Merge drm/drm-next into drm-intel-next-queued

Doing a backmerge to be able to merge topic/mei-hdcp-2019-02-19 PR.

Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
This commit is contained in:
Joonas Lahtinen 2019-02-20 11:04:08 +02:00
commit d0781a89c0
2542 changed files with 38090 additions and 33223 deletions

View File

@ -72,6 +72,10 @@ ForEachMacros:
- 'apei_estatus_for_each_section'
- 'ata_for_each_dev'
- 'ata_for_each_link'
- '__ata_qc_for_each'
- 'ata_qc_for_each'
- 'ata_qc_for_each_raw'
- 'ata_qc_for_each_with_internal'
- 'ax25_for_each'
- 'ax25_uid_for_each'
- 'bio_for_each_integrity_vec'
@ -85,6 +89,7 @@ ForEachMacros:
- 'blk_queue_for_each_rl'
- 'bond_for_each_slave'
- 'bond_for_each_slave_rcu'
- 'bpf_for_each_spilled_reg'
- 'btree_for_each_safe128'
- 'btree_for_each_safe32'
- 'btree_for_each_safe64'
@ -103,6 +108,8 @@ ForEachMacros:
- 'drm_atomic_crtc_for_each_plane'
- 'drm_atomic_crtc_state_for_each_plane'
- 'drm_atomic_crtc_state_for_each_plane_state'
- 'drm_atomic_for_each_plane_damage'
- 'drm_connector_for_each_possible_encoder'
- 'drm_for_each_connector_iter'
- 'drm_for_each_crtc'
- 'drm_for_each_encoder'
@ -121,11 +128,21 @@ ForEachMacros:
- 'for_each_bio'
- 'for_each_board_func_rsrc'
- 'for_each_bvec'
- 'for_each_card_components'
- 'for_each_card_links'
- 'for_each_card_links_safe'
- 'for_each_card_prelinks'
- 'for_each_card_rtds'
- 'for_each_card_rtds_safe'
- 'for_each_cgroup_storage_type'
- 'for_each_child_of_node'
- 'for_each_clear_bit'
- 'for_each_clear_bit_from'
- 'for_each_cmsghdr'
- 'for_each_compatible_node'
- 'for_each_component_dais'
- 'for_each_component_dais_safe'
- 'for_each_comp_order'
- 'for_each_console'
- 'for_each_cpu'
- 'for_each_cpu_and'
@ -133,6 +150,10 @@ ForEachMacros:
- 'for_each_cpu_wrap'
- 'for_each_dev_addr'
- 'for_each_dma_cap_mask'
- 'for_each_dpcm_be'
- 'for_each_dpcm_be_rollback'
- 'for_each_dpcm_be_safe'
- 'for_each_dpcm_fe'
- 'for_each_drhd_unit'
- 'for_each_dss_dev'
- 'for_each_efi_memory_desc'
@ -149,6 +170,7 @@ ForEachMacros:
- 'for_each_iommu'
- 'for_each_ip_tunnel_rcu'
- 'for_each_irq_nr'
- 'for_each_link_codecs'
- 'for_each_lru'
- 'for_each_matching_node'
- 'for_each_matching_node_and_match'
@ -160,6 +182,7 @@ ForEachMacros:
- 'for_each_mem_range_rev'
- 'for_each_migratetype_order'
- 'for_each_msi_entry'
- 'for_each_msi_entry_safe'
- 'for_each_net'
- 'for_each_netdev'
- 'for_each_netdev_continue'
@ -183,12 +206,14 @@ ForEachMacros:
- 'for_each_node_with_property'
- 'for_each_of_allnodes'
- 'for_each_of_allnodes_from'
- 'for_each_of_cpu_node'
- 'for_each_of_pci_range'
- 'for_each_old_connector_in_state'
- 'for_each_old_crtc_in_state'
- 'for_each_oldnew_connector_in_state'
- 'for_each_oldnew_crtc_in_state'
- 'for_each_oldnew_plane_in_state'
- 'for_each_oldnew_plane_in_state_reverse'
- 'for_each_oldnew_private_obj_in_state'
- 'for_each_old_plane_in_state'
- 'for_each_old_private_obj_in_state'
@ -206,14 +231,17 @@ ForEachMacros:
- 'for_each_process'
- 'for_each_process_thread'
- 'for_each_property_of_node'
- 'for_each_registered_fb'
- 'for_each_reserved_mem_region'
- 'for_each_resv_unavail_range'
- 'for_each_rtd_codec_dai'
- 'for_each_rtd_codec_dai_rollback'
- 'for_each_rtdcom'
- 'for_each_rtdcom_safe'
- 'for_each_set_bit'
- 'for_each_set_bit_from'
- 'for_each_sg'
- 'for_each_sg_page'
- 'for_each_sibling_event'
- '__for_each_thread'
- 'for_each_thread'
- 'for_each_zone'
@ -251,6 +279,8 @@ ForEachMacros:
- 'hlist_nulls_for_each_entry_from'
- 'hlist_nulls_for_each_entry_rcu'
- 'hlist_nulls_for_each_entry_safe'
- 'i3c_bus_for_each_i2cdev'
- 'i3c_bus_for_each_i3cdev'
- 'ide_host_for_each_port'
- 'ide_port_for_each_dev'
- 'ide_port_for_each_present_dev'
@ -267,11 +297,14 @@ ForEachMacros:
- 'kvm_for_each_memslot'
- 'kvm_for_each_vcpu'
- 'list_for_each'
- 'list_for_each_codec'
- 'list_for_each_codec_safe'
- 'list_for_each_entry'
- 'list_for_each_entry_continue'
- 'list_for_each_entry_continue_rcu'
- 'list_for_each_entry_continue_reverse'
- 'list_for_each_entry_from'
- 'list_for_each_entry_from_rcu'
- 'list_for_each_entry_from_reverse'
- 'list_for_each_entry_lockless'
- 'list_for_each_entry_rcu'
@ -291,6 +324,7 @@ ForEachMacros:
- 'media_device_for_each_intf'
- 'media_device_for_each_link'
- 'media_device_for_each_pad'
- 'nanddev_io_for_each_page'
- 'netdev_for_each_lower_dev'
- 'netdev_for_each_lower_private'
- 'netdev_for_each_lower_private_rcu'
@ -357,12 +391,14 @@ ForEachMacros:
- 'sk_nulls_for_each'
- 'sk_nulls_for_each_from'
- 'sk_nulls_for_each_rcu'
- 'snd_array_for_each'
- 'snd_pcm_group_for_each_entry'
- 'snd_soc_dapm_widget_for_each_path'
- 'snd_soc_dapm_widget_for_each_path_safe'
- 'snd_soc_dapm_widget_for_each_sink_path'
- 'snd_soc_dapm_widget_for_each_source_path'
- 'tb_property_for_each'
- 'tcf_exts_for_each_action'
- 'udp_portaddr_for_each_entry'
- 'udp_portaddr_for_each_entry_rcu'
- 'usb_hub_for_each_child'
@ -371,6 +407,11 @@ ForEachMacros:
- 'v4l2_m2m_for_each_dst_buf_safe'
- 'v4l2_m2m_for_each_src_buf'
- 'v4l2_m2m_for_each_src_buf_safe'
- 'virtio_device_for_each_vq'
- 'xa_for_each'
- 'xas_for_each'
- 'xas_for_each_conflict'
- 'xas_for_each_marked'
- 'zorro_for_each_dev'
#IncludeBlocks: Preserve # Unknown to clang-format-5.0

View File

@ -24,7 +24,7 @@ What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
cpld3_version
Date: November 2018
KernelVersion: 4.21
KernelVersion: 5.0
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: These files show with which CPLD versions have been burned
on LED board.
@ -35,7 +35,7 @@ What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
jtag_enable
Date: November 2018
KernelVersion: 4.21
KernelVersion: 5.0
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: These files enable and disable the access to the JTAG domain.
By default access to the JTAG domain is disabled.
@ -105,7 +105,7 @@ What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
reset_voltmon_upgrade_fail
Date: November 2018
KernelVersion: 4.21
KernelVersion: 5.0
Contact: Vadim Pasternak <vadimpmellanox.com>
Description: These files show the system reset cause, as following: ComEx
power fail, reset from ComEx, system platform reset, reset

View File

@ -279,3 +279,12 @@ Description:
size in 512B sectors of the zones of the device, with
the eventual exception of the last zone of the device
which may be smaller.
What: /sys/block/<disk>/queue/io_timeout
Date: November 2018
Contact: Weiping Zhang <zhangweiping@didiglobal.com>
Description:
io_timeout is the request timeout in milliseconds. If a request
does not complete in this time then the block driver timeout
handler is invoked. That timeout handler can decide to retry
the request, to fail it or to start a device recovery strategy.

View File

@ -122,11 +122,18 @@ Description:
statistics (bd_count, bd_reads, bd_writes) in a format
similar to block layer statistics file format.
What: /sys/block/zram<id>/writeback_limit_enable
Date: November 2018
Contact: Minchan Kim <minchan@kernel.org>
Description:
The writeback_limit_enable file is read-write and specifies
eanbe of writeback_limit feature. "1" means eable the feature.
No limit "0" is the initial state.
What: /sys/block/zram<id>/writeback_limit
Date: November 2018
Contact: Minchan Kim <minchan@kernel.org>
Description:
The writeback_limit file is read-write and specifies the maximum
amount of writeback ZRAM can do. The limit could be changed
in run time and "0" means disable the limit.
No limit is the initial state.
in run time.

View File

@ -1696,12 +1696,11 @@
By default, super page will be supported if Intel IOMMU
has the capability. With this option, super page will
not be supported.
sm_off [Default Off]
By default, scalable mode will be supported if the
sm_on [Default Off]
By default, scalable mode will be disabled even if the
hardware advertises that it has support for the scalable
mode translation. With this option set, scalable mode
will not be used even on hardware which claims to support
it.
will be used on hardware which claims to support it.
tboot_noforce [Default Off]
Do not force the Intel IOMMU enabled under tboot.
By default, tboot will force Intel IOMMU on, which

View File

@ -357,6 +357,13 @@ video playing/streaming, a very low drop rate may be more important
than maximum throughput. In these cases, consider setting the
strict_guarantees parameter.
slice_idle_us
-------------
Controls the same tuning parameter as slice_idle, but in microseconds.
Either tunable can be used to set idling behavior. Afterwards, the
other tunable will reflect the newly set value in sysfs.
strict_guarantees
-----------------

View File

@ -88,7 +88,8 @@ shared_tags=[0/1]: Default: 0
zoned=[0/1]: Default: 0
0: Block device is exposed as a random-access block device.
1: Block device is exposed as a host-managed zoned block device.
1: Block device is exposed as a host-managed zoned block device. Requires
CONFIG_BLK_DEV_ZONED.
zone_size=[MB]: Default: 256
Per zone size when exposed as a zoned block device. Must be a power of two.

View File

@ -67,6 +67,13 @@ If set to a value larger than 0, the kernel will put the process issuing
IO to sleep for this amount of microseconds before entering classic
polling.
io_timeout (RW)
---------------
io_timeout is the request timeout in milliseconds. If a request does not
complete in this time then the block driver timeout handler is invoked.
That timeout handler can decide to retry the request, to fail it or to start
a device recovery strategy.
iostats (RW)
-------------
This file is used to control (on/off) the iostats accounting of the

View File

@ -156,22 +156,23 @@ Per-device statistics are exported as various nodes under /sys/block/zram<id>/
A brief description of exported device attributes. For more details please
read Documentation/ABI/testing/sysfs-block-zram.
Name access description
---- ------ -----------
disksize RW show and set the device's disk size
initstate RO shows the initialization state of the device
reset WO trigger device reset
mem_used_max WO reset the `mem_used_max' counter (see later)
mem_limit WO specifies the maximum amount of memory ZRAM can use
to store the compressed data
writeback_limit WO specifies the maximum amount of write IO zram can
write out to backing device as 4KB unit
max_comp_streams RW the number of possible concurrent compress operations
comp_algorithm RW show and change the compression algorithm
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
idle WO mark allocated slot as idle
Name access description
---- ------ -----------
disksize RW show and set the device's disk size
initstate RO shows the initialization state of the device
reset WO trigger device reset
mem_used_max WO reset the `mem_used_max' counter (see later)
mem_limit WO specifies the maximum amount of memory ZRAM can use
to store the compressed data
writeback_limit WO specifies the maximum amount of write IO zram can
write out to backing device as 4KB unit
writeback_limit_enable RW show and set writeback_limit feature
max_comp_streams RW the number of possible concurrent compress operations
comp_algorithm RW show and change the compression algorithm
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
idle WO mark allocated slot as idle
User space is advised to use the following files to read the device statistics.
@ -280,32 +281,51 @@ With the command, zram writeback idle pages from memory to the storage.
If there are lots of write IO with flash device, potentially, it has
flash wearout problem so that admin needs to design write limitation
to guarantee storage health for entire product life.
To overcome the concern, zram supports "writeback_limit".
The "writeback_limit"'s default value is 0 so that it doesn't limit
any writeback. If admin want to measure writeback count in a certain
period, he could know it via /sys/block/zram0/bd_stat's 3rd column.
To overcome the concern, zram supports "writeback_limit" feature.
The "writeback_limit_enable"'s default value is 0 so that it doesn't limit
any writeback. IOW, if admin want to apply writeback budget, he should
enable writeback_limit_enable via
$ echo 1 > /sys/block/zramX/writeback_limit_enable
Once writeback_limit_enable is set, zram doesn't allow any writeback
until admin set the budget via /sys/block/zramX/writeback_limit.
(If admin doesn't enable writeback_limit_enable, writeback_limit's value
assigned via /sys/block/zramX/writeback_limit is meaninless.)
If admin want to limit writeback as per-day 400M, he could do it
like below.
MB_SHIFT=20
4K_SHIFT=12
echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit.
$ MB_SHIFT=20
$ 4K_SHIFT=12
$ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit.
$ echo 1 > /sys/block/zram0/writeback_limit_enable
If admin want to allow further write again, he could do it like below
If admin want to allow further write again once the bugdet is exausted,
he could do it like below
echo 0 > /sys/block/zram0/writeback_limit
$ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit
If admin want to see remaining writeback budget since he set,
cat /sys/block/zram0/writeback_limit
$ cat /sys/block/zramX/writeback_limit
If admin want to disable writeback limit, he could do
$ echo 0 > /sys/block/zramX/writeback_limit_enable
The writeback_limit count will reset whenever you reset zram(e.g.,
system reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of
writeback happened until you reset the zram to allocate extra writeback
budget in next setting is user's job.
If admin want to measure writeback count in a certain period, he could
know it via /sys/block/zram0/bd_stat's 3rd column.
= memory tracking
With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the

View File

@ -157,12 +157,11 @@ Q: Does BPF have a stable ABI?
------------------------------
A: YES. BPF instructions, arguments to BPF programs, set of helper
functions and their arguments, recognized return codes are all part
of ABI. However when tracing programs are using bpf_probe_read() helper
to walk kernel internal datastructures and compile with kernel
internal headers these accesses can and will break with newer
kernels. The union bpf_attr -> kern_version is checked at load time
to prevent accidentally loading kprobe-based bpf programs written
for a different kernel. Networking programs don't do kern_version check.
of ABI. However there is one specific exception to tracing programs
which are using helpers like bpf_probe_read() to walk kernel internal
data structures and compile with kernel internal headers. Both of these
kernel internals are subject to change and can break with newer kernels
such that the program needs to be adapted accordingly.
Q: How much stack space a BPF program uses?
-------------------------------------------

View File

@ -108,12 +108,13 @@ some, but not all of the other indices changing.
Sometimes you need to ensure that a subsequent call to :c:func:`xa_store`
will not need to allocate memory. The :c:func:`xa_reserve` function
will store a reserved entry at the indicated index. Users of the normal
API will see this entry as containing ``NULL``. If you do not need to
use the reserved entry, you can call :c:func:`xa_release` to remove the
unused entry. If another user has stored to the entry in the meantime,
:c:func:`xa_release` will do nothing; if instead you want the entry to
become ``NULL``, you should use :c:func:`xa_erase`.
will store a reserved entry at the indicated index. Users of the
normal API will see this entry as containing ``NULL``. If you do
not need to use the reserved entry, you can call :c:func:`xa_release`
to remove the unused entry. If another user has stored to the entry
in the meantime, :c:func:`xa_release` will do nothing; if instead you
want the entry to become ``NULL``, you should use :c:func:`xa_erase`.
Using :c:func:`xa_insert` on a reserved entry will fail.
If all entries in the array are ``NULL``, the :c:func:`xa_empty` function
will return ``true``.
@ -183,6 +184,8 @@ Takes xa_lock internally:
* :c:func:`xa_store_bh`
* :c:func:`xa_store_irq`
* :c:func:`xa_insert`
* :c:func:`xa_insert_bh`
* :c:func:`xa_insert_irq`
* :c:func:`xa_erase`
* :c:func:`xa_erase_bh`
* :c:func:`xa_erase_irq`

View File

@ -17,7 +17,11 @@ extra-y += $(DT_TMP_SCHEMA)
quiet_cmd_mk_schema = SCHEMA $@
cmd_mk_schema = $(DT_MK_SCHEMA) $(DT_MK_SCHEMA_FLAGS) -o $@ $(filter-out FORCE, $^)
DT_DOCS = $(shell cd $(srctree)/$(src) && find * -name '*.yaml')
DT_DOCS = $(shell \
cd $(srctree)/$(src) && \
find * \( -name '*.yaml' ! -name $(DT_TMP_SCHEMA) \) \
)
DT_SCHEMA_FILES ?= $(addprefix $(src)/,$(DT_DOCS))
extra-y += $(patsubst $(src)/%.yaml,%.example.dts, $(DT_SCHEMA_FILES))

View File

@ -235,4 +235,4 @@ cpus {
===========================================
[1] ARM Linux Kernel documentation - CPUs bindings
Documentation/devicetree/bindings/arm/cpus.txt
Documentation/devicetree/bindings/arm/cpus.yaml

View File

@ -684,7 +684,7 @@ cpus {
===========================================
[1] ARM Linux Kernel documentation - CPUs bindings
Documentation/devicetree/bindings/arm/cpus.txt
Documentation/devicetree/bindings/arm/cpus.yaml
[2] ARM Linux Kernel documentation - PSCI bindings
Documentation/devicetree/bindings/arm/psci.txt

View File

@ -4,7 +4,7 @@ SP810 System Controller
Required properties:
- compatible: standard compatible string for a Primecell peripheral,
see Documentation/devicetree/bindings/arm/primecell.txt
see Documentation/devicetree/bindings/arm/primecell.yaml
for more details
should be: "arm,sp810", "arm,primecell"

View File

@ -472,4 +472,4 @@ cpus {
===============================================================================
[1] ARM Linux kernel documentation
Documentation/devicetree/bindings/arm/cpus.txt
Documentation/devicetree/bindings/arm/cpus.yaml

View File

@ -18,4 +18,4 @@ Required Properties:
Each clock is assigned an identifier and client nodes use this identifier
to specify the clock which they consume.
All these identifier could be found in <dt-bindings/clock/marvell-mmp2.h>.
All these identifiers could be found in <dt-bindings/clock/marvell,mmp2.h>.

View File

@ -0,0 +1,73 @@
Device Tree bindings for Arm Komeda display driver
Required properties:
- compatible: Should be "arm,mali-d71"
- reg: Physical base address and length of the registers in the system
- interrupts: the interrupt line number of the device in the system
- clocks: A list of phandle + clock-specifier pairs, one for each entry
in 'clock-names'
- clock-names: A list of clock names. It should contain:
- "mclk": for the main processor clock
- "pclk": for the APB interface clock
- #address-cells: Must be 1
- #size-cells: Must be 0
Required properties for sub-node: pipeline@nq
Each device contains one or two pipeline sub-nodes (at least one), each
pipeline node should provide properties:
- reg: Zero-indexed identifier for the pipeline
- clocks: A list of phandle + clock-specifier pairs, one for each entry
in 'clock-names'
- clock-names: should contain:
- "pxclk": pixel clock
- "aclk": AXI interface clock
- port: each pipeline connect to an encoder input port. The connection is
modeled using the OF graph bindings specified in
Documentation/devicetree/bindings/graph.txt
Optional properties:
- memory-region: phandle to a node describing memory (see
Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt)
to be used for the framebuffer; if not present, the framebuffer may
be located anywhere in memory.
Example:
/ {
...
dp0: display@c00000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "arm,mali-d71";
reg = <0xc00000 0x20000>;
interrupts = <0 168 4>;
clocks = <&dpu_mclk>, <&dpu_aclk>;
clock-names = "mclk", "pclk";
dp0_pipe0: pipeline@0 {
clocks = <&fpgaosc2>, <&dpu_aclk>;
clock-names = "pxclk", "aclk";
reg = <0>;
port {
dp0_pipe0_out: endpoint {
remote-endpoint = <&db_dvi0_in>;
};
};
};
dp0_pipe1: pipeline@1 {
clocks = <&fpgaosc2>, <&dpu_aclk>;
clock-names = "pxclk", "aclk";
reg = <1>;
port {
dp0_pipe1_out: endpoint {
remote-endpoint = <&db_dvi1_in>;
};
};
};
};
...
};

View File

@ -1,6 +1,6 @@
* ARM PrimeCell Color LCD Controller PL110/PL111
See also Documentation/devicetree/bindings/arm/primecell.txt
See also Documentation/devicetree/bindings/arm/primecell.yaml
Required properties:

View File

@ -8,6 +8,7 @@ Required properties:
- compatible : Shall contain one of
- "renesas,r8a7743-lvds" for R8A7743 (RZ/G1M) compatible LVDS encoders
- "renesas,r8a7744-lvds" for R8A7744 (RZ/G1N) compatible LVDS encoders
- "renesas,r8a774c0-lvds" for R8A774C0 (RZ/G2E) compatible LVDS encoders
- "renesas,r8a7790-lvds" for R8A7790 (R-Car H2) compatible LVDS encoders
- "renesas,r8a7791-lvds" for R8A7791 (R-Car M2-W) compatible LVDS encoders

View File

@ -0,0 +1,59 @@
Qualcomm adreno/snapdragon GMU (Graphics management unit)
The GMU is a programmable power controller for the GPU. the CPU controls the
GMU which in turn handles power controls for the GPU.
Required properties:
- compatible: "qcom,adreno-gmu-XYZ.W", "qcom,adreno-gmu"
for example: "qcom,adreno-gmu-630.2", "qcom,adreno-gmu"
Note that you need to list the less specific "qcom,adreno-gmu"
for generic matches and the more specific identifier to identify
the specific device.
- reg: Physical base address and length of the GMU registers.
- reg-names: Matching names for the register regions
* "gmu"
* "gmu_pdc"
* "gmu_pdc_seg"
- interrupts: The interrupt signals from the GMU.
- interrupt-names: Matching names for the interrupts
* "hfi"
* "gmu"
- clocks: phandles to the device clocks
- clock-names: Matching names for the clocks
* "gmu"
* "cxo"
* "axi"
* "mnoc"
- power-domains: should be <&clock_gpucc GPU_CX_GDSC>
- iommus: phandle to the adreno iommu
- operating-points-v2: phandle to the OPP operating points
Example:
/ {
...
gmu: gmu@506a000 {
compatible="qcom,adreno-gmu-630.2", "qcom,adreno-gmu";
reg = <0x506a000 0x30000>,
<0xb280000 0x10000>,
<0xb480000 0x10000>;
reg-names = "gmu", "gmu_pdc", "gmu_pdc_seq";
interrupts = <GIC_SPI 304 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 305 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "hfi", "gmu";
clocks = <&gpucc GPU_CC_CX_GMU_CLK>,
<&gpucc GPU_CC_CXO_CLK>,
<&gcc GCC_DDRSS_GPU_AXI_CLK>,
<&gcc GCC_GPU_MEMNOC_GFX_CLK>;
clock-names = "gmu", "cxo", "axi", "memnoc";
power-domains = <&gpucc GPU_CX_GDSC>;
iommus = <&adreno_smmu 5>;
operating-points-v2 = <&gmu_opp_table>;
};
};

View File

@ -10,14 +10,23 @@ Required properties:
If "amd,imageon" is used, there should be no top level msm device.
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt signal from the gpu.
- clocks: device clocks
- clocks: device clocks (if applicable)
See ../clocks/clock-bindings.txt for details.
- clock-names: the following clocks are required:
- clock-names: the following clocks are required by a3xx, a4xx and a5xx
cores:
* "core"
* "iface"
* "mem_iface"
For GMU attached devices the GPU clocks are not used and are not required. The
following devices should not list clocks:
- qcom,adreno-630.2
- iommus: optional phandle to an adreno iommu instance
- operating-points-v2: optional phandle to the OPP operating points
- qcom,gmu: For GMU attached devices a phandle to the GMU device that will
control the power for the GPU. Applicable targets:
- qcom,adreno-630.2
Example:
Example 3xx/4xx/a5xx:
/ {
...
@ -27,7 +36,6 @@ Example:
reg = <0x04300000 0x20000>;
reg-names = "kgsl_3d0_reg_memory";
interrupts = <GIC_SPI 80 0>;
interrupt-names = "kgsl_3d0_irq";
clock-names =
"core",
"iface",
@ -38,3 +46,30 @@ Example:
<&mmcc MMSS_IMEM_AHB_CLK>;
};
};
Example a6xx (with GMU):
/ {
...
gpu@5000000 {
compatible = "qcom,adreno-630.2", "qcom,adreno";
#stream-id-cells = <16>;
reg = <0x5000000 0x40000>, <0x509e000 0x10>;
reg-names = "kgsl_3d0_reg_memory", "cx_mem";
/*
* Look ma, no clocks! The GPU clocks and power are
* controlled entirely by the GMU
*/
interrupts = <GIC_SPI 300 IRQ_TYPE_LEVEL_HIGH>;
iommus = <&adreno_smmu 0>;
operating-points-v2 = <&gpu_opp_table>;
qcom,gmu = <&gmu>;
};
};

View File

@ -0,0 +1,7 @@
Innolux Corporation 10.1" EE101IA-01D WXGA (1280x800) LVDS panel
Required properties:
- compatible: should be "innolux,ee101ia-01d"
This binding is compatible with the lvds-panel binding, which is specified
in panel-lvds.txt in this directory.

View File

@ -0,0 +1,12 @@
LeMaker BL035-RGB-002 3.5" QVGA TFT LCD panel
Required properties:
- compatible: should be "lemaker,bl035-rgb-002"
- power-supply: as specified in the base binding
Optional properties:
- backlight: as specified in the base binding
- enable-gpios: as specified in the base binding
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -0,0 +1,14 @@
PDA 91-00156-A0 5.0" WVGA TFT LCD panel
Required properties:
- compatible: should be "pda,91-00156-a0"
- power-supply: this panel requires a single power supply. A phandle to a
regulator needs to be specified here. Compatible with panel-common binding which
is specified in the panel-common.txt in this directory.
- backlight: this panel's backlight is controlled by an external backlight
controller. A phandle to this controller needs to be specified here.
Compatible with panel-common binding which is specified in the panel-common.txt
in this directory.
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -0,0 +1,30 @@
Sitronix ST7701 based LCD panels
ST7701 designed for small and medium sizes of TFT LCD display, is
capable of supporting up to 480RGBX864 in resolution. It provides
several system interfaces like MIPI/RGB/SPI.
Techstar TS8550B is 480x854, 2-lane MIPI DSI LCD panel which has
inbuilt ST7701 chip.
Required properties:
- compatible: must be "sitronix,st7701" and one of
* "techstar,ts8550b"
- reset-gpios: a GPIO phandle for the reset pin
Required properties for techstar,ts8550b:
- reg: DSI virtual channel used by that screen
- VCC-supply: analog regulator for MIPI circuit
- IOVCC-supply: I/O system regulator
Optional properties:
- backlight: phandle for the backlight control.
panel@0 {
compatible = "techstar,ts8550b", "sitronix,st7701";
reg = <0>;
VCC-supply = <&reg_dldo2>;
IOVCC-supply = <&reg_dldo2>;
reset-gpios = <&pio 3 24 GPIO_ACTIVE_HIGH>; /* LCD-RST: PD24 */
backlight = <&backlight>;
};

View File

@ -156,6 +156,7 @@ Required properties:
* allwinner,sun6i-a31-tcon
* allwinner,sun6i-a31s-tcon
* allwinner,sun7i-a20-tcon
* allwinner,sun8i-a23-tcon
* allwinner,sun8i-a33-tcon
* allwinner,sun8i-a83t-tcon-lcd
* allwinner,sun8i-a83t-tcon-tv
@ -276,6 +277,7 @@ Required properties:
- compatible: value must be one of:
* allwinner,sun6i-a31-drc
* allwinner,sun6i-a31s-drc
* allwinner,sun8i-a23-drc
* allwinner,sun8i-a33-drc
* allwinner,sun9i-a80-drc
- reg: base address and size of the memory-mapped region.
@ -303,6 +305,7 @@ Required properties:
* allwinner,sun5i-a13-display-backend
* allwinner,sun6i-a31-display-backend
* allwinner,sun7i-a20-display-backend
* allwinner,sun8i-a23-display-backend
* allwinner,sun8i-a33-display-backend
* allwinner,sun9i-a80-display-backend
- reg: base address and size of the memory-mapped region.
@ -360,6 +363,7 @@ Required properties:
* allwinner,sun5i-a13-display-frontend
* allwinner,sun6i-a31-display-frontend
* allwinner,sun7i-a20-display-frontend
* allwinner,sun8i-a23-display-frontend
* allwinner,sun8i-a33-display-frontend
* allwinner,sun9i-a80-display-frontend
- reg: base address and size of the memory-mapped region.
@ -419,6 +423,7 @@ Required properties:
* allwinner,sun6i-a31-display-engine
* allwinner,sun6i-a31s-display-engine
* allwinner,sun7i-a20-display-engine
* allwinner,sun8i-a23-display-engine
* allwinner,sun8i-a33-display-engine
* allwinner,sun8i-a83t-display-engine
* allwinner,sun8i-h3-display-engine

View File

@ -238,6 +238,9 @@ of the following host1x client modules:
- nvidia,hpd-gpio: specifies a GPIO used for hotplug detection
- nvidia,edid: supplies a binary EDID blob
- nvidia,panel: phandle of a display panel
- nvidia,xbar-cfg: 5 cells containing the crossbar configuration. Each lane
of the SOR, identified by the cell's index, is mapped via the crossbar to
the pad specified by the cell's value.
Optional properties when driving an eDP output:
- nvidia,dpaux: phandle to a DispayPort AUX interface

View File

@ -14,8 +14,6 @@ Required properties:
"marvell,armada-8k-gpio" should be used for the Armada 7K and 8K
SoCs (either from AP or CP), see
Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt
and
Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt
for specific details about the offset property.

View File

@ -2,9 +2,10 @@
Required properties:
- compatible : value should be one of the following:
(a) "samsung,exynos4210-rotator" for Rotator IP in Exynos4210
(b) "samsung,exynos4212-rotator" for Rotator IP in Exynos4212/4412
(c) "samsung,exynos5250-rotator" for Rotator IP in Exynos5250
* "samsung,s5pv210-rotator" for Rotator IP in S5PV210
* "samsung,exynos4210-rotator" for Rotator IP in Exynos4210
* "samsung,exynos4212-rotator" for Rotator IP in Exynos4212/4412
* "samsung,exynos5250-rotator" for Rotator IP in Exynos5250
- reg : Physical base address of the IP registers and length of memory
mapped region.

View File

@ -78,7 +78,7 @@ Sub-nodes:
PPI affinity can be expressed as a single "ppi-partitions" node,
containing a set of sub-nodes, each with the following property:
- affinity: Should be a list of phandles to CPU nodes (as described in
Documentation/devicetree/bindings/arm/cpus.txt).
Documentation/devicetree/bindings/arm/cpus.yaml).
GICv3 has one or more Interrupt Translation Services (ITS) that are
used to route Message Signalled Interrupts (MSI) to the CPUs.

View File

@ -1,7 +1,8 @@
Altera SOCFPGA Reset Manager
Required properties:
- compatible : "altr,rst-mgr"
- compatible : "altr,rst-mgr" for (Cyclone5/Arria5/Arria10)
"altr,stratix10-rst-mgr","altr,rst-mgr" for Stratix10 ARM64 SoC
- reg : Should contain 1 register ranges(address and length)
- altr,modrst-offset : Should contain the offset of the first modrst register.
- #reset-cells: 1

View File

@ -120,27 +120,30 @@ Example:
};
USB3 core reset
---------------
Peripheral core reset in glue layer
-----------------------------------
USB3 core reset belongs to USB3 glue layer. Before using the core reset,
it is necessary to control the clocks and resets to enable this layer.
These clocks and resets should be described in each property.
Some peripheral core reset belongs to its own glue layer. Before using
this core reset, it is necessary to control the clocks and resets to enable
this layer. These clocks and resets should be described in each property.
Required properties:
- compatible: Should be
"socionext,uniphier-pro4-usb3-reset" - for Pro4 SoC
"socionext,uniphier-pxs2-usb3-reset" - for PXs2 SoC
"socionext,uniphier-ld20-usb3-reset" - for LD20 SoC
"socionext,uniphier-pxs3-usb3-reset" - for PXs3 SoC
"socionext,uniphier-pro4-usb3-reset" - for Pro4 SoC USB3
"socionext,uniphier-pxs2-usb3-reset" - for PXs2 SoC USB3
"socionext,uniphier-ld20-usb3-reset" - for LD20 SoC USB3
"socionext,uniphier-pxs3-usb3-reset" - for PXs3 SoC USB3
"socionext,uniphier-pro4-ahci-reset" - for Pro4 SoC AHCI
"socionext,uniphier-pxs2-ahci-reset" - for PXs2 SoC AHCI
"socionext,uniphier-pxs3-ahci-reset" - for PXs3 SoC AHCI
- #reset-cells: Should be 1.
- reg: Specifies offset and length of the register set for the device.
- clocks: A list of phandles to the clock gate for USB3 glue layer.
- clocks: A list of phandles to the clock gate for the glue layer.
According to the clock-names, appropriate clocks are required.
- clock-names: Should contain
"gio", "link" - for Pro4 SoC
"link" - for others
- resets: A list of phandles to the reset control for USB3 glue layer.
- resets: A list of phandles to the reset control for the glue layer.
According to the reset-names, appropriate resets are required.
- reset-names: Should contain
"gio", "link" - for Pro4 SoC

View File

@ -4,14 +4,10 @@ Required properties:
- compatible : "olpc,ap-sp"
- reg : base address and length of SoC's WTM registers
- interrupts : SP-AP interrupt
- clocks : phandle + clock-specifier for the clock that drives the WTM
- clock-names: should be "sp"
Example:
ap-sp@d4290000 {
compatible = "olpc,ap-sp";
reg = <0xd4290000 0x1000>;
interrupts = <40>;
clocks = <&soc_clocks MMP2_CLK_SP>;
clock-names = "sp";
}

View File

@ -55,7 +55,7 @@ of these nodes are defined by the individual bindings for the specific function
= EXAMPLE
The following example represents the GLINK RPM node on a MSM8996 device, with
the function for the "rpm_request" channel defined, which is used for
regualtors and root clocks.
regulators and root clocks.
apcs_glb: mailbox@9820000 {
compatible = "qcom,msm8996-apcs-hmss-global";

View File

@ -41,12 +41,12 @@ processor ID) and a string identifier.
- qcom,local-pid:
Usage: required
Value type: <u32>
Definition: specifies the identfier of the local endpoint of this edge
Definition: specifies the identifier of the local endpoint of this edge
- qcom,remote-pid:
Usage: required
Value type: <u32>
Definition: specifies the identfier of the remote endpoint of this edge
Definition: specifies the identifier of the remote endpoint of this edge
= SUBNODES
Each SMP2P pair contain a set of inbound and outbound entries, these are

View File

@ -211,6 +211,7 @@ laird Laird PLC
lantiq Lantiq Semiconductor
lattice Lattice Semiconductor
lego LEGO Systems A/S
lemaker Shenzhen LeMaker Technology Co., Ltd.
lenovo Lenovo Group Ltd.
lg LG Corporation
libretech Shenzhen Libre Technology Co., Ltd
@ -297,6 +298,7 @@ ovti OmniVision Technologies
oxsemi Oxford Semiconductor, Ltd.
panasonic Panasonic Corporation
parade Parade Technologies Inc.
pda Precision Design Associates, Inc.
pericom Pericom Technology Inc.
pervasive Pervasive Displays, Inc.
phicomm PHICOMM Co., Ltd.

View File

@ -124,11 +124,11 @@ struct bus_attribute {
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
};
Bus drivers can export attributes using the BUS_ATTR macro that works
similarly to the DEVICE_ATTR macro for devices. For example, a definition
like this:
Bus drivers can export attributes using the BUS_ATTR_RW macro that works
similarly to the DEVICE_ATTR_RW macro for devices. For example, a
definition like this:
static BUS_ATTR(debug,0644,show_debug,store_debug);
static BUS_ATTR_RW(debug);
is equivalent to declaring:

View File

@ -163,6 +163,14 @@ C. Boot options
be preserved until there actually is some text is output to the console.
This option causes fbcon to bind immediately to the fbdev device.
7. fbcon=logo-pos:<location>
The only possible 'location' is 'center' (without quotes), and when
given, the bootup logo is moved from the default top-left corner
location to the center of the framebuffer. If more than one logo is
displayed due to multiple CPUs, the collected line of logos is moved
as a whole.
C. Attaching, Detaching and Unloading
Before going on to how to attach, detach and unload the framebuffer console, an

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | ok |
| h8300: | TODO |
| hexagon: | ok |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | ok |
| csky: | ok |
| h8300: | TODO |
| hexagon: | ok |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | ok |
| hexagon: | ok |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | ok |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | ok |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | ok |
| c6x: | TODO |
| csky: | ok |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | ok |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -34,6 +34,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | .. |
| arm64: | ok |
| c6x: | .. |
| csky: | .. |
| h8300: | .. |
| hexagon: | .. |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | ok |
| csky: | ok |
| h8300: | ok |
| hexagon: | ok |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | .. |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | ok |
| c6x: | ok |
| csky: | ok |
| h8300: | ok |
| hexagon: | ok |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | .. |
| csky: | .. |
| h8300: | .. |
| hexagon: | .. |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | .. |
| csky: | TODO |
| h8300: | .. |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | TODO |
| arm64: | TODO |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -11,6 +11,7 @@
| arm: | .. |
| arm64: | ok |
| c6x: | .. |
| csky: | .. |
| h8300: | .. |
| hexagon: | .. |
| ia64: | ok |

View File

@ -11,6 +11,7 @@
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |

View File

@ -344,7 +344,9 @@ struct bus_attribute {
Declaring:
BUS_ATTR(_name, _mode, _show, _store)
static BUS_ATTR_RW(name);
static BUS_ATTR_RO(name);
static BUS_ATTR_WO(name);
Creation/Removal:

235
Documentation/gpu/afbc.rst Normal file
View File

@ -0,0 +1,235 @@
.. SPDX-License-Identifier: GPL-2.0+
===================================
Arm Framebuffer Compression (AFBC)
===================================
AFBC is a proprietary lossless image compression protocol and format.
It provides fine-grained random access and minimizes the amount of
data transferred between IP blocks.
AFBC can be enabled on drivers which support it via use of the AFBC
format modifiers defined in drm_fourcc.h. See DRM_FORMAT_MOD_ARM_AFBC(*).
All users of the AFBC modifiers must follow the usage guidelines laid
out in this document, to ensure compatibility across different AFBC
producers and consumers.
Components and Ordering
=======================
AFBC streams can contain several components - where a component
corresponds to a color channel (i.e. R, G, B, X, A, Y, Cb, Cr).
The assignment of input/output color channels must be consistent
between the encoder and the decoder for correct operation, otherwise
the consumer will interpret the decoded data incorrectly.
Furthermore, when the lossless colorspace transform is used
(AFBC_FORMAT_MOD_YTR, which should be enabled for RGB buffers for
maximum compression efficiency), the component order must be:
* Component 0: R
* Component 1: G
* Component 2: B
The component ordering is communicated via the fourcc code in the
fourcc:modifier pair. In general, component '0' is considered to
reside in the least-significant bits of the corresponding linear
format. For example, COMP(bits):
* DRM_FORMAT_ABGR8888
* Component 0: R(8)
* Component 1: G(8)
* Component 2: B(8)
* Component 3: A(8)
* DRM_FORMAT_BGR888
* Component 0: R(8)
* Component 1: G(8)
* Component 2: B(8)
* DRM_FORMAT_YUYV
* Component 0: Y(8)
* Component 1: Cb(8, 2x1 subsampled)
* Component 2: Cr(8, 2x1 subsampled)
In AFBC, 'X' components are not treated any differently from any other
component. Therefore, an AFBC buffer with fourcc DRM_FORMAT_XBGR8888
encodes with 4 components, like so:
* DRM_FORMAT_XBGR8888
* Component 0: R(8)
* Component 1: G(8)
* Component 2: B(8)
* Component 3: X(8)
Please note, however, that the inclusion of a "wasted" 'X' channel is
bad for compression efficiency, and so it's recommended to avoid
formats containing 'X' bits. If a fourth component is
required/expected by the encoder/decoder, then it is recommended to
instead use an equivalent format with alpha, setting all alpha bits to
'1'. If there is no requirement for a fourth component, then a format
which doesn't include alpha can be used, e.g. DRM_FORMAT_BGR888.
Number of Planes
================
Formats which are typically multi-planar in linear layouts (e.g. YUV
420), can be encoded into one, or multiple, AFBC planes. As with
component order, the encoder and decoder must agree about the number
of planes in order to correctly decode the buffer. The fourcc code is
used to determine the number of encoded planes in an AFBC buffer,
matching the number of planes for the linear (unmodified) format.
Within each plane, the component ordering also follows the fourcc
code:
For example:
* DRM_FORMAT_YUYV: nplanes = 1
* Plane 0:
* Component 0: Y(8)
* Component 1: Cb(8, 2x1 subsampled)
* Component 2: Cr(8, 2x1 subsampled)
* DRM_FORMAT_NV12: nplanes = 2
* Plane 0:
* Component 0: Y(8)
* Plane 1:
* Component 0: Cb(8, 2x1 subsampled)
* Component 1: Cr(8, 2x1 subsampled)
Cross-device interoperability
=============================
For maximum compatibility across devices, the table below defines
canonical formats for use between AFBC-enabled devices. Formats which
are listed here must be used exactly as specified when using the AFBC
modifiers. Formats which are not listed should be avoided.
.. flat-table:: AFBC formats
* - Fourcc code
- Description
- Planes/Components
* - DRM_FORMAT_ABGR2101010
- 10-bit per component RGB, with 2-bit alpha
- Plane 0: 4 components
* Component 0: R(10)
* Component 1: G(10)
* Component 2: B(10)
* Component 3: A(2)
* - DRM_FORMAT_ABGR8888
- 8-bit per component RGB, with 8-bit alpha
- Plane 0: 4 components
* Component 0: R(8)
* Component 1: G(8)
* Component 2: B(8)
* Component 3: A(8)
* - DRM_FORMAT_BGR888
- 8-bit per component RGB
- Plane 0: 3 components
* Component 0: R(8)
* Component 1: G(8)
* Component 2: B(8)
* - DRM_FORMAT_BGR565
- 5/6-bit per component RGB
- Plane 0: 3 components
* Component 0: R(5)
* Component 1: G(6)
* Component 2: B(5)
* - DRM_FORMAT_ABGR1555
- 5-bit per component RGB, with 1-bit alpha
- Plane 0: 4 components
* Component 0: R(5)
* Component 1: G(5)
* Component 2: B(5)
* Component 3: A(1)
* - DRM_FORMAT_VUY888
- 8-bit per component YCbCr 444, single plane
- Plane 0: 3 components
* Component 0: Y(8)
* Component 1: Cb(8)
* Component 2: Cr(8)
* - DRM_FORMAT_VUY101010
- 10-bit per component YCbCr 444, single plane
- Plane 0: 3 components
* Component 0: Y(10)
* Component 1: Cb(10)
* Component 2: Cr(10)
* - DRM_FORMAT_YUYV
- 8-bit per component YCbCr 422, single plane
- Plane 0: 3 components
* Component 0: Y(8)
* Component 1: Cb(8, 2x1 subsampled)
* Component 2: Cr(8, 2x1 subsampled)
* - DRM_FORMAT_NV16
- 8-bit per component YCbCr 422, two plane
- Plane 0: 1 component
* Component 0: Y(8)
Plane 1: 2 components
* Component 0: Cb(8, 2x1 subsampled)
* Component 1: Cr(8, 2x1 subsampled)
* - DRM_FORMAT_Y210
- 10-bit per component YCbCr 422, single plane
- Plane 0: 3 components
* Component 0: Y(10)
* Component 1: Cb(10, 2x1 subsampled)
* Component 2: Cr(10, 2x1 subsampled)
* - DRM_FORMAT_P210
- 10-bit per component YCbCr 422, two plane
- Plane 0: 1 component
* Component 0: Y(10)
Plane 1: 2 components
* Component 0: Cb(10, 2x1 subsampled)
* Component 1: Cr(10, 2x1 subsampled)
* - DRM_FORMAT_YUV420_8BIT
- 8-bit per component YCbCr 420, single plane
- Plane 0: 3 components
* Component 0: Y(8)
* Component 1: Cb(8, 2x2 subsampled)
* Component 2: Cr(8, 2x2 subsampled)
* - DRM_FORMAT_YUV420_10BIT
- 10-bit per component YCbCr 420, single plane
- Plane 0: 3 components
* Component 0: Y(10)
* Component 1: Cb(10, 2x2 subsampled)
* Component 2: Cr(10, 2x2 subsampled)
* - DRM_FORMAT_NV12
- 8-bit per component YCbCr 420, two plane
- Plane 0: 1 component
* Component 0: Y(8)
Plane 1: 2 components
* Component 0: Cb(8, 2x2 subsampled)
* Component 1: Cr(8, 2x2 subsampled)
* - DRM_FORMAT_P010
- 10-bit per component YCbCr 420, two plane
- Plane 0: 1 component
* Component 0: Y(10)
Plane 1: 2 components
* Component 0: Cb(10, 2x2 subsampled)
* Component 1: Cr(10, 2x2 subsampled)

View File

@ -17,6 +17,8 @@ GPU Driver Documentation
vkms
bridge/dw-hdmi
xen-front
afbc
komeda-kms
.. only:: subproject and html

View File

@ -39,68 +39,6 @@ sections.
Driver Information
------------------
Driver Features
~~~~~~~~~~~~~~~
Drivers inform the DRM core about their requirements and supported
features by setting appropriate flags in the driver_features field.
Since those flags influence the DRM core behaviour since registration
time, most of them must be set to registering the :c:type:`struct
drm_driver <drm_driver>` instance.
u32 driver_features;
DRIVER_USE_AGP
Driver uses AGP interface, the DRM core will manage AGP resources.
DRIVER_LEGACY
Denote a legacy driver using shadow attach. Don't use.
DRIVER_KMS_LEGACY_CONTEXT
Used only by nouveau for backwards compatibility with existing userspace.
Don't use.
DRIVER_PCI_DMA
Driver is capable of PCI DMA, mapping of PCI DMA buffers to
userspace will be enabled. Deprecated.
DRIVER_SG
Driver can perform scatter/gather DMA, allocation and mapping of
scatter/gather buffers will be enabled. Deprecated.
DRIVER_HAVE_DMA
Driver supports DMA, the userspace DMA API will be supported.
Deprecated.
DRIVER_HAVE_IRQ; DRIVER_IRQ_SHARED
DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
managed by the DRM Core. The core will support simple IRQ handler
installation when the flag is set. The installation process is
described in ?.
DRIVER_IRQ_SHARED indicates whether the device & handler support
shared IRQs (note that this is required of PCI drivers).
DRIVER_GEM
Driver use the GEM memory manager.
DRIVER_MODESET
Driver supports mode setting interfaces (KMS).
DRIVER_PRIME
Driver implements DRM PRIME buffer sharing.
DRIVER_RENDER
Driver supports dedicated render nodes.
DRIVER_ATOMIC
Driver supports atomic properties. In this case the driver must
implement appropriate obj->atomic_get_property() vfuncs for any
modeset objects with driver specific properties.
DRIVER_SYNCOBJ
Driver support drm sync objects.
Major, Minor and Patchlevel
~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -296,18 +296,6 @@ SCDC Helper Functions Reference
.. kernel-doc:: drivers/gpu/drm/drm_scdc_helper.c
:export:
Rectangle Utilities Reference
=============================
.. kernel-doc:: include/drm/drm_rect.h
:doc: rect utils
.. kernel-doc:: include/drm/drm_rect.h
:internal:
.. kernel-doc:: drivers/gpu/drm/drm_rect.c
:export:
HDMI Infoframes Helper Reference
================================
@ -322,6 +310,18 @@ libraries and hence is also included here.
.. kernel-doc:: drivers/video/hdmi.c
:export:
Rectangle Utilities Reference
=============================
.. kernel-doc:: include/drm/drm_rect.h
:doc: rect utils
.. kernel-doc:: include/drm/drm_rect.h
:internal:
.. kernel-doc:: drivers/gpu/drm/drm_rect.c
:export:
Flip-work Helper Reference
==========================

View File

@ -410,102 +410,6 @@ Encoder Functions Reference
.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
:export:
KMS Initialization and Cleanup
==============================
A KMS device is abstracted and exposed as a set of planes, CRTCs,
encoders and connectors. KMS drivers must thus create and initialize all
those objects at load time after initializing mode setting.
CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
--------------------------------------------
A CRTC is an abstraction representing a part of the chip that contains a
pointer to a scanout buffer. Therefore, the number of CRTCs available
determines how many independent scanout buffers can be active at any
given time. The CRTC structure contains several fields to support this:
a pointer to some video memory (abstracted as a frame buffer object), a
display mode, and an (x, y) offset into the video memory to support
panning or configurations where one piece of video memory spans multiple
CRTCs.
CRTC Initialization
~~~~~~~~~~~~~~~~~~~
A KMS device must create and register at least one struct
:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
allocated and zeroed by the driver, possibly as part of a larger
structure, and registered with a call to :c:func:`drm_crtc_init()`
with a pointer to CRTC functions.
Cleanup
-------
The DRM core manages its objects' lifetime. When an object is not needed
anymore the core calls its destroy function, which must clean up and
free every resource allocated for the object. Every
:c:func:`drm_\*_init()` call must be matched with a corresponding
:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
(:c:func:`drm_crtc_cleanup()`), planes
(:c:func:`drm_plane_cleanup()`), encoders
(:c:func:`drm_encoder_cleanup()`) and connectors
(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
have been added to sysfs must be removed by a call to
:c:func:`drm_connector_unregister()` before calling
:c:func:`drm_connector_cleanup()`.
Connectors state change detection must be cleanup up with a call to
:c:func:`drm_kms_helper_poll_fini()`.
Output discovery and initialization example
-------------------------------------------
.. code-block:: c
void intel_crt_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct intel_output *intel_output;
intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output)
return;
connector = &intel_output->base;
drm_connector_init(dev, &intel_output->base,
&intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);
drm_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
/* Set up the DDC bus. */
intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
if (!intel_output->ddc_bus) {
dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
return;
}
intel_output->type = INTEL_OUTPUT_ANALOG;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
drm_connector_register(connector);
}
In the example above (taken from the i915 driver), a CRTC, connector and
encoder combination is created. A device-specific i2c bus is also
created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to
make its properties available to applications.
KMS Locking
===========

View File

@ -238,6 +238,14 @@ DRM specific patterns. Note that ENOTTY has the slightly unintuitive meaning of
Testing and validation
======================
Testing Requirements for userspace API
--------------------------------------
New cross-driver userspace interface extensions, like new IOCTL, new KMS
properties, new files in sysfs or anything else that constitutes an API change
should have driver-agnostic testcases in IGT for that feature, if such a test
can be reasonably made using IGT for the target hardware.
Validating changes with IGT
---------------------------

View File

@ -0,0 +1,488 @@
.. SPDX-License-Identifier: GPL-2.0
==============================
drm/komeda Arm display driver
==============================
The drm/komeda driver supports the Arm display processor D71 and later products,
this document gives a brief overview of driver design: how it works and why
design it like that.
Overview of D71 like display IPs
================================
From D71, Arm display IP begins to adopt a flexible and modularized
architecture. A display pipeline is made up of multiple individual and
functional pipeline stages called components, and every component has some
specific capabilities that can give the flowed pipeline pixel data a
particular processing.
Typical D71 components:
Layer
-----
Layer is the first pipeline stage, which prepares the pixel data for the next
stage. It fetches the pixel from memory, decodes it if it's AFBC, rotates the
source image, unpacks or converts YUV pixels to the device internal RGB pixels,
then adjusts the color_space of pixels if needed.
Scaler
------
As its name suggests, scaler takes responsibility for scaling, and D71 also
supports image enhancements by scaler.
The usage of scaler is very flexible and can be connected to layer output
for layer scaling, or connected to compositor and scale the whole display
frame and then feed the output data into wb_layer which will then write it
into memory.
Compositor (compiz)
-------------------
Compositor blends multiple layers or pixel data flows into one single display
frame. its output frame can be fed into post image processor for showing it on
the monitor or fed into wb_layer and written to memory at the same time.
user can also insert a scaler between compositor and wb_layer to down scale
the display frame first and and then write to memory.
Writeback Layer (wb_layer)
--------------------------
Writeback layer does the opposite things of Layer, which connects to compiz
and writes the composition result to memory.
Post image processor (improc)
-----------------------------
Post image processor adjusts frame data like gamma and color space to fit the
requirements of the monitor.
Timing controller (timing_ctrlr)
--------------------------------
Final stage of display pipeline, Timing controller is not for the pixel
handling, but only for controlling the display timing.
Merger
------
D71 scaler mostly only has the half horizontal input/output capabilities
compared with Layer, like if Layer supports 4K input size, the scaler only can
support 2K input/output in the same time. To achieve the ful frame scaling, D71
introduces Layer Split, which splits the whole image to two half parts and feeds
them to two Layers A and B, and does the scaling independently. After scaling
the result need to be fed to merger to merge two part images together, and then
output merged result to compiz.
Splitter
--------
Similar to Layer Split, but Splitter is used for writeback, which splits the
compiz result to two parts and then feed them to two scalers.
Possible D71 Pipeline usage
===========================
Benefitting from the modularized architecture, D71 pipelines can be easily
adjusted to fit different usages. And D71 has two pipelines, which support two
types of working mode:
- Dual display mode
Two pipelines work independently and separately to drive two display outputs.
- Single display mode
Two pipelines work together to drive only one display output.
On this mode, pipeline_B doesn't work indenpendently, but outputs its
composition result into pipeline_A, and its pixel timing also derived from
pipeline_A.timing_ctrlr. The pipeline_B works just like a "slave" of
pipeline_A(master)
Single pipeline data flow
-------------------------
.. kernel-render:: DOT
:alt: Single pipeline digraph
:caption: Single pipeline data flow
digraph single_ppl {
rankdir=LR;
subgraph {
"Memory";
"Monitor";
}
subgraph cluster_pipeline {
style=dashed
node [shape=box]
{
node [bgcolor=grey style=dashed]
"Scaler-0";
"Scaler-1";
"Scaler-0/1"
}
node [bgcolor=grey style=filled]
"Layer-0" -> "Scaler-0"
"Layer-1" -> "Scaler-0"
"Layer-2" -> "Scaler-1"
"Layer-3" -> "Scaler-1"
"Layer-0" -> "Compiz"
"Layer-1" -> "Compiz"
"Layer-2" -> "Compiz"
"Layer-3" -> "Compiz"
"Scaler-0" -> "Compiz"
"Scaler-1" -> "Compiz"
"Compiz" -> "Scaler-0/1" -> "Wb_layer"
"Compiz" -> "Improc" -> "Timing Controller"
}
"Wb_layer" -> "Memory"
"Timing Controller" -> "Monitor"
}
Dual pipeline with Slave enabled
--------------------------------
.. kernel-render:: DOT
:alt: Slave pipeline digraph
:caption: Slave pipeline enabled data flow
digraph slave_ppl {
rankdir=LR;
subgraph {
"Memory";
"Monitor";
}
node [shape=box]
subgraph cluster_pipeline_slave {
style=dashed
label="Slave Pipeline_B"
node [shape=box]
{
node [bgcolor=grey style=dashed]
"Slave.Scaler-0";
"Slave.Scaler-1";
}
node [bgcolor=grey style=filled]
"Slave.Layer-0" -> "Slave.Scaler-0"
"Slave.Layer-1" -> "Slave.Scaler-0"
"Slave.Layer-2" -> "Slave.Scaler-1"
"Slave.Layer-3" -> "Slave.Scaler-1"
"Slave.Layer-0" -> "Slave.Compiz"
"Slave.Layer-1" -> "Slave.Compiz"
"Slave.Layer-2" -> "Slave.Compiz"
"Slave.Layer-3" -> "Slave.Compiz"
"Slave.Scaler-0" -> "Slave.Compiz"
"Slave.Scaler-1" -> "Slave.Compiz"
}
subgraph cluster_pipeline_master {
style=dashed
label="Master Pipeline_A"
node [shape=box]
{
node [bgcolor=grey style=dashed]
"Scaler-0";
"Scaler-1";
"Scaler-0/1"
}
node [bgcolor=grey style=filled]
"Layer-0" -> "Scaler-0"
"Layer-1" -> "Scaler-0"
"Layer-2" -> "Scaler-1"
"Layer-3" -> "Scaler-1"
"Slave.Compiz" -> "Compiz"
"Layer-0" -> "Compiz"
"Layer-1" -> "Compiz"
"Layer-2" -> "Compiz"
"Layer-3" -> "Compiz"
"Scaler-0" -> "Compiz"
"Scaler-1" -> "Compiz"
"Compiz" -> "Scaler-0/1" -> "Wb_layer"
"Compiz" -> "Improc" -> "Timing Controller"
}
"Wb_layer" -> "Memory"
"Timing Controller" -> "Monitor"
}
Sub-pipelines for input and output
----------------------------------
A complete display pipeline can be easily divided into three sub-pipelines
according to the in/out usage.
Layer(input) pipeline
~~~~~~~~~~~~~~~~~~~~~
.. kernel-render:: DOT
:alt: Layer data digraph
:caption: Layer (input) data flow
digraph layer_data_flow {
rankdir=LR;
node [shape=box]
{
node [bgcolor=grey style=dashed]
"Scaler-n";
}
"Layer-n" -> "Scaler-n" -> "Compiz"
}
.. kernel-render:: DOT
:alt: Layer Split digraph
:caption: Layer Split pipeline
digraph layer_data_flow {
rankdir=LR;
node [shape=box]
"Layer-0/1" -> "Scaler-0" -> "Merger"
"Layer-2/3" -> "Scaler-1" -> "Merger"
"Merger" -> "Compiz"
}
Writeback(output) pipeline
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. kernel-render:: DOT
:alt: writeback digraph
:caption: Writeback(output) data flow
digraph writeback_data_flow {
rankdir=LR;
node [shape=box]
{
node [bgcolor=grey style=dashed]
"Scaler-n";
}
"Compiz" -> "Scaler-n" -> "Wb_layer"
}
.. kernel-render:: DOT
:alt: split writeback digraph
:caption: Writeback(output) Split data flow
digraph writeback_data_flow {
rankdir=LR;
node [shape=box]
"Compiz" -> "Splitter"
"Splitter" -> "Scaler-0" -> "Merger"
"Splitter" -> "Scaler-1" -> "Merger"
"Merger" -> "Wb_layer"
}
Display output pipeline
~~~~~~~~~~~~~~~~~~~~~~~
.. kernel-render:: DOT
:alt: display digraph
:caption: display output data flow
digraph single_ppl {
rankdir=LR;
node [shape=box]
"Compiz" -> "Improc" -> "Timing Controller"
}
In the following section we'll see these three sub-pipelines will be handled
by KMS-plane/wb_conn/crtc respectively.
Komeda Resource abstraction
===========================
struct komeda_pipeline/component
--------------------------------
To fully utilize and easily access/configure the HW, the driver side also uses
a similar architecture: Pipeline/Component to describe the HW features and
capabilities, and a specific component includes two parts:
- Data flow controlling.
- Specific component capabilities and features.
So the driver defines a common header struct komeda_component to describe the
data flow control and all specific components are a subclass of this base
structure.
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_pipeline.h
:internal:
Resource discovery and initialization
=====================================
Pipeline and component are used to describe how to handle the pixel data. We
still need a @struct komeda_dev to describe the whole view of the device, and
the control-abilites of device.
We have &komeda_dev, &komeda_pipeline, &komeda_component. Now fill devices with
pipelines. Since komeda is not for D71 only but also intended for later products,
of course wed better share as much as possible between different products. To
achieve this, split the komeda device into two layers: CORE and CHIP.
- CORE: for common features and capabilities handling.
- CHIP: for register programing and HW specific feature (limitation) handling.
CORE can access CHIP by three chip function structures:
- struct komeda_dev_funcs
- struct komeda_pipeline_funcs
- struct komeda_component_funcs
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_dev.h
:internal:
Format handling
===============
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_format_caps.h
:internal:
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_framebuffer.h
:internal:
Attach komeda_dev to DRM-KMS
============================
Komeda abstracts resources by pipeline/component, but DRM-KMS uses
crtc/plane/connector. One KMS-obj cannot represent only one single component,
since the requirements of a single KMS object cannot simply be achieved by a
single component, usually that needs multiple components to fit the requirement.
Like set mode, gamma, ctm for KMS all target on CRTC-obj, but komeda needs
compiz, improc and timing_ctrlr to work together to fit these requirements.
And a KMS-Plane may require multiple komeda resources: layer/scaler/compiz.
So, one KMS-Obj represents a sub-pipeline of komeda resources.
- Plane: `Layer(input) pipeline`_
- Wb_connector: `Writeback(output) pipeline`_
- Crtc: `Display output pipeline`_
So, for komeda, we treat KMS crtc/plane/connector as users of pipeline and
component, and at any one time a pipeline/component only can be used by one
user. And pipeline/component will be treated as private object of DRM-KMS; the
state will be managed by drm_atomic_state as well.
How to map plane to Layer(input) pipeline
-----------------------------------------
Komeda has multiple Layer input pipelines, see:
- `Single pipeline data flow`_
- `Dual pipeline with Slave enabled`_
The easiest way is binding a plane to a fixed Layer pipeline, but consider the
komeda capabilities:
- Layer Split, See `Layer(input) pipeline`_
Layer_Split is quite complicated feature, which splits a big image into two
parts and handles it by two layers and two scalers individually. But it
imports an edge problem or effect in the middle of the image after the split.
To avoid such a problem, it needs a complicated Split calculation and some
special configurations to the layer and scaler. We'd better hide such HW
related complexity to user mode.
- Slave pipeline, See `Dual pipeline with Slave enabled`_
Since the compiz component doesn't output alpha value, the slave pipeline
only can be used for bottom layers composition. The komeda driver wants to
hide this limitation to the user. The way to do this is to pick a suitable
Layer according to plane_state->zpos.
So for komeda, the KMS-plane doesn't represent a fixed komeda layer pipeline,
but multiple Layers with same capabilities. Komeda will select one or more
Layers to fit the requirement of one KMS-plane.
Make component/pipeline to be drm_private_obj
---------------------------------------------
Add :c:type:`drm_private_obj` to :c:type:`komeda_component`, :c:type:`komeda_pipeline`
.. code-block:: c
struct komeda_component {
struct drm_private_obj obj;
...
}
struct komeda_pipeline {
struct drm_private_obj obj;
...
}
Tracking component_state/pipeline_state by drm_atomic_state
-----------------------------------------------------------
Add :c:type:`drm_private_state` and user to :c:type:`komeda_component_state`,
:c:type:`komeda_pipeline_state`
.. code-block:: c
struct komeda_component_state {
struct drm_private_state obj;
void *binding_user;
...
}
struct komeda_pipeline_state {
struct drm_private_state obj;
struct drm_crtc *crtc;
...
}
komeda component validation
---------------------------
Komeda has multiple types of components, but the process of validation are
similar, usually including the following steps:
.. code-block:: c
int komeda_xxxx_validate(struct komeda_component_xxx xxx_comp,
struct komeda_component_output *input_dflow,
struct drm_plane/crtc/connector *user,
struct drm_plane/crtc/connector_state, *user_state)
{
setup 1: check if component is needed, like the scaler is optional depending
on the user_state; if unneeded, just return, and the caller will
put the data flow into next stage.
Setup 2: check user_state with component features and capabilities to see
if requirements can be met; if not, return fail.
Setup 3: get component_state from drm_atomic_state, and try set to set
user to component; fail if component has been assigned to another
user already.
Setup 3: configure the component_state, like set its input component,
convert user_state to component specific state.
Setup 4: adjust the input_dflow and prepare it for the next stage.
}
komeda_kms Abstraction
----------------------
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_kms.h
:internal:
komde_kms Functions
-------------------
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_crtc.c
:internal:
.. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_plane.c
:internal:
Build komeda to be a Linux module driver
========================================
Now we have two level devices:
- komeda_dev: describes the real display hardware.
- komeda_kms_dev: attachs or connects komeda_dev to DRM-KMS.
All komeda operations are supplied or operated by komeda_dev or komeda_kms_dev,
the module driver is only a simple wrapper to pass the Linux command
(probe/remove/pm) into komeda_dev or komeda_kms_dev.

View File

@ -262,6 +262,44 @@ As a reference, take a look at the conversions already completed in drm core.
Contact: Sean Paul, respective driver maintainers
Rename CMA helpers to DMA helpers
---------------------------------
CMA (standing for contiguous memory allocator) is really a bit an accident of
what these were used for first, a much better name would be DMA helpers. In the
text these should even be called coherent DMA memory helpers (so maybe CDM, but
no one knows what that means) since underneath they just use dma_alloc_coherent.
Contact: Laurent Pinchart, Daniel Vetter
Convert direct mode.vrefresh accesses to use drm_mode_vrefresh()
----------------------------------------------------------------
drm_display_mode.vrefresh isn't guaranteed to be populated. As such, using it
is risky and has been known to cause div-by-zero bugs. Fortunately, drm core
has helper which will use mode.vrefresh if it's !0 and will calculate it from
the timings when it's 0.
Use simple search/replace, or (more fun) cocci to replace instances of direct
vrefresh access with a call to the helper. Check out
https://lists.freedesktop.org/archives/dri-devel/2019-January/205186.html for
inspiration.
Once all instances of vrefresh have been converted, remove vrefresh from
drm_display_mode to avoid future use.
Contact: Sean Paul
Remove drm_display_mode.hsync
-----------------------------
We have drm_mode_hsync() to calculate this from hsync_start/end, since drivers
shouldn't/don't use this, remove this member to avoid any temptations to use it
in the future. If there is any debug code using drm_display_mode.hsync, convert
it to use drm_mode_hsync() instead.
Contact: Sean Paul
Core refactorings
=================
@ -360,10 +398,6 @@ KMS cleanups
Some of these date from the very introduction of KMS in 2008 ...
- drm_display_mode doesn't need to be derived from drm_mode_object. That's
leftovers from older (never merged into upstream) KMS designs where modes
where set using their ID, including support to add/remove modes.
- Make ->funcs and ->helper_private vtables optional. There's a bunch of empty
function tables in drivers, but before we can remove them we need to make sure
that all the users in helpers and drivers do correctly check for a NULL

View File

@ -23,17 +23,6 @@ CRC API Improvements
- Add igt test to check extreme alpha values i.e. fully opaque and fully
transparent (intermediate values are affected by hw-specific rounding modes).
Vblank issues
-------------
Some IGT test cases are failing. Need to analyze why and fix the issues:
- plain-flip-fb-recreate
- plain-flip-ts-check
- flip-vs-blocking-wf-vblank
- plain-flip-fb-recreate-interruptible
- flip-vs-wf_vblank-interruptible
Runtime Configuration
---------------------

View File

@ -11,19 +11,19 @@ Contents:
batman-adv
can
can_ucan_protocol
dpaa2/index
e100
e1000
e1000e
fm10k
igb
igbvf
ixgb
ixgbe
ixgbevf
i40e
iavf
ice
device_drivers/freescale/dpaa2/index
device_drivers/intel/e100
device_drivers/intel/e1000
device_drivers/intel/e1000e
device_drivers/intel/fm10k
device_drivers/intel/igb
device_drivers/intel/igbvf
device_drivers/intel/ixgb
device_drivers/intel/ixgbe
device_drivers/intel/ixgbevf
device_drivers/intel/i40e
device_drivers/intel/iavf
device_drivers/intel/ice
kapi
z8530book
msg_zerocopy

View File

@ -22,8 +22,9 @@ and changeable from userspace under certain rules.
2. Querying from userspace
Both admin and operational state can be queried via the netlink
operation RTM_GETLINK. It is also possible to subscribe to RTMGRP_LINK
to be notified of updates. This is important for setting from userspace.
operation RTM_GETLINK. It is also possible to subscribe to RTNLGRP_LINK
to be notified of updates while the interface is admin up. This is
important for setting from userspace.
These values contain interface state:
@ -101,8 +102,9 @@ because some driver controlled protocol establishment has to
complete. Corresponding functions are netif_dormant_on() to set the
flag, netif_dormant_off() to clear it and netif_dormant() to query.
On device allocation, networking core sets the flags equivalent to
netif_carrier_ok() and !netif_dormant().
On device allocation, both flags __LINK_STATE_NOCARRIER and
__LINK_STATE_DORMANT are cleared, so the effective state is equivalent
to netif_carrier_ok() and !netif_dormant().
Whenever the driver CHANGES one of these flags, a workqueue event is
@ -133,11 +135,11 @@ netif_carrier_ok() && !netif_dormant() is set by the
driver. Afterwards, the userspace application can set IFLA_OPERSTATE
to IF_OPER_DORMANT or IF_OPER_UP as long as the driver does not set
netif_carrier_off() or netif_dormant_on(). Changes made by userspace
are multicasted on the netlink group RTMGRP_LINK.
are multicasted on the netlink group RTNLGRP_LINK.
So basically a 802.1X supplicant interacts with the kernel like this:
-subscribe to RTMGRP_LINK
-subscribe to RTNLGRP_LINK
-set IFLA_LINKMODE to 1 via RTM_SETLINK
-query RTM_GETLINK once to get initial state
-if initial flags are not (IFF_LOWER_UP && !IFF_DORMANT), wait until

View File

@ -1000,51 +1000,6 @@ The kernel interface functions are as follows:
size should be set when the call is begun. tx_total_len may not be less
than zero.
(*) Check to see the completion state of a call so that the caller can assess
whether it needs to be retried.
enum rxrpc_call_completion {
RXRPC_CALL_SUCCEEDED,
RXRPC_CALL_REMOTELY_ABORTED,
RXRPC_CALL_LOCALLY_ABORTED,
RXRPC_CALL_LOCAL_ERROR,
RXRPC_CALL_NETWORK_ERROR,
};
int rxrpc_kernel_check_call(struct socket *sock, struct rxrpc_call *call,
enum rxrpc_call_completion *_compl,
u32 *_abort_code);
On return, -EINPROGRESS will be returned if the call is still ongoing; if
it is finished, *_compl will be set to indicate the manner of completion,
*_abort_code will be set to any abort code that occurred. 0 will be
returned on a successful completion, -ECONNABORTED will be returned if the
client failed due to a remote abort and anything else will return an
appropriate error code.
The caller should look at this information to decide if it's worth
retrying the call.
(*) Retry a client call.
int rxrpc_kernel_retry_call(struct socket *sock,
struct rxrpc_call *call,
struct sockaddr_rxrpc *srx,
struct key *key);
This attempts to partially reinitialise a call and submit it again while
reusing the original call's Tx queue to avoid the need to repackage and
re-encrypt the data to be sent. call indicates the call to retry, srx the
new address to send it to and key the encryption key to use for signing or
encrypting the packets.
For this to work, the first Tx data packet must still be in the transmit
queue, and currently this is only permitted for local and network errors
and the call must not have been aborted. Any partially constructed Tx
packet is left as is and can continue being filled afterwards.
It returns 0 if the call was requeued and an error otherwise.
(*) Get call RTT.
u64 rxrpc_kernel_get_rtt(struct socket *sock, struct rxrpc_call *call);

View File

@ -336,7 +336,26 @@ time client replies ACK, this socket will get another chance to move
to the accept queue.
TCP Fast Open
* TcpEstabResets
Defined in `RFC1213 tcpEstabResets`_.
.. _RFC1213 tcpEstabResets: https://tools.ietf.org/html/rfc1213#page-48
* TcpAttemptFails
Defined in `RFC1213 tcpAttemptFails`_.
.. _RFC1213 tcpAttemptFails: https://tools.ietf.org/html/rfc1213#page-48
* TcpOutRsts
Defined in `RFC1213 tcpOutRsts`_. The RFC says this counter indicates
the 'segments sent containing the RST flag', but in linux kernel, this
couner indicates the segments kerenl tried to send. The sending
process might be failed due to some errors (e.g. memory alloc failed).
.. _RFC1213 tcpOutRsts: https://tools.ietf.org/html/rfc1213#page-52
TCP Fast Path
============
When kernel receives a TCP packet, it has two paths to handler the
packet, one is fast path, another is slow path. The comment in kernel
@ -383,8 +402,6 @@ increase 1.
TCP abort
========
* TcpExtTCPAbortOnData
It means TCP layer has data in flight, but need to close the
connection. So TCP layer sends a RST to the other side, indicate the
@ -545,7 +562,6 @@ packet yet, the sender would know packet 4 is out of order. The TCP
stack of kernel will increase TcpExtTCPSACKReorder for both of the
above scenarios.
DSACK
=====
The DSACK is defined in `RFC2883`_. The receiver uses DSACK to report
@ -566,13 +582,63 @@ The TCP stack receives an out of order duplicate packet, so it sends a
DSACK to the sender.
* TcpExtTCPDSACKRecv
The TCP stack receives a DSACK, which indicate an acknowledged
The TCP stack receives a DSACK, which indicates an acknowledged
duplicate packet is received.
* TcpExtTCPDSACKOfoRecv
The TCP stack receives a DSACK, which indicate an out of order
duplicate packet is received.
invalid SACK and DSACK
====================
When a SACK (or DSACK) block is invalid, a corresponding counter would
be updated. The validation method is base on the start/end sequence
number of the SACK block. For more details, please refer the comment
of the function tcp_is_sackblock_valid in the kernel source code. A
SACK option could have up to 4 blocks, they are checked
individually. E.g., if 3 blocks of a SACk is invalid, the
corresponding counter would be updated 3 times. The comment of the
`Add counters for discarded SACK blocks`_ patch has additional
explaination:
.. _Add counters for discarded SACK blocks: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18f02545a9a16c9a89778b91a162ad16d510bb32
* TcpExtTCPSACKDiscard
This counter indicates how many SACK blocks are invalid. If the invalid
SACK block is caused by ACK recording, the TCP stack will only ignore
it and won't update this counter.
* TcpExtTCPDSACKIgnoredOld and TcpExtTCPDSACKIgnoredNoUndo
When a DSACK block is invalid, one of these two counters would be
updated. Which counter will be updated depends on the undo_marker flag
of the TCP socket. If the undo_marker is not set, the TCP stack isn't
likely to re-transmit any packets, and we still receive an invalid
DSACK block, the reason might be that the packet is duplicated in the
middle of the network. In such scenario, TcpExtTCPDSACKIgnoredNoUndo
will be updated. If the undo_marker is set, TcpExtTCPDSACKIgnoredOld
will be updated. As implied in its name, it might be an old packet.
SACK shift
=========
The linux networking stack stores data in sk_buff struct (skb for
short). If a SACK block acrosses multiple skb, the TCP stack will try
to re-arrange data in these skb. E.g. if a SACK block acknowledges seq
10 to 15, skb1 has seq 10 to 13, skb2 has seq 14 to 20. The seq 14 and
15 in skb2 would be moved to skb1. This operation is 'shift'. If a
SACK block acknowledges seq 10 to 20, skb1 has seq 10 to 13, skb2 has
seq 14 to 20. All data in skb2 will be moved to skb1, and skb2 will be
discard, this operation is 'merge'.
* TcpExtTCPSackShifted
A skb is shifted
* TcpExtTCPSackMerged
A skb is merged
* TcpExtTCPSackShiftFallback
A skb should be shifted or merged, but the TCP stack doesn't do it for
some reasons.
TCP out of order
===============
* TcpExtTCPOFOQueue
@ -662,6 +728,60 @@ unacknowledged number (more strict than `RFC 5961 section 5.2`_).
.. _RFC 5961 section 4.2: https://tools.ietf.org/html/rfc5961#page-9
.. _RFC 5961 section 5.2: https://tools.ietf.org/html/rfc5961#page-11
TCP receive window
=================
* TcpExtTCPWantZeroWindowAdv
Depending on current memory usage, the TCP stack tries to set receive
window to zero. But the receive window might still be a no-zero
value. For example, if the previous window size is 10, and the TCP
stack receives 3 bytes, the current window size would be 7 even if the
window size calculated by the memory usage is zero.
* TcpExtTCPToZeroWindowAdv
The TCP receive window is set to zero from a no-zero value.
* TcpExtTCPFromZeroWindowAdv
The TCP receive window is set to no-zero value from zero.
Delayed ACK
==========
The TCP Delayed ACK is a technique which is used for reducing the
packet count in the network. For more details, please refer the
`Delayed ACK wiki`_
.. _Delayed ACK wiki: https://en.wikipedia.org/wiki/TCP_delayed_acknowledgment
* TcpExtDelayedACKs
A delayed ACK timer expires. The TCP stack will send a pure ACK packet
and exit the delayed ACK mode.
* TcpExtDelayedACKLocked
A delayed ACK timer expires, but the TCP stack can't send an ACK
immediately due to the socket is locked by a userspace program. The
TCP stack will send a pure ACK later (after the userspace program
unlock the socket). When the TCP stack sends the pure ACK later, the
TCP stack will also update TcpExtDelayedACKs and exit the delayed ACK
mode.
* TcpExtDelayedACKLost
It will be updated when the TCP stack receives a packet which has been
ACKed. A Delayed ACK loss might cause this issue, but it would also be
triggered by other reasons, such as a packet is duplicated in the
network.
Tail Loss Probe (TLP)
===================
TLP is an algorithm which is used to detect TCP packet loss. For more
details, please refer the `TLP paper`_.
.. _TLP paper: https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
* TcpExtTCPLossProbes
A TLP probe packet is sent.
* TcpExtTCPLossProbeRecovery
A packet loss is detected and recovered by TLP.
examples
=======

View File

@ -417,7 +417,7 @@ is again deprecated and ts[2] holds a hardware timestamp if set.
Hardware time stamping must also be initialized for each device driver
that is expected to do hardware time stamping. The parameter is defined in
/include/linux/net_tstamp.h as:
include/uapi/linux/net_tstamp.h as:
struct hwtstamp_config {
int flags; /* no flags defined right now, must be zero */
@ -487,7 +487,7 @@ enum {
HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
/* for the complete list of values, please check
* the include file /include/linux/net_tstamp.h
* the include file include/uapi/linux/net_tstamp.h
*/
};

View File

@ -56,26 +56,34 @@ of any kernel data structures.
dentry-state:
From linux/fs/dentry.c:
From linux/include/linux/dcache.h:
--------------------------------------------------------------
struct {
struct dentry_stat_t dentry_stat {
int nr_dentry;
int nr_unused;
int age_limit; /* age in seconds */
int want_pages; /* pages requested by system */
int dummy[2];
} dentry_stat = {0, 0, 45, 0,};
--------------------------------------------------------------
int nr_negative; /* # of unused negative dentries */
int dummy; /* Reserved for future use */
};
--------------------------------------------------------------
Dentries are dynamically allocated and deallocated.
nr_dentry shows the total number of dentries allocated (active
+ unused). nr_unused shows the number of dentries that are not
actively used, but are saved in the LRU list for future reuse.
Dentries are dynamically allocated and deallocated, and
nr_dentry seems to be 0 all the time. Hence it's safe to
assume that only nr_unused, age_limit and want_pages are
used. Nr_unused seems to be exactly what its name says.
Age_limit is the age in seconds after which dcache entries
can be reclaimed when memory is short and want_pages is
nonzero when shrink_dcache_pages() has been called and the
dcache isn't pruned yet.
nr_negative shows the number of unused dentries that are also
negative dentries which do not map to any files. Instead,
they help speeding up rejection of non-existing files provided
by the users.
==============================================================
dquot-max & dquot-nr:

View File

@ -165,7 +165,7 @@ Do some work...
The same can also be done from an application program.
Disable specific CPU's specific idle state from cpuidle sysfs (see
Documentation/cpuidle/sysfs.txt):
Documentation/admin-guide/pm/cpuidle.rst):
# echo 1 > /sys/devices/system/cpu/cpu$cpu/cpuidle/state$state/disable

View File

@ -242,6 +242,6 @@ References
==========
.. [white-paper] http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
.. [api-spec] http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
.. [api-spec] http://support.amd.com/TechDocs/55766_SEV-KM_API_Specification.pdf
.. [amd-apm] http://support.amd.com/TechDocs/24593.pdf (section 15.34)
.. [kvm-forum] http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf

View File

@ -9,7 +9,7 @@ Fenghua Yu <fenghua.yu@intel.com>
Tony Luck <tony.luck@intel.com>
Vikas Shivappa <vikas.shivappa@intel.com>
This feature is enabled by the CONFIG_RESCTRL and the X86 /proc/cpuinfo
This feature is enabled by the CONFIG_X86_CPU_RESCTRL and the x86 /proc/cpuinfo
flag bits:
RDT (Resource Director Technology) Allocation - "rdt_a"
CAT (Cache Allocation Technology) - "cat_l3", "cat_l2"

View File

@ -1133,13 +1133,26 @@ S: Supported
F: drivers/gpu/drm/arm/hdlcd_*
F: Documentation/devicetree/bindings/display/arm,hdlcd.txt
ARM KOMEDA DRM-KMS DRIVER
M: James (Qian) Wang <james.qian.wang@arm.com>
M: Liviu Dudau <liviu.dudau@arm.com>
L: Mali DP Maintainers <malidp@foss.arm.com>
S: Supported
T: git git://linux-arm.org/linux-ld.git for-upstream/mali-dp
F: drivers/gpu/drm/arm/display/include/
F: drivers/gpu/drm/arm/display/komeda/
F: Documentation/devicetree/bindings/display/arm/arm,komeda.txt
F: Documentation/gpu/komeda-kms.rst
ARM MALI-DP DRM DRIVER
M: Liviu Dudau <liviu.dudau@arm.com>
M: Brian Starkey <brian.starkey@arm.com>
M: Mali DP Maintainers <malidp@foss.arm.com>
L: Mali DP Maintainers <malidp@foss.arm.com>
S: Supported
T: git git://linux-arm.org/linux-ld.git for-upstream/mali-dp
F: drivers/gpu/drm/arm/
F: Documentation/devicetree/bindings/display/arm,malidp.txt
F: Documentation/gpu/afbc.rst
ARM MFM AND FLOPPY DRIVERS
M: Ian Molton <spyro@f2s.com>
@ -2848,6 +2861,9 @@ F: include/uapi/linux/if_bonding.h
BPF (Safe dynamic programs and tools)
M: Alexei Starovoitov <ast@kernel.org>
M: Daniel Borkmann <daniel@iogearbox.net>
R: Martin KaFai Lau <kafai@fb.com>
R: Song Liu <songliubraving@fb.com>
R: Yonghong Song <yhs@fb.com>
L: netdev@vger.kernel.org
L: linux-kernel@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git
@ -2873,6 +2889,8 @@ F: samples/bpf/
F: tools/bpf/
F: tools/lib/bpf/
F: tools/testing/selftests/bpf/
K: bpf
N: bpf
BPF JIT for ARM
M: Shubham Bansal <illusionist.neo@gmail.com>
@ -3052,8 +3070,8 @@ F: include/linux/bcm963xx_nvram.h
F: include/linux/bcm963xx_tag.h
BROADCOM BNX2 GIGABIT ETHERNET DRIVER
M: Rasesh Mody <rasesh.mody@cavium.com>
M: Dept-GELinuxNICDev@cavium.com
M: Rasesh Mody <rmody@marvell.com>
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/broadcom/bnx2.*
@ -3072,9 +3090,9 @@ S: Supported
F: drivers/scsi/bnx2i/
BROADCOM BNX2X 10 GIGABIT ETHERNET DRIVER
M: Ariel Elior <ariel.elior@cavium.com>
M: Sudarsana Kalluru <sudarsana.kalluru@cavium.com>
M: everest-linux-l2@cavium.com
M: Ariel Elior <aelior@marvell.com>
M: Sudarsana Kalluru <skalluru@marvell.com>
M: GR-everest-linux-l2@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/broadcom/bnx2x/
@ -3249,9 +3267,9 @@ S: Supported
F: drivers/scsi/bfa/
BROCADE BNA 10 GIGABIT ETHERNET DRIVER
M: Rasesh Mody <rasesh.mody@cavium.com>
M: Sudarsana Kalluru <sudarsana.kalluru@cavium.com>
M: Dept-GELinuxNICDev@cavium.com
M: Rasesh Mody <rmody@marvell.com>
M: Sudarsana Kalluru <skalluru@marvell.com>
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/brocade/bna/
@ -3471,10 +3489,9 @@ F: drivers/i2c/busses/i2c-octeon*
F: drivers/i2c/busses/i2c-thunderx*
CAVIUM LIQUIDIO NETWORK DRIVER
M: Derek Chickles <derek.chickles@caviumnetworks.com>
M: Satanand Burla <satananda.burla@caviumnetworks.com>
M: Felix Manlunas <felix.manlunas@caviumnetworks.com>
M: Raghu Vatsavayi <raghu.vatsavayi@caviumnetworks.com>
M: Derek Chickles <dchickles@marvell.com>
M: Satanand Burla <sburla@marvell.com>
M: Felix Manlunas <fmanlunas@marvell.com>
L: netdev@vger.kernel.org
W: http://www.cavium.com
S: Supported
@ -3951,7 +3968,7 @@ L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ethernet/ti/cpmac.c
CPU FREQUENCY DRIVERS
CPU FREQUENCY SCALING FRAMEWORK
M: "Rafael J. Wysocki" <rjw@rjwysocki.net>
M: Viresh Kumar <viresh.kumar@linaro.org>
L: linux-pm@vger.kernel.org
@ -3959,6 +3976,8 @@ S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
T: git git://git.linaro.org/people/vireshk/linux.git (For ARM Updates)
B: https://bugzilla.kernel.org
F: Documentation/admin-guide/pm/cpufreq.rst
F: Documentation/admin-guide/pm/intel_pstate.rst
F: Documentation/cpu-freq/
F: Documentation/devicetree/bindings/cpufreq/
F: drivers/cpufreq/
@ -3977,6 +3996,7 @@ F: drivers/cpufreq/arm_big_little.c
CPU POWER MONITORING SUBSYSTEM
M: Thomas Renninger <trenn@suse.com>
M: Shuah Khan <shuah@kernel.org>
M: Shuah Khan <skhan@linuxfoundation.org>
L: linux-pm@vger.kernel.org
S: Maintained
F: tools/power/cpupower/
@ -4006,13 +4026,14 @@ S: Supported
F: drivers/cpuidle/cpuidle-exynos.c
F: arch/arm/mach-exynos/pm.c
CPUIDLE DRIVERS
CPU IDLE TIME MANAGEMENT FRAMEWORK
M: "Rafael J. Wysocki" <rjw@rjwysocki.net>
M: Daniel Lezcano <daniel.lezcano@linaro.org>
L: linux-pm@vger.kernel.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
B: https://bugzilla.kernel.org
F: Documentation/admin-guide/pm/cpuidle.rst
F: drivers/cpuidle/*
F: include/linux/cpuidle.h
@ -4830,10 +4851,11 @@ F: Documentation/devicetree/bindings/display/multi-inno,mi0283qt.txt
DRM DRIVER FOR MSM ADRENO GPU
M: Rob Clark <robdclark@gmail.com>
M: Sean Paul <sean@poorly.run>
L: linux-arm-msm@vger.kernel.org
L: dri-devel@lists.freedesktop.org
L: freedreno@lists.freedesktop.org
T: git git://people.freedesktop.org/~robclark/linux
T: git https://gitlab.freedesktop.org/drm/msm.git
S: Maintained
F: drivers/gpu/drm/msm/
F: include/uapi/drm/msm_drm.h
@ -4894,6 +4916,12 @@ S: Orphan / Obsolete
F: drivers/gpu/drm/sis/
F: include/uapi/drm/sis_drm.h
DRM DRIVER FOR SITRONIX ST7701 PANELS
M: Jagan Teki <jagan@amarulasolutions.com>
S: Maintained
F: drivers/gpu/drm/panel/panel-sitronix-st7701.c
F: Documentation/devicetree/bindings/display/panel/sitronix,st7701.txt
DRM DRIVER FOR SITRONIX ST7586 PANELS
M: David Lechner <david@lechnology.com>
S: Maintained
@ -5195,7 +5223,7 @@ DRM DRIVERS FOR XEN
M: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
T: git git://anongit.freedesktop.org/drm/drm-misc
L: dri-devel@lists.freedesktop.org
L: xen-devel@lists.xen.org
L: xen-devel@lists.xenproject.org (moderated for non-subscribers)
S: Supported
F: drivers/gpu/drm/xen/
F: Documentation/gpu/xen-front.rst
@ -6160,7 +6188,7 @@ FREESCALE SOC SOUND DRIVERS
M: Timur Tabi <timur@kernel.org>
M: Nicolin Chen <nicoleotsuka@gmail.com>
M: Xiubo Li <Xiubo.Lee@gmail.com>
R: Fabio Estevam <fabio.estevam@nxp.com>
R: Fabio Estevam <festevam@gmail.com>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
L: linuxppc-dev@lists.ozlabs.org
S: Maintained
@ -8273,6 +8301,7 @@ F: include/uapi/linux/sunrpc/
KERNEL SELFTEST FRAMEWORK
M: Shuah Khan <shuah@kernel.org>
M: Shuah Khan <skhan@linuxfoundation.org>
L: linux-kselftest@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest.git
Q: https://patchwork.kernel.org/project/linux-kselftest/list/
@ -10703,9 +10732,9 @@ S: Maintained
F: drivers/net/netdevsim/*
NETXEN (1/10) GbE SUPPORT
M: Manish Chopra <manish.chopra@cavium.com>
M: Rahul Verma <rahul.verma@cavium.com>
M: Dept-GELinuxNICDev@cavium.com
M: Manish Chopra <manishc@marvell.com>
M: Rahul Verma <rahulv@marvell.com>
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/qlogic/netxen/
@ -10906,7 +10935,7 @@ F: include/linux/nvmem-consumer.h
F: include/linux/nvmem-provider.h
NXP SGTL5000 DRIVER
M: Fabio Estevam <fabio.estevam@nxp.com>
M: Fabio Estevam <festevam@gmail.com>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
S: Maintained
F: Documentation/devicetree/bindings/sound/sgtl5000.txt
@ -11320,10 +11349,12 @@ F: include/dt-bindings/
OPENCORES I2C BUS DRIVER
M: Peter Korsgaard <peter@korsgaard.com>
M: Andrew Lunn <andrew@lunn.ch>
L: linux-i2c@vger.kernel.org
S: Maintained
F: Documentation/i2c/busses/i2c-ocores
F: drivers/i2c/busses/i2c-ocores.c
F: include/linux/platform_data/i2c-ocores.h
OPENRISC ARCHITECTURE
M: Jonas Bonn <jonas@southpole.se>
@ -12489,8 +12520,8 @@ S: Supported
F: drivers/scsi/qedi/
QLOGIC QL4xxx ETHERNET DRIVER
M: Ariel Elior <Ariel.Elior@cavium.com>
M: everest-linux-l2@cavium.com
M: Ariel Elior <aelior@marvell.com>
M: GR-everest-linux-l2@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/qlogic/qed/
@ -12498,8 +12529,8 @@ F: include/linux/qed/
F: drivers/net/ethernet/qlogic/qede/
QLOGIC QL4xxx RDMA DRIVER
M: Michal Kalderon <Michal.Kalderon@cavium.com>
M: Ariel Elior <Ariel.Elior@cavium.com>
M: Michal Kalderon <mkalderon@marvell.com>
M: Ariel Elior <aelior@marvell.com>
L: linux-rdma@vger.kernel.org
S: Supported
F: drivers/infiniband/hw/qedr/
@ -12519,7 +12550,7 @@ F: Documentation/scsi/LICENSE.qla2xxx
F: drivers/scsi/qla2xxx/
QLOGIC QLA3XXX NETWORK DRIVER
M: Dept-GELinuxNICDev@cavium.com
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: Documentation/networking/device_drivers/qlogic/LICENSE.qla3xxx
@ -12533,16 +12564,16 @@ F: Documentation/scsi/LICENSE.qla4xxx
F: drivers/scsi/qla4xxx/
QLOGIC QLCNIC (1/10)Gb ETHERNET DRIVER
M: Shahed Shaikh <Shahed.Shaikh@cavium.com>
M: Manish Chopra <manish.chopra@cavium.com>
M: Dept-GELinuxNICDev@cavium.com
M: Shahed Shaikh <shshaikh@marvell.com>
M: Manish Chopra <manishc@marvell.com>
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/qlogic/qlcnic/
QLOGIC QLGE 10Gb ETHERNET DRIVER
M: Manish Chopra <manish.chopra@cavium.com>
M: Dept-GELinuxNICDev@cavium.com
M: Manish Chopra <manishc@marvell.com>
M: GR-Linux-NIC-Dev@marvell.com
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/qlogic/qlge/
@ -12881,6 +12912,13 @@ F: Documentation/devicetree/bindings/net/dsa/realtek-smi.txt
F: drivers/net/dsa/realtek-smi*
F: drivers/net/dsa/rtl83*
REDPINE WIRELESS DRIVER
M: Amitkumar Karwar <amitkarwar@gmail.com>
M: Siva Rebbagondla <siva8118@gmail.com>
L: linux-wireless@vger.kernel.org
S: Maintained
F: drivers/net/wireless/rsi/
REGISTER MAP ABSTRACTION
M: Mark Brown <broonie@kernel.org>
L: linux-kernel@vger.kernel.org
@ -13709,6 +13747,15 @@ L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/sfc/
SFF/SFP/SFP+ MODULE SUPPORT
M: Russell King <linux@armlinux.org.uk>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/phy/phylink.c
F: drivers/net/phy/sfp*
F: include/linux/phylink.h
F: include/linux/sfp.h
SGI GRU DRIVER
M: Dimitri Sivanich <sivanich@sgi.com>
S: Maintained
@ -13837,8 +13884,9 @@ F: drivers/media/mmc/siano/
SIFIVE DRIVERS
M: Palmer Dabbelt <palmer@sifive.com>
M: Paul Walmsley <paul.walmsley@sifive.com>
L: linux-riscv@lists.infradead.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/palmer/riscv-linux.git
T: git git://github.com/sifive/riscv-linux.git
S: Supported
K: sifive
N: sifive
@ -14449,6 +14497,11 @@ M: Florian Schilhabel <florian.c.schilhabel@googlemail.com>.
S: Odd Fixes
F: drivers/staging/rtl8712/
STAGING - REALTEK RTL8188EU DRIVERS
M: Larry Finger <Larry.Finger@lwfinger.net>
S: Odd Fixes
F: drivers/staging/rtl8188eu/
STAGING - SILICON MOTION SM750 FRAME BUFFER DRIVER
M: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
M: Teddy Wang <teddy.wang@siliconmotion.com>
@ -15819,7 +15872,6 @@ M: Alan Stern <stern@rowland.harvard.edu>
L: linux-usb@vger.kernel.org
L: usb-storage@lists.one-eyed-alien.net
S: Maintained
W: http://www.one-eyed-alien.net/~mdharm/linux-usb/
F: drivers/usb/storage/
USB MIDI DRIVER
@ -15851,6 +15903,7 @@ F: drivers/usb/common/usb-otg-fsm.c
USB OVER IP DRIVER
M: Valentina Manea <valentina.manea.m@gmail.com>
M: Shuah Khan <shuah@kernel.org>
M: Shuah Khan <skhan@linuxfoundation.org>
L: linux-usb@vger.kernel.org
S: Maintained
F: Documentation/usb/usbip_protocol.txt
@ -16648,6 +16701,15 @@ S: Maintained
F: drivers/platform/x86/
F: drivers/platform/olpc/
X86 PLATFORM DRIVERS - ARCH
R: Darren Hart <dvhart@infradead.org>
R: Andy Shevchenko <andy@infradead.org>
L: platform-driver-x86@vger.kernel.org
L: x86@kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git x86/core
S: Maintained
F: arch/x86/platform
X86 VDSO
M: Andy Lutomirski <luto@kernel.org>
L: linux-kernel@vger.kernel.org
@ -16680,6 +16742,24 @@ T: git git://linuxtv.org/media_tree.git
S: Maintained
F: drivers/media/tuners/tuner-xc2028.*
XDP (eXpress Data Path)
M: Alexei Starovoitov <ast@kernel.org>
M: Daniel Borkmann <daniel@iogearbox.net>
M: David S. Miller <davem@davemloft.net>
M: Jakub Kicinski <jakub.kicinski@netronome.com>
M: Jesper Dangaard Brouer <hawk@kernel.org>
M: John Fastabend <john.fastabend@gmail.com>
L: netdev@vger.kernel.org
L: xdp-newbies@vger.kernel.org
S: Supported
F: net/core/xdp.c
F: include/net/xdp.h
F: kernel/bpf/devmap.c
F: kernel/bpf/cpumap.c
F: include/trace/events/xdp.h
K: xdp
N: xdp
XDP SOCKETS (AF_XDP)
M: Björn Töpel <bjorn.topel@intel.com>
M: Magnus Karlsson <magnus.karlsson@intel.com>

Some files were not shown because too many files have changed in this diff Show More