IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
By default, the subprog generated by the verifier to handle a thrown
exception hardcodes a return value of 0. To allow user-defined logic
and modification of the return value when an exception is thrown,
introduce the 'exception_callback:' declaration tag, which marks a
callback as the default exception handler for the program.
The format of the declaration tag is 'exception_callback:<value>', where
<value> is the name of the exception callback. Each main program can be
tagged using this BTF declaratiion tag to associate it with an exception
callback. In case the tag is absent, the default callback is used.
As such, the exception callback cannot be modified at runtime, only set
during verification.
Allowing modification of the callback for the current program execution
at runtime leads to issues when the programs begin to nest, as any
per-CPU state maintaing this information will have to be saved and
restored. We don't want it to stay in bpf_prog_aux as this takes a
global effect for all programs. An alternative solution is spilling
the callback pointer at a known location on the program stack on entry,
and then passing this location to bpf_throw as a parameter.
However, since exceptions are geared more towards a use case where they
are ideally never invoked, optimizing for this use case and adding to
the complexity has diminishing returns.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch splits the check_btf_info's check_btf_func check into two
separate phases. The first phase sets up the BTF and prepares
func_info, but does not perform any validation of required invariants
for subprogs just yet. This is left to the second phase, which happens
where check_btf_info executes currently, and performs the line_info and
CO-RE relocation.
The reason to perform this split is to obtain the userspace supplied
func_info information before we perform the add_subprog call, where we
would now require finding and adding subprogs that may not have a
bpf_pseudo_call or bpf_pseudo_func instruction in the program.
We require this as we want to enable userspace to supply exception
callbacks that can override the default hidden subprogram generated by
the verifier (which performs a hardcoded action). In such a case, the
exception callback may never be referenced in an instruction, but will
still be suitably annotated (by way of BTF declaration tags). For
finding this exception callback, we would require the program's BTF
information, and the supplied func_info information which maps BTF type
IDs to subprograms.
Since the exception callback won't actually be referenced through
instructions, later checks in check_cfg and do_check_subprogs will not
verify the subprog. This means that add_subprog needs to add them in the
add_subprog_and_kfunc phase before we move forward, which is why the BTF
and func_info are required at that point.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch implements BPF exceptions, and introduces a bpf_throw kfunc
to allow programs to throw exceptions during their execution at runtime.
A bpf_throw invocation is treated as an immediate termination of the
program, returning back to its caller within the kernel, unwinding all
stack frames.
This allows the program to simplify its implementation, by testing for
runtime conditions which the verifier has no visibility into, and assert
that they are true. In case they are not, the program can simply throw
an exception from the other branch.
BPF exceptions are explicitly *NOT* an unlikely slowpath error handling
primitive, and this objective has guided design choices of the
implementation of the them within the kernel (with the bulk of the cost
for unwinding the stack offloaded to the bpf_throw kfunc).
The implementation of this mechanism requires use of add_hidden_subprog
mechanism introduced in the previous patch, which generates a couple of
instructions to move R1 to R0 and exit. The JIT then rewrites the
prologue of this subprog to take the stack pointer and frame pointer as
inputs and reset the stack frame, popping all callee-saved registers
saved by the main subprog. The bpf_throw function then walks the stack
at runtime, and invokes this exception subprog with the stack and frame
pointers as parameters.
Reviewers must take note that currently the main program is made to save
all callee-saved registers on x86_64 during entry into the program. This
is because we must do an equivalent of a lightweight context switch when
unwinding the stack, therefore we need the callee-saved registers of the
caller of the BPF program to be able to return with a sane state.
Note that we have to additionally handle r12, even though it is not used
by the program, because when throwing the exception the program makes an
entry into the kernel which could clobber r12 after saving it on the
stack. To be able to preserve the value we received on program entry, we
push r12 and restore it from the generated subprogram when unwinding the
stack.
For now, bpf_throw invocation fails when lingering resources or locks
exist in that path of the program. In a future followup, bpf_throw will
be extended to perform frame-by-frame unwinding to release lingering
resources for each stack frame, removing this limitation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce support in the verifier for generating a subprogram and
include it as part of a BPF program dynamically after the do_check phase
is complete. The first user will be the next patch which generates
default exception callbacks if none are set for the program. The phase
of invocation will be do_misc_fixups. Note that this is an internal
verifier function, and should be used with instruction blocks which
uphold the invariants stated in check_subprogs.
Since these subprogs are always appended to the end of the instruction
sequence of the program, it becomes relatively inexpensive to do the
related adjustments to the subprog_info of the program. Only the fake
exit subprogram is shifted forward, making room for our new subprog.
This is useful to insert a new subprogram, get it JITed, and obtain its
function pointer. The next patch will use this functionality to insert a
default exception callback which will be invoked after unwinding the
stack.
Note that these added subprograms are invisible to userspace, and never
reported in BPF_OBJ_GET_INFO_BY_ID etc. For now, only a single
subprogram is supported, but more can be easily supported in the future.
To this end, two function counts are introduced now, the existing
func_cnt, and real_func_cnt, the latter including hidden programs. This
allows us to conver the JIT code to use the real_func_cnt for management
of resources while syscall path continues working with existing
func_cnt.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
From commit ebf7d1f508a73871 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the tailcall on x64 works better than before.
From commit e411901c0b775a3a ("bpf: allow for tailcalls in BPF subprograms
for x64 JIT"), tailcall is able to run in BPF subprograms on x64.
From commit 5b92a28aae4dd0f8 ("bpf: Support attaching tracing BPF program
to other BPF programs"), BPF program is able to trace other BPF programs.
How about combining them all together?
1. FENTRY/FEXIT on a BPF subprogram.
2. A tailcall runs in the BPF subprogram.
3. The tailcall calls the subprogram's caller.
As a result, a tailcall infinite loop comes up. And the loop would halt
the machine.
As we know, in tail call context, the tail_call_cnt propagates by stack
and rax register between BPF subprograms. So do in trampolines.
Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20230912150442.2009-3-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In previous selftests/bpf patch, we have
p = bpf_percpu_obj_new(struct val_t);
if (!p)
goto out;
p1 = bpf_kptr_xchg(&e->pc, p);
if (p1) {
/* race condition */
bpf_percpu_obj_drop(p1);
}
p = e->pc;
if (!p)
goto out;
After bpf_kptr_xchg(), we need to re-read e->pc into 'p'.
This is due to that the second argument of bpf_kptr_xchg() is marked
OBJ_RELEASE and it will be marked as invalid after the call.
So after bpf_kptr_xchg(), 'p' is an unknown scalar,
and the bpf program needs to reread from the map value.
This patch checks if the 'p' has type MEM_ALLOC and MEM_PERCPU,
and if 'p' is RCU protected. If this is the case, 'p' can be marked
as MEM_RCU. MEM_ALLOC needs to be removed since 'p' is not
an owning reference any more. Such a change makes re-read
from the map value unnecessary.
Note that re-reading 'e->pc' after bpf_kptr_xchg() might get
a different value from 'p' if immediately before 'p = e->pc',
another cpu may do another bpf_kptr_xchg() and swap in another value
into 'e->pc'. If this is the case, then 'p = e->pc' may
get either 'p' or another value, and race condition already exists.
So removing direct re-reading seems fine too.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152816.2000760-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf helpers bpf_this_cpu_ptr() and bpf_per_cpu_ptr() are re-purposed
for allocated percpu objects. For an allocated percpu obj,
the reg type is 'PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU'.
The return type for these two re-purposed helpera is
'PTR_TO_MEM | MEM_RCU | MEM_ALLOC'.
The MEM_ALLOC allows that the per-cpu data can be read and written.
Since the memory allocator bpf_mem_alloc() returns
a ptr to a percpu ptr for percpu data, the first argument
of bpf_this_cpu_ptr() and bpf_per_cpu_ptr() is patched
with a dereference before passing to the helper func.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152749.1997202-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add two new kfunc's, bpf_percpu_obj_new_impl() and
bpf_percpu_obj_drop_impl(), to allocate a percpu obj.
Two functions are very similar to bpf_obj_new_impl()
and bpf_obj_drop_impl(). The major difference is related
to percpu handling.
bpf_rcu_read_lock()
struct val_t __percpu_kptr *v = map_val->percpu_data;
...
bpf_rcu_read_unlock()
For a percpu data map_val like above 'v', the reg->type
is set as
PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU
if inside rcu critical section.
MEM_RCU marking here is similar to NON_OWN_REF as 'v'
is not a owning reference. But NON_OWN_REF is
trusted and typically inside the spinlock while
MEM_RCU is under rcu read lock. RCU is preferred here
since percpu data structures mean potential concurrent
access into its contents.
Also, bpf_percpu_obj_new_impl() is restricted such that
no pointers or special fields are allowed. Therefore,
the bpf_list_head and bpf_rb_root will not be supported
in this patch set to avoid potential memory leak issue
due to racing between bpf_obj_free_fields() and another
bpf_kptr_xchg() moving an allocated object to
bpf_list_head and bpf_rb_root.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152744.1996739-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 9e7a4d9831e8 ("bpf: Allow LSM programs to use bpf spin locks")
disabled bpf_spin_lock usage in sleepable progs, stating:
Sleepable LSM programs can be preempted which means that allowng spin
locks will need more work (disabling preemption and the verifier
ensuring that no sleepable helpers are called when a spin lock is
held).
This patch disables preemption before grabbing bpf_spin_lock. The second
requirement above "no sleepable helpers are called when a spin lock is
held" is implicitly enforced by current verifier logic due to helper
calls in spin_lock CS being disabled except for a few exceptions, none
of which sleep.
Due to above preemption changes, bpf_spin_lock CS can also be considered
a RCU CS, so verifier's in_rcu_cs check is modified to account for this.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-7-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
An earlier patch in the series ensures that the underlying memory of
nodes with bpf_refcount - which can have multiple owners - is not reused
until RCU grace period has elapsed. This prevents
use-after-free with non-owning references that may point to
recently-freed memory. While RCU read lock is held, it's safe to
dereference such a non-owning ref, as by definition RCU GP couldn't have
elapsed and therefore underlying memory couldn't have been reused.
From the perspective of verifier "trustedness" non-owning refs to
refcounted nodes are now trusted only in RCU CS and therefore should no
longer pass is_trusted_reg, but rather is_rcu_reg. Let's mark them
MEM_RCU in order to reflect this new state.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that all reported issues are fixed, bpf_refcount_acquire can be
turned back on. Also reenable all bpf_refcount-related tests which were
disabled.
This a revert of:
* commit f3514a5d6740 ("selftests/bpf: Disable newly-added 'owner' field test until refcount re-enabled")
* commit 7deca5eae833 ("bpf: Disable bpf_refcount_acquire kfunc calls until race conditions are fixed")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's straightforward to prove that kptr_struct_meta must be non-NULL for
any valid call to these kfuncs:
* btf_parse_struct_metas in btf.c creates a btf_struct_meta for any
struct in user BTF with a special field (e.g. bpf_refcount,
{rb,list}_node). These are stored in that BTF's struct_meta_tab.
* __process_kf_arg_ptr_to_graph_node in verifier.c ensures that nodes
have {rb,list}_node field and that it's at the correct offset.
Similarly, check_kfunc_args ensures bpf_refcount field existence for
node param to bpf_refcount_acquire.
* So a btf_struct_meta must have been created for the struct type of
node param to these kfuncs
* That BTF and its struct_meta_tab are guaranteed to still be around.
Any arbitrary {rb,list} node the BPF program interacts with either:
came from bpf_obj_new or a collection removal kfunc in the same
program, in which case the BTF is associated with the program and
still around; or came from bpf_kptr_xchg, in which case the BTF was
associated with the map and is still around
Instead of silently continuing with NULL struct_meta, which caused
confusing bugs such as those addressed by commit 2140a6e3422d ("bpf: Set
kptr_struct_meta for node param to list and rbtree insert funcs"), let's
error out. Then, at runtime, we can confidently say that the
implementations of these kfuncs were given a non-NULL kptr_struct_meta,
meaning that special-field-specific functionality like
bpf_obj_free_fields and the bpf_obj_drop change introduced later in this
series are guaranteed to execute.
This patch doesn't change functionality, just makes it easier to reason
about existing functionality.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After we converted the capabilities of our networking-bpf program from
cap_sys_admin to cap_net_admin+cap_bpf, our networking-bpf program
failed to start. Because it failed the bpf verifier, and the error log
is "R3 pointer comparison prohibited".
A simple reproducer as follows,
SEC("cls-ingress")
int ingress(struct __sk_buff *skb)
{
struct iphdr *iph = (void *)(long)skb->data + sizeof(struct ethhdr);
if ((long)(iph + 1) > (long)skb->data_end)
return TC_ACT_STOLEN;
return TC_ACT_OK;
}
Per discussion with Yonghong and Alexei [1], comparison of two packet
pointers is not a pointer leak. This patch fixes it.
Our local kernel is 6.1.y and we expect this fix to be backported to
6.1.y, so stable is CCed.
[1]. https://lore.kernel.org/bpf/CAADnVQ+Nmspr7Si+pxWn8zkE7hX-7s93ugwC+94aXSy4uQ9vBg@mail.gmail.com/
Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230823020703.3790-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The commit being fixed introduced a hunk into check_func_arg_reg_off
that bypasses reg->off == 0 enforcement when offset points to a graph
node or root. This might possibly be done for treating bpf_rbtree_remove
and others as KF_RELEASE and then later check correct reg->off in helper
argument checks.
But this is not the case, those helpers are already not KF_RELEASE and
permit non-zero reg->off and verify it later to match the subobject in
BTF type.
However, this logic leads to bpf_obj_drop permitting free of register
arguments with non-zero offset when they point to a graph root or node
within them, which is not ok.
For instance:
struct foo {
int i;
int j;
struct bpf_rb_node node;
};
struct foo *f = bpf_obj_new(typeof(*f));
if (!f) ...
bpf_obj_drop(f); // OK
bpf_obj_drop(&f->i); // still ok from verifier PoV
bpf_obj_drop(&f->node); // Not OK, but permitted right now
Fix this by dropping the whole part of code altogether.
Fixes: 6a3cd3318ff6 ("bpf: Migrate release_on_unlock logic to non-owning ref semantics")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230822175140.1317749-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When reviewing local percpu kptr support, Alexei discovered a bug
wherea bpf_kptr_xchg() may succeed even if the map value kptr type and
locally allocated obj type do not match ([1]). Missed struct btf_id
comparison is the reason for the bug. This patch added such struct btf_id
comparison and will flag verification failure if types do not match.
[1] https://lore.kernel.org/bpf/20230819002907.io3iphmnuk43xblu@macbook-pro-8.dhcp.thefacebook.com/#t
Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 738c96d5e2e3 ("bpf: Allow local kptrs to be exchanged via bpf_kptr_xchg")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230822050053.2886960-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzbot reports a verifier bug which triggers a runtime panic.
The test bpf program is:
0: (62) *(u32 *)(r10 -8) = 553656332
1: (bf) r1 = (s16)r10
2: (07) r1 += -8
3: (b7) r2 = 3
4: (bd) if r2 <= r1 goto pc+0
5: (85) call bpf_trace_printk#-138320
6: (b7) r0 = 0
7: (95) exit
At insn 1, the current implementation keeps 'r1' as a frame pointer,
which caused later bpf_trace_printk helper call crash since frame
pointer address is not valid any more. Note that at insn 4,
the 'pointer vs. scalar' comparison is allowed for privileged
prog run.
To fix the problem with above insn 1, the fix in the patch adopts
similar pattern to existing 'R1 = (u32) R2' handling. For unprivileged
prog run, verification will fail with 'R<num> sign-extension part of pointer'.
For privileged prog run, the dst_reg 'r1' will be marked as
an unknown scalar, so later 'bpf_trace_pointk' helper will complain
since it expected certain pointers.
Reported-by: syzbot+d61b595e9205573133b3@syzkaller.appspotmail.com
Fixes: 8100928c8814 ("bpf: Support new sign-extension mov insns")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230807175721.671696-1-yonghong.song@linux.dev
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
xdp.h is far more specific and is included in only 67 other
files vs netdevice.h's 1538 include sites.
Make xdp.h include netdevice.h, instead of the other way around.
This decreases the incremental allmodconfig builds size when
xdp.h is touched from 5947 to 662 objects.
Move bpf_prog_run_xdp() to xdp.h, seems appropriate and filter.h
is a mega-header in its own right so it's nice to avoid xdp.h
getting included there as well.
The only unfortunate part is that the typedef for xdp_features_t
has to move to netdevice.h, since its embedded in struct netdevice.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230803010230.1755386-4-kuba@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The kernel test robot reported compilation warnings when -Wparentheses is
added to KBUILD_CFLAGS with gcc compiler. The following is the error message:
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_reg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5901:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s64_max >= 0 == s64_min >= 0) {
~~~~~~~~^~~~
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_subreg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5965:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s32_min >= 0 == s32_max >= 0) {
~~~~~~~~^~~~
To fix the issue, add proper parentheses for the above '>=' condition
to silence the warning/error.
I tried a few clang compilers like clang16 and clang18 and they do not emit
such warnings with -Wparentheses.
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202307281133.wi0c4SqG-lkp@intel.com/
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230728055740.2284534-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit/verifier support for 32bit offset jmp instruction.
If a conditional jmp instruction needs more than 16bit offset,
it can be simulated with a conditional jmp + a 32bit jmp insn.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011231.3716103-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new signed div/mod insns.
The new signed div/mod instructions are encoded with
unsigned div/mod instructions plus insn->off == 1.
Also add basic verifier support to ensure new insns get
accepted.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011219.3714605-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The existing 'be' and 'le' insns will do conditional bswap
depends on host endianness. This patch implements
unconditional bswap insns.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011213.3712808-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, if user accesses a ctx member with signed types,
the compiler will generate an unsigned load followed by
necessary left and right shifts.
With the introduction of sign-extension load, compiler may
just emit a ldsx insn instead. Let us do a final movsx sign
extension to the final unsigned ctx load result to
satisfy original sign extension requirement.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011207.3712528-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension mov insns.
The original 'MOV' insn is extended to support reg-to-reg
signed version for both ALU and ALU64 operations. For ALU mode,
the insn->off value of 8 or 16 indicates sign-extension
from 8- or 16-bit value to 32-bit value. For ALU64 mode,
the insn->off value of 8/16/32 indicates sign-extension
from 8-, 16- or 32-bit value to 64-bit value.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011202.3712300-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension load insns
which adds a new mode (BPF_MEMSX).
Also add verifier support to recognize these insns and to
do proper verification with new insns. In verifier, besides
to deduce proper bounds for the dst_reg, probed memory access
is also properly handled.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011156.3711870-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the BTF id of struct bpf_map to the reg2btf_ids array. This makes the
values of the CONST_PTR_TO_MAP type to be considered as trusted by kfuncs.
This, in turn, allows users to execute trusted kfuncs which accept `struct
bpf_map *` arguments from non-tracing programs.
While exporting the btf_bpf_map_id variable, save some bytes by defining
it as BTF_ID_LIST_GLOBAL_SINGLE (which is u32[1]) and not as BTF_ID_LIST
(which is u32[64]).
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-3-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The reg2btf_ids array contains a list of types for which we can (and need)
to find a corresponding static BTF id. All the types in the list can be
considered as trusted for purposes of kfuncs.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-2-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.
It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.
Consider functions with following stack depths:
main: 256
async: 256
foo: 256
main:
rX = async
bpf_timer_set_callback(...)
async:
foo()
Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.
Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.
This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmSwqwoACgkQ6rmadz2v
bTqOHRAAn+fzTLqUqsveFQcxOkie5MPHxKoOTjG4+yFR7rzPkU6Mn5RX3w5yFzSn
RqutwykF9OgipAzC3QXv4pRJuq6Gia5nvwUSDP4CX273ljyeF54DK7HfopE1+YrK
HXyBWZvVvMZP6q7qQyQ3qtbHZSjs5XP/M6YBlJ5zo/BTLFCyvbSDP14YKEqcBkWG
ld72ElXFxlnr/zEfRjzBCfMlbmgeHLO0SiHS/9827zEmNP1AAH5/ETA7/rJ7yCJs
QNQUIoJWob8xm5FMJ6CU/+sOqXR1CY053meGJFFBX5pvVD/CLRhrwHn0IMCyQqmh
wKR5waeXhpl/CKNeFuxXVMNFiXbqBb/0LYJaJtrMysjMLTsQ9X7NkrDBa/+kYGyZ
+ghGlaMQvPqUGg0rLH2nl9JNB8Ne/8prLMsAKUWnPuOo+Q03j054gnqhGeNtDd5b
gpSk+7x93PlhGcegBV1Wk8dkiGC5V9nTVNxg40XQUCs4k9L/8Vjc35Tjqx7nBTNH
DiFD24DDKUZacw9L6nEqvLF/N2fiRjtUZnVPC0yn/annyBcfX1s+ZH2Tu1F6Qk38
QMfBCnt12exmsiDoxdzzGJtjHnS/k5fsaKjlR21mOyMrIH7ipltr5UHHrdr1hBP6
24uSeTImvQQKDi+9IuXN127jZDOupKqVS6csrA0ZXrlKWh2HR+U=
=GVUB
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2023-07-13
We've added 67 non-merge commits during the last 15 day(s) which contain
a total of 106 files changed, 4444 insertions(+), 619 deletions(-).
The main changes are:
1) Fix bpftool build in presence of stale vmlinux.h,
from Alexander Lobakin.
2) Introduce bpf_me_mcache_free_rcu() and fix OOM under stress,
from Alexei Starovoitov.
3) Teach verifier actual bounds of bpf_get_smp_processor_id()
and fix perf+libbpf issue related to custom section handling,
from Andrii Nakryiko.
4) Introduce bpf map element count, from Anton Protopopov.
5) Check skb ownership against full socket, from Kui-Feng Lee.
6) Support for up to 12 arguments in BPF trampoline, from Menglong Dong.
7) Export rcu_request_urgent_qs_task, from Paul E. McKenney.
8) Fix BTF walking of unions, from Yafang Shao.
9) Extend link_info for kprobe_multi and perf_event links,
from Yafang Shao.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (67 commits)
selftests/bpf: Add selftest for PTR_UNTRUSTED
bpf: Fix an error in verifying a field in a union
selftests/bpf: Add selftests for nested_trust
bpf: Fix an error around PTR_UNTRUSTED
selftests/bpf: add testcase for TRACING with 6+ arguments
bpf, x86: allow function arguments up to 12 for TRACING
bpf, x86: save/restore regs with BPF_DW size
bpftool: Use "fallthrough;" keyword instead of comments
bpf: Add object leak check.
bpf: Convert bpf_cpumask to bpf_mem_cache_free_rcu.
bpf: Introduce bpf_mem_free_rcu() similar to kfree_rcu().
selftests/bpf: Improve test coverage of bpf_mem_alloc.
rcu: Export rcu_request_urgent_qs_task()
bpf: Allow reuse from waiting_for_gp_ttrace list.
bpf: Add a hint to allocated objects.
bpf: Change bpf_mem_cache draining process.
bpf: Further refactor alloc_bulk().
bpf: Factor out inc/dec of active flag into helpers.
bpf: Refactor alloc_bulk().
bpf: Let free_all() return the number of freed elements.
...
====================
Link: https://lore.kernel.org/r/20230714020910.80794-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Per discussion with Alexei, the PTR_UNTRUSTED flag should not been
cleared when we start to walk a new struct, because the struct in
question may be a struct nested in a union. We should also check and set
this flag before we walk its each member, in case itself is a union.
We will clear this flag if the field is BTF_TYPE_SAFE_RCU_OR_NULL.
Fixes: 6fcd486b3a0a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_get_smp_processor_id() helper returns current CPU on which BPF
program runs. It can't return value that is bigger than maximum allowed
number of CPUs (minus one, due to zero indexing). Teach BPF verifier to
recognize that. This makes it possible to use bpf_get_smp_processor_id()
result to index into arrays without extra checks, as demonstrated in
subsequent selftests/bpf patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230711232400.1658562-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.
The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.
However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.
Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZJX+ygAKCRDbK58LschI
g0/2AQDHg12smf9mPfK9wOFDNRIIX8r2iufB8LUFQMzCwltN6gEAkAdkAyfbof7P
TMaNUiHABijAFtChxoSI35j3OOSRrwE=
=GJgN
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-06-23
We've added 49 non-merge commits during the last 24 day(s) which contain
a total of 70 files changed, 1935 insertions(+), 442 deletions(-).
The main changes are:
1) Extend bpf_fib_lookup helper to allow passing the route table ID,
from Louis DeLosSantos.
2) Fix regsafe() in verifier to call check_ids() for scalar registers,
from Eduard Zingerman.
3) Extend the set of cpumask kfuncs with bpf_cpumask_first_and()
and a rework of bpf_cpumask_any*() kfuncs. Additionally,
add selftests, from David Vernet.
4) Fix socket lookup BPF helpers for tc/XDP to respect VRF bindings,
from Gilad Sever.
5) Change bpf_link_put() to use workqueue unconditionally to fix it
under PREEMPT_RT, from Sebastian Andrzej Siewior.
6) Follow-ups to address issues in the bpf_refcount shared ownership
implementation, from Dave Marchevsky.
7) A few general refactorings to BPF map and program creation permissions
checks which were part of the BPF token series, from Andrii Nakryiko.
8) Various fixes for benchmark framework and add a new benchmark
for BPF memory allocator to BPF selftests, from Hou Tao.
9) Documentation improvements around iterators and trusted pointers,
from Anton Protopopov.
10) Small cleanup in verifier to improve allocated object check,
from Daniel T. Lee.
11) Improve performance of bpf_xdp_pointer() by avoiding access
to shared_info when XDP packet does not have frags,
from Jesper Dangaard Brouer.
12) Silence a harmless syzbot-reported warning in btf_type_id_size(),
from Yonghong Song.
13) Remove duplicate bpfilter_umh_cleanup in favor of umd_cleanup_helper,
from Jarkko Sakkinen.
14) Fix BPF selftests build for resolve_btfids under custom HOSTCFLAGS,
from Viktor Malik.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (49 commits)
bpf, docs: Document existing macros instead of deprecated
bpf, docs: BPF Iterator Document
selftests/bpf: Fix compilation failure for prog vrf_socket_lookup
selftests/bpf: Add vrf_socket_lookup tests
bpf: Fix bpf socket lookup from tc/xdp to respect socket VRF bindings
bpf: Call __bpf_sk_lookup()/__bpf_skc_lookup() directly via TC hookpoint
bpf: Factor out socket lookup functions for the TC hookpoint.
selftests/bpf: Set the default value of consumer_cnt as 0
selftests/bpf: Ensure that next_cpu() returns a valid CPU number
selftests/bpf: Output the correct error code for pthread APIs
selftests/bpf: Use producer_cnt to allocate local counter array
xsk: Remove unused inline function xsk_buff_discard()
bpf: Keep BPF_PROG_LOAD permission checks clear of validations
bpf: Centralize permissions checks for all BPF map types
bpf: Inline map creation logic in map_create() function
bpf: Move unprivileged checks into map_create() and bpf_prog_load()
bpf: Remove in_atomic() from bpf_link_put().
selftests/bpf: Verify that check_ids() is used for scalars in regsafe()
bpf: Verify scalar ids mapping in regsafe() using check_ids()
selftests/bpf: Check if mark_chain_precision() follows scalar ids
...
====================
Link: https://lore.kernel.org/r/20230623211256.8409-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Make sure that the following unsafe example is rejected by verifier:
1: r9 = ... some pointer with range X ...
2: r6 = ... unbound scalar ID=a ...
3: r7 = ... unbound scalar ID=b ...
4: if (r6 > r7) goto +1
5: r6 = r7
6: if (r6 > X) goto ...
--- checkpoint ---
7: r9 += r7
8: *(u64 *)r9 = Y
This example is unsafe because not all execution paths verify r7 range.
Because of the jump at (4) the verifier would arrive at (6) in two states:
I. r6{.id=b}, r7{.id=b} via path 1-6;
II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
Currently regsafe() does not call check_ids() for scalar registers,
thus from POV of regsafe() states (I) and (II) are identical. If the
path 1-6 is taken by verifier first, and checkpoint is created at (6)
the path [1-4, 6] would be considered safe.
Changes in this commit:
- check_ids() is modified to disallow mapping multiple old_id to the
same cur_id.
- check_scalar_ids() is added, unlike check_ids() it treats ID zero as
a unique scalar ID.
- check_scalar_ids() needs to generate temporary unique IDs, field
'tmp_id_gen' is added to bpf_verifier_env::idmap_scratch to
facilitate this.
- regsafe() is updated to:
- use check_scalar_ids() for precise scalar registers.
- compare scalar registers using memcmp only for explore_alu_limits
branch. This simplifies control flow for scalar case, and has no
measurable performance impact.
- check_alu_op() is updated to avoid generating bpf_reg_state::id for
constant scalar values when processing BPF_MOV. ID is needed to
propagate range information for identical values, but there is
nothing to propagate for constants.
Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-4-eddyz87@gmail.com
Change mark_chain_precision() to track precision in situations
like below:
r2 = unknown value
...
--- state #0 ---
...
r1 = r2 // r1 and r2 now share the same ID
...
--- state #1 {r1.id = A, r2.id = A} ---
...
if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
...
--- state #2 {r1.id = A, r2.id = A} ---
r3 = r10
r3 += r1 // need to mark both r1 and r2
At the beginning of the processing of each state, ensure that if a
register with a scalar ID is marked as precise, all registers sharing
this ID are also marked as precise.
This property would be used by a follow-up change in regsafe().
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-2-eddyz87@gmail.com
When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success. Subsequent calls to the JIT are bypassed when this value is
non-NULL. This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable. Extables are only created during JIT. Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable. Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.
Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load(). This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.
Cc: stable@vger.kernel.org
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:
1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
roll a random (unknown to the verifier) bit in the lower half. The
rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
another register. Due to a bug in the verifier, the ID will be
preserved, although the new register will contain only the lower 32
bits, i.e. all zeros except one random bit.
At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.
5. Compare the new 32-bit register with 0. In the branch where it's
equal to 0, the verifier will believe that the original 64-bit
register is also 0, because it has the same ID, but its actual value
still contains the rogue number in the upper half.
Some optimizations of the verifier prevent the actual bypass, so
extra care is needed: the comparison must be between two registers,
and both branches must be reachable (this is why one random bit is
needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
believe that the offset is 0, while in reality it's the given number.
The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.
Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
In reg_type_not_null(), we currently assume that a pointer may be NULL
if it has the PTR_MAYBE_NULL modifier, or if it doesn't belong to one of
several base type of pointers that are never NULL-able. For example,
PTR_TO_CTX, PTR_TO_MAP_VALUE, etc.
It turns out that in some cases, PTR_TO_BTF_ID can never be NULL as
well, though we currently don't specify it. For example, if you had the
following program:
SEC("tc")
long example_refcnt_fail(void *ctx)
{
struct bpf_cpumask *mask1, *mask2;
mask1 = bpf_cpumask_create();
mask2 = bpf_cpumask_create();
if (!mask1 || !mask2)
goto error_release;
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask1);
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask2);
error_release:
if (mask1)
bpf_cpumask_release(mask1);
if (mask2)
bpf_cpumask_release(mask2);
return ret;
}
The verifier will incorrectly fail to load the program, thinking
(unintuitively) that we have a possibly-unreleased reference if the mask
is NULL, because we (correctly) don't issue a bpf_cpumask_release() on
the NULL path.
The reason the verifier gets confused is due to the fact that we don't
explicitly tell the verifier that trusted PTR_TO_BTF_ID pointers can
never be NULL. Basically, if we successfully get past the if check
(meaning both pointers go from ptr_or_null_bpf_cpumask to
ptr_bpf_cpumask), the verifier will correctly assume that the references
need to be dropped on any possible branch that leads to program exit.
However, it will _incorrectly_ think that the ptr == NULL branch is
possible, and will erroneously detect it as a branch on which we failed
to drop the reference.
The solution is of course to teach the verifier that trusted
PTR_TO_BTF_ID pointers can never be NULL, so that it doesn't incorrectly
think it's possible for the reference to be present on the ptr == NULL
branch.
A follow-on patch will add a selftest that verifies this behavior.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230602150112.1494194-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
>From commit 282de143ead9 ("bpf: Introduce allocated objects support"),
With this allocated object with BPF program, (PTR_TO_BTF_ID | MEM_ALLOC)
has been a way of indicating to check the type is the allocated object.
commit d8939cb0a03c ("bpf: Loosen alloc obj test in verifier's
reg_btf_record")
>From the commit, there has been helper function for checking this, named
type_is_ptr_alloc_obj(). But still, some of the code use open code to
retrieve this info. This commit replaces the open code with the
type_is_alloc(), and the type_is_ptr_alloc_obj() function.
Signed-off-by: Daniel T. Lee <danieltimlee@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230527122706.59315-1-danieltimlee@gmail.com
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.
Consider the following program:
n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */
bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);
It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.
Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0
(rest of output snipped)
The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.
For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.
Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.
[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/
Fixes: d2dcc67df910 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In verifier.c, fixup_kfunc_call uses struct bpf_insn_aux_data's
kptr_struct_meta field to pass information about local kptr types to
various helpers and kfuncs at runtime. The recent bpf_refcount series
added a few functions to the set that need this information:
* bpf_refcount_acquire
* Needs to know where the refcount field is in order to increment
* Graph collection insert kfuncs: bpf_rbtree_add, bpf_list_push_{front,back}
* Were migrated to possibly fail by the bpf_refcount series. If
insert fails, the input node is bpf_obj_drop'd. bpf_obj_drop needs
the kptr_struct_meta in order to decr refcount and properly free
special fields.
Unfortunately the verifier handling of collection insert kfuncs was not
modified to actually populate kptr_struct_meta. Accordingly, when the
node input to those kfuncs is passed to bpf_obj_drop, it is done so
without the information necessary to decr refcount.
This patch fixes the issue by populating kptr_struct_meta for those
kfuncs.
Fixes: d2dcc67df910 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZHEm+wAKCRDbK58LschI
gyIKAQCqO7B4sIu8hYVxBTwfHV2tIuXSMSCV4P9e78NUOPcO2QEAvLP/WVSjB0Bm
vpyTKKM22SpZvPe/jSp52j6t20N+qAc=
=HFxD
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-05-26
We've added 54 non-merge commits during the last 10 day(s) which contain
a total of 76 files changed, 2729 insertions(+), 1003 deletions(-).
The main changes are:
1) Add the capability to destroy sockets in BPF through a new kfunc,
from Aditi Ghag.
2) Support O_PATH fds in BPF_OBJ_PIN and BPF_OBJ_GET commands,
from Andrii Nakryiko.
3) Add capability for libbpf to resize datasec maps when backed via mmap,
from JP Kobryn.
4) Move all the test kfuncs for CI out of the kernel and into bpf_testmod,
from Jiri Olsa.
5) Big batch of xsk selftest improvements to prep for multi-buffer testing,
from Magnus Karlsson.
6) Show the target_{obj,btf}_id in tracing link's fdinfo and dump it
via bpftool, from Yafang Shao.
7) Various misc BPF selftest improvements to work with upcoming LLVM 17,
from Yonghong Song.
8) Extend bpftool to specify netdevice for resolving XDP hints,
from Larysa Zaremba.
9) Document masking in shift operations for the insn set document,
from Dave Thaler.
10) Extend BPF selftests to check xdp_feature support for bond driver,
from Lorenzo Bianconi.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (54 commits)
bpf: Fix bad unlock balance on freeze_mutex
libbpf: Ensure FD >= 3 during bpf_map__reuse_fd()
libbpf: Ensure libbpf always opens files with O_CLOEXEC
selftests/bpf: Check whether to run selftest
libbpf: Change var type in datasec resize func
bpf: drop unnecessary bpf_capable() check in BPF_MAP_FREEZE command
libbpf: Selftests for resizing datasec maps
libbpf: Add capability for resizing datasec maps
selftests/bpf: Add path_fd-based BPF_OBJ_PIN and BPF_OBJ_GET tests
libbpf: Add opts-based bpf_obj_pin() API and add support for path_fd
bpf: Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commands
libbpf: Start v1.3 development cycle
bpf: Validate BPF object in BPF_OBJ_PIN before calling LSM
bpftool: Specify XDP Hints ifname when loading program
selftests/bpf: Add xdp_feature selftest for bond device
selftests/bpf: Test bpf_sock_destroy
selftests/bpf: Add helper to get port using getsockname
bpf: Add bpf_sock_destroy kfunc
bpf: Add kfunc filter function to 'struct btf_kfunc_id_set'
bpf: udp: Implement batching for sockets iterator
...
====================
Link: https://lore.kernel.org/r/20230526222747.17775-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit adds the ability to filter kfuncs to certain BPF program
types. This is required to limit bpf_sock_destroy kfunc implemented in
follow-up commits to programs with attach type 'BPF_TRACE_ITER'.
The commit adds a callback filter to 'struct btf_kfunc_id_set'. The
filter has access to the `bpf_prog` construct including its properties
such as `expected_attached_type`.
Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com>
Link: https://lore.kernel.org/r/20230519225157.760788-7-aditi.ghag@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.
In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:
0: 61 10 00 00 00 00 00 00 r0 = *(u32 *)(r1 + 0)
results in the following code generation for a 64-bit field:
ldr x7, [x7] // 64-bit load
mov x10, #0xffffffffffffffff
and x7, x7, x10
Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:
ldr x7, [x7] // 64-bit load
mov w10, #0xffffffff
and w7, w7, w10
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Subsequent instruction index (subseq_idx) is an index of an instruction
that was verified/executed by verifier after the currently processed
instruction. It is maintained during precision backtracking processing
and is used to detect various subprog calling conditions.
This patch fixes the bug with incorrectly resetting subseq_idx to -1
when going from child state to parent state during backtracking. If we
don't maintain correct subseq_idx we can misidentify subprog calls
leading to precision tracking bugs.
One such case was triggered by test_global_funcs/global_func9 test where
global subprog call happened to be the very last instruction in parent
state, leading to subseq_idx==-1, triggering WARN_ONCE:
[ 36.045754] verifier backtracking bug
[ 36.045764] WARNING: CPU: 13 PID: 2073 at kernel/bpf/verifier.c:3503 __mark_chain_precision+0xcc6/0xde0
[ 36.046819] Modules linked in: aesni_intel(E) crypto_simd(E) cryptd(E) kvm_intel(E) kvm(E) irqbypass(E) i2c_piix4(E) serio_raw(E) i2c_core(E) crc32c_intel)
[ 36.048040] CPU: 13 PID: 2073 Comm: test_progs Tainted: G W OE 6.3.0-07976-g4d585f48ee6b-dirty #972
[ 36.048783] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 36.049648] RIP: 0010:__mark_chain_precision+0xcc6/0xde0
[ 36.050038] Code: 3d 82 c6 05 bb 35 32 02 01 e8 66 21 ec ff 0f 0b b8 f2 ff ff ff e9 30 f5 ff ff 48 c7 c7 f3 61 3d 82 4c 89 0c 24 e8 4a 21 ec ff <0f> 0b 4c0
With the fix precision tracking across multiple states works correctly now:
mark_precise: frame0: last_idx 45 first_idx 38 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 44: (61) r7 = *(u32 *)(r10 -4)
mark_precise: frame0: regs=r8 stack= before 43: (85) call pc+41
mark_precise: frame0: regs=r8 stack= before 42: (07) r1 += -48
mark_precise: frame0: regs=r8 stack= before 41: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 40: (63) *(u32 *)(r10 -48) = r1
mark_precise: frame0: regs=r8 stack= before 39: (b4) w1 = 0
mark_precise: frame0: regs=r8 stack= before 38: (85) call pc+38
mark_precise: frame0: parent state regs=r8 stack=: R0_w=scalar() R1_w=map_value(off=4,ks=4,vs=8,imm=0) R6=1 R7_w=scalar() R8_r=P0 R10=fpm
mark_precise: frame0: last_idx 36 first_idx 28 subseq_idx 38
mark_precise: frame0: regs=r8 stack= before 36: (18) r1 = 0xffff888104f2ed14
mark_precise: frame0: regs=r8 stack= before 35: (85) call pc+33
mark_precise: frame0: regs=r8 stack= before 33: (18) r1 = 0xffff888104f2ed10
mark_precise: frame0: regs=r8 stack= before 32: (85) call pc+36
mark_precise: frame0: regs=r8 stack= before 31: (07) r1 += -4
mark_precise: frame0: regs=r8 stack= before 30: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 29: (63) *(u32 *)(r10 -4) = r7
mark_precise: frame0: regs=r8 stack= before 28: (4c) w7 |= w0
mark_precise: frame0: parent state regs=r8 stack=: R0_rw=scalar() R6=1 R7_rw=scalar() R8_rw=P0 R10=fp0 fp-48_r=mmmmmmmm
mark_precise: frame0: last_idx 27 first_idx 16 subseq_idx 28
mark_precise: frame0: regs=r8 stack= before 27: (85) call pc+31
mark_precise: frame0: regs=r8 stack= before 26: (b7) r1 = 0
mark_precise: frame0: regs=r8 stack= before 25: (b7) r8 = 0
Note how subseq_idx starts out as -1, then is preserved as 38 and then 28 as we
go up the parent state chain.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: fde2a3882bd0 ("bpf: support precision propagation in the presence of subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230515180710.1535018-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For kfuncs like bpf_obj_drop and bpf_refcount_acquire - which take
user-defined types as input - the verifier needs to track the specific
type passed in when checking a particular kfunc call. This requires
tracking (btf, btf_id) tuple. In commit 7c50b1cb76ac
("bpf: Add bpf_refcount_acquire kfunc") I added an anonymous union with
inner structs named after the specific kfuncs tracking this information,
with the goal of making it more obvious which kfunc this data was being
tracked / expected to be tracked on behalf of.
In a recent series adding a new user of this tuple, Alexei mentioned
that he didn't like this union usage as it doesn't really help with
readability or bug-proofing ([0]). In an offline convo we agreed to
have the tuple be fields (arg_btf, arg_btf_id), with comments in
bpf_kfunc_call_arg_meta definition enumerating the uses of the fields by
kfunc-specific handling logic. Such a pattern is used by struct
bpf_reg_state without trouble.
Accordingly, this patch removes the anonymous union in favor of arg_btf
and arg_btf_id fields and comment enumerating their current uses. The
patch also removes struct btf_and_id, which was only being used by the
removed union's inner structs.
This is a mechanical change, existing linked_list and rbtree tests will
validate that correct (btf, btf_id) are being passed.
[0]: https://lore.kernel.org/bpf/20230505021707.vlyiwy57vwxglbka@dhcp-172-26-102-232.dhcp.thefacebook.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230510213047.1633612-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This allows using memory retrieved from dynptrs with helper functions
that accept ARG_PTR_TO_MEM. For instance, results from bpf_dynptr_data
can be passed along to bpf_strncmp.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-5-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>