_MASK);
|
||||
|
||||
if (ctx->table)
|
||||
gf128mul_free_64k(ctx->table);
|
||||
|
||||
/* initialize multiplication table for Key2 */
|
||||
ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
|
||||
if (!ctx->table)
|
||||
return -ENOMEM;
|
||||
|
||||
/* initialize optimization table */
|
||||
for (i = 0; i < 128; i++) {
|
||||
setbit128_bbe(&tmp, i);
|
||||
ctx->mulinc[i] = tmp;
|
||||
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct sinfo {
|
||||
be128 t;
|
||||
struct crypto_tfm *tfm;
|
||||
void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
|
||||
};
|
||||
|
||||
static inline void inc(be128 *iv)
|
||||
{
|
||||
if (!(iv->b = cpu_to_be64(be64_to_cpu(iv->b) + 1)))
|
||||
iv->a = cpu_to_be64(be64_to_cpu(iv->a) + 1);
|
||||
}
|
||||
|
||||
static inline void round(struct sinfo *s, void *dst, const void *src)
|
||||
{
|
||||
be128_xor(dst, &s->t, src); /* PP <- T xor P */
|
||||
s->fn(s->tfm, dst, dst); /* CC <- E(Key2,PP) */
|
||||
be128_xor(dst, dst, &s->t); /* C <- T xor CC */
|
||||
}
|
||||
|
||||
/* this returns the number of consequative 1 bits starting
|
||||
* from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
|
||||
static inline int get_index128(be128 *block)
|
||||
{
|
||||
int x;
|
||||
__be32 *p = (__be32 *) block;
|
||||
|
||||
for (p += 3, x = 0; x < 128; p--, x += 32) {
|
||||
u32 val = be32_to_cpup(p);
|
||||
|
||||
if (!~val)
|
||||
continue;
|
||||
|
||||
return x + ffz(val);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
static int crypt(struct blkcipher_desc *d,
|
||||
struct blkcipher_walk *w, struct priv *ctx,
|
||||
void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
|
||||
{
|
||||
int err;
|
||||
unsigned int avail;
|
||||
const int bs = crypto_cipher_blocksize(ctx->child);
|
||||
struct sinfo s = {
|
||||
.tfm = crypto_cipher_tfm(ctx->child),
|
||||
.fn = fn
|
||||
};
|
||||
be128 *iv;
|
||||
u8 *wsrc;
|
||||
u8 *wdst;
|
||||
|
||||
err = blkcipher_walk_virt(d, w);
|
||||
if (!(avail = w->nbytes))
|
||||
return err;
|
||||
|
||||
wsrc = w->src.virt.addr;
|
||||
wdst = w->dst.virt.addr;
|
||||
|
||||
/* calculate first value of T */
|
||||
iv = (be128 *)w->iv;
|
||||
s.t = *iv;
|
||||
|
||||
/* T <- I*Key2 */
|
||||
gf128mul_64k_bbe(&s.t, ctx->table);
|
||||
|
||||
goto first;
|
||||
|
||||
for (;;) {
|
||||
do {
|
||||
/* T <- I*Key2, using the optimization
|
||||
* discussed in the specification */
|
||||
be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
|
||||
inc(iv);
|
||||
|
||||
first:
|
||||
round(&s, wdst, wsrc);
|
||||
|
||||
wsrc += bs;
|
||||
wdst += bs;
|
||||
} while ((avail -= bs) >= bs);
|
||||
|
||||
err = blkcipher_walk_done(d, w, avail);
|
||||
if (!(avail = w->nbytes))
|
||||
break;
|
||||
|
||||
wsrc = w->src.virt.addr;
|
||||
wdst = w->dst.virt.addr;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
struct blkcipher_walk w;
|
||||
|
||||
blkcipher_walk_init(&w, dst, src, nbytes);
|
||||
return crypt(desc, &w, ctx,
|
||||
crypto_cipher_alg(ctx->child)->cia_encrypt);
|
||||
}
|
||||
|
||||
static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
struct blkcipher_walk w;
|
||||
|
||||
blkcipher_walk_init(&w, dst, src, nbytes);
|
||||
return crypt(desc, &w, ctx,
|
||||
crypto_cipher_alg(ctx->child)->cia_decrypt);
|
||||
}
|
||||
|
||||
static int init_tfm(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct crypto_instance *inst = (void *)tfm->__crt_alg;
|
||||
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
|
||||
struct priv *ctx = crypto_tfm_ctx(tfm);
|
||||
u32 *flags = &tfm->crt_flags;
|
||||
|
||||
tfm = crypto_spawn_tfm(spawn);
|
||||
if (IS_ERR(tfm))
|
||||
return PTR_ERR(tfm);
|
||||
|
||||
if (crypto_tfm_alg_blocksize(tfm) != 16) {
|
||||
*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ctx->child = crypto_cipher_cast(tfm);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void exit_tfm(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct priv *ctx = crypto_tfm_ctx(tfm);
|
||||
if (ctx->table)
|
||||
gf128mul_free_64k(ctx->table);
|
||||
crypto_free_cipher(ctx->child);
|
||||
}
|
||||
|
||||
static struct crypto_instance *alloc(void *param, unsigned int len)
|
||||
{
|
||||
struct crypto_instance *inst;
|
||||
struct crypto_alg *alg;
|
||||
|
||||
alg = crypto_get_attr_alg(param, len, CRYPTO_ALG_TYPE_CIPHER,
|
||||
CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
|
||||
if (IS_ERR(alg))
|
||||
return ERR_PTR(PTR_ERR(alg));
|
||||
|
||||
inst = crypto_alloc_instance("lrw", alg);
|
||||
if (IS_ERR(inst))
|
||||
goto out_put_alg;
|
||||
|
||||
inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
|
||||
inst->alg.cra_priority = alg->cra_priority;
|
||||
inst->alg.cra_blocksize = alg->cra_blocksize;
|
||||
|
||||
if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
|
||||
else inst->alg.cra_alignmask = alg->cra_alignmask;
|
||||
inst->alg.cra_type = &crypto_blkcipher_type;
|
||||
|
||||
if (!(alg->cra_blocksize % 4))
|
||||
inst->alg.cra_alignmask |= 3;
|
||||
inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
|
||||
inst->alg.cra_blkcipher.min_keysize =
|
||||
alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
|
||||
inst->alg.cra_blkcipher.max_keysize =
|
||||
alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
|
||||
|
||||
inst->alg.cra_ctxsize = sizeof(struct priv);
|
||||
|
||||
inst->alg.cra_init = init_tfm;
|
||||
inst->alg.cra_exit = exit_tfm;
|
||||
|
||||
inst->alg.cra_blkcipher.setkey = setkey;
|
||||
inst->alg.cra_blkcipher.encrypt = encrypt;
|
||||
inst->alg.cra_blkcipher.decrypt = decrypt;
|
||||
|
||||
out_put_alg:
|
||||
crypto_mod_put(alg);
|
||||
return inst;
|
||||
}
|
||||
|
||||
static void free(struct crypto_instance *inst)
|
||||
{
|
||||
crypto_drop_spawn(crypto_instance_ctx(inst));
|
||||
kfree(inst);
|
||||
}
|
||||
|
||||
static struct crypto_template crypto_tmpl = {
|
||||
.name = "lrw",
|
||||
.alloc = alloc,
|
||||
.free = free,
|
||||
.module = THIS_MODULE,
|
||||
};
|
||||
|
||||
static int __init crypto_module_init(void)
|
||||
{
|
||||
return crypto_register_template(&crypto_tmpl);
|
||||
}
|
||||
|
||||
static void __exit crypto_module_exit(void)
|
||||
{
|
||||
crypto_unregister_template(&crypto_tmpl);
|
||||
}
|
||||
|
||||
module_init(crypto_module_init);
|
||||
module_exit(crypto_module_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("LRW block cipher mode");
|
Loading…
x
Reference in New Issue
Block a user