3489 Commits

Author SHA1 Message Date
Linus Torvalds
3bf03b9a08 Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - A few misc subsystems: kthread, scripts, ntfs, ocfs2, block, and vfs

 - Most the MM patches which precede the patches in Willy's tree: kasan,
   pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
   sparsemem, vmalloc, pagealloc, memory-failure, mlock, hugetlb,
   userfaultfd, vmscan, compaction, mempolicy, oom-kill, migration, thp,
   cma, autonuma, psi, ksm, page-poison, madvise, memory-hotplug, rmap,
   zswap, uaccess, ioremap, highmem, cleanups, kfence, hmm, and damon.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (227 commits)
  mm/damon/sysfs: remove repeat container_of() in damon_sysfs_kdamond_release()
  Docs/ABI/testing: add DAMON sysfs interface ABI document
  Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface
  selftests/damon: add a test for DAMON sysfs interface
  mm/damon/sysfs: support DAMOS stats
  mm/damon/sysfs: support DAMOS watermarks
  mm/damon/sysfs: support schemes prioritization
  mm/damon/sysfs: support DAMOS quotas
  mm/damon/sysfs: support DAMON-based Operation Schemes
  mm/damon/sysfs: support the physical address space monitoring
  mm/damon/sysfs: link DAMON for virtual address spaces monitoring
  mm/damon: implement a minimal stub for sysfs-based DAMON interface
  mm/damon/core: add number of each enum type values
  mm/damon/core: allow non-exclusive DAMON start/stop
  Docs/damon: update outdated term 'regions update interval'
  Docs/vm/damon/design: update DAMON-Idle Page Tracking interference handling
  Docs/vm/damon: call low level monitoring primitives the operations
  mm/damon: remove unnecessary CONFIG_DAMON option
  mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}()
  mm/damon/dbgfs-test: fix is_target_id() change
  ...
2022-03-22 16:11:53 -07:00
Huang Ying
c574bbe917 NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have
multiple types of memory, e.g.  DRAM and PMEM (persistent memory).  The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.

In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally.  So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.

In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node.  The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote.  So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.

The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark.  This
is a reasonable policy if there's only one memory type.  But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types.  Details are as follows.

It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes.  Otherwise, it's
unnecessary to use the slow memory at all.  So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node.  To solve the issue, we have 2 choices as follows,

a. Ignore the free pages watermark checking when promoting hot pages
   from the slow memory node to the fast memory node.  This will
   create some memory pressure in the fast memory node, thus trigger
   the memory reclaiming.  So that, the cold pages in the fast memory
   node will be demoted to the slow memory node.

b. Define a new watermark called wmark_promo which is higher than
   wmark_high, and have kswapd reclaiming pages until free pages reach
   such watermark.  The scenario is as follows: when we want to promote
   hot-pages from a slow memory to a fast memory, but fast memory's free
   pages would go lower than high watermark with such promotion, we wake
   up kswapd with wmark_promo watermark in order to demote cold pages and
   free us up some space.  So, next time we want to promote hot-pages we
   might have a chance of doing so.

The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g.  the direct reclaiming may be triggered.

The choice "b" works much better at this aspect.  If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation.  So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added.  Which is larger than the
high watermark and can be controlled via watermark_scale_factor.

In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types.  So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.

The sysctl is converted from a Boolean value to a bits field.  The
definition of the flags is,

- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING

We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model.  The test results shows that the pmbench score can
improve up to 95.9%.

Thanks Andrew Morton to help fix the document format error.

Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Linus Torvalds
3fe2f7446f Changes in this cycle were:
- Cleanups for SCHED_DEADLINE
  - Tracing updates/fixes
  - CPU Accounting fixes
  - First wave of changes to optimize the overhead of the scheduler build,
    from the fast-headers tree - including placeholder *_api.h headers for
    later header split-ups.
  - Preempt-dynamic using static_branch() for ARM64
  - Isolation housekeeping mask rework; preperatory for further changes
  - NUMA-balancing: deal with CPU-less nodes
  - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
  - Updates to RSEQ UAPI in preparation for glibc usage
  - Lots of RSEQ/selftests, for same
  - Add Suren as PSI co-maintainer
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
 ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
 LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
 mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
 dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
 0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
 IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
 qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
 3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
 NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
 f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
 ES/qvlGxTIs=
 =Z8uT
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Cleanups for SCHED_DEADLINE

 - Tracing updates/fixes

 - CPU Accounting fixes

 - First wave of changes to optimize the overhead of the scheduler
   build, from the fast-headers tree - including placeholder *_api.h
   headers for later header split-ups.

 - Preempt-dynamic using static_branch() for ARM64

 - Isolation housekeeping mask rework; preperatory for further changes

 - NUMA-balancing: deal with CPU-less nodes

 - NUMA-balancing: tune systems that have multiple LLC cache domains per
   node (eg. AMD)

 - Updates to RSEQ UAPI in preparation for glibc usage

 - Lots of RSEQ/selftests, for same

 - Add Suren as PSI co-maintainer

* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
  sched/headers: ARM needs asm/paravirt_api_clock.h too
  sched/numa: Fix boot crash on arm64 systems
  headers/prep: Fix header to build standalone: <linux/psi.h>
  sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
  cgroup: Fix suspicious rcu_dereference_check() usage warning
  sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
  sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
  sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
  sched/deadline,rt: Remove unused functions for !CONFIG_SMP
  sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
  sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
  sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
  sched/deadline: Remove unused def_dl_bandwidth
  sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
  sched/tracing: Don't re-read p->state when emitting sched_switch event
  sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
  sched/cpuacct: Remove redundant RCU read lock
  sched/cpuacct: Optimize away RCU read lock
  sched/cpuacct: Fix charge percpu cpuusage
  sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
  ...
2022-03-22 14:39:12 -07:00
Huang, Ying
ab31c7fd2d sched/numa: Fix boot crash on arm64 systems
Qian Cai reported a boot crash on arm64 systems, caused by:

  0fb3978b0aac ("sched/numa: Fix NUMA topology for systems with CPU-less nodes")

The bug is that node_state() must be supplied a valid node_states[] array index,
but in task_numa_placement() the max_nid search can fail with NUMA_NO_NODE,
which is not a valid index.

Fix it by checking that max_nid is a valid index.

[ mingo: Added changelog. ]

Fixes: 0fb3978b0aac ("sched/numa: Fix NUMA topology for systems with CPU-less nodes")
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-22 08:49:22 +01:00
Linus Torvalds
616355cc81 for-5.18/block-2022-03-18
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI0+GcQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgprUpD/9aTJEnj7VCw7UouSsg098sdjtoy9ilslU3
 ew47K8CIXHbCB4CDqLnFyvCwAdG1XGgS+fUmFAxvTr29R9SZeS5d+bXL6sZzEo0C
 bwxsJy9MM2QRtMvB+giAt1myXbwB8cG+ketMBWXqwXXRHRzPbbQfMZia7FqWMnfY
 KQanH9IwYHp1oa5U/W6Qcjm4oCnLgBMRwqByzUCtiF3y9qgaLkK+3IgkNwjJQjLA
 DTeUJ/9CgxGQQbzA+LPktbw2xfTqiUfcKq0mWx6Zt4wwNXn1ClqUDUXX6QSM8/5u
 3OimbscSkEPPTIYZbVBPkhFnAlQb4JaJEgOrbXvYKVV2Dh+eZY81XwNeE/E8gdBY
 TnHOTOCjkN/4sR3hIrWazlJzPLdpPA0eOYrhguCraQsX9mcsYNxlJ9otRv/Ve99g
 uqL0RZg3+NoK84fm79FCGy/ZmPQJvJttlBT9CKVwylv/Lky42xWe7AdM3OipKluY
 2nh+zN5Ai7WxZdTKXQFRhCSWfWQ+1qW51tB3dcGW+BooZr/oox47qKQVcHsEWbq1
 RNR45F5a4AuPwYUHF/P36WviLnEuq9AvX7OTTyYOplyVQohKIoDXp9chVzLNzBiZ
 KBR00W6MLKKKN+8foalQWgNyb2i2PH7Ib4xRXvXj/22Vwxg5UmUoBmSDSas9SZUS
 +dMo7CtNgA==
 =DpgP
 -----END PGP SIGNATURE-----

Merge tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - BFQ cleanups and fixes (Yu, Zhang, Yahu, Paolo)

 - blk-rq-qos completion fix (Tejun)

 - blk-cgroup merge fix (Tejun)

 - Add offline error return value to distinguish it from an IO error on
   the device (Song)

 - IO stats fixes (Zhang, Christoph)

 - blkcg refcount fixes (Ming, Yu)

 - Fix for indefinite dispatch loop softlockup (Shin'ichiro)

 - blk-mq hardware queue management improvements (Ming)

 - sbitmap dead code removal (Ming, John)

 - Plugging merge improvements (me)

 - Show blk-crypto capabilities in sysfs (Eric)

 - Multiple delayed queue run improvement (David)

 - Block throttling fixes (Ming)

 - Start deprecating auto module loading based on dev_t (Christoph)

 - bio allocation improvements (Christoph, Chaitanya)

 - Get rid of bio_devname (Christoph)

 - bio clone improvements (Christoph)

 - Block plugging improvements (Christoph)

 - Get rid of genhd.h header (Christoph)

 - Ensure drivers use appropriate flush helpers (Christoph)

 - Refcounting improvements (Christoph)

 - Queue initialization and teardown improvements (Ming, Christoph)

 - Misc fixes/improvements (Barry, Chaitanya, Colin, Dan, Jiapeng,
   Lukas, Nian, Yang, Eric, Chengming)

* tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block: (127 commits)
  block: cancel all throttled bios in del_gendisk()
  block: let blkcg_gq grab request queue's refcnt
  block: avoid use-after-free on throttle data
  block: limit request dispatch loop duration
  block/bfq-iosched: Fix spelling mistake "tenative" -> "tentative"
  sr: simplify the local variable initialization in sr_block_open()
  block: don't merge across cgroup boundaries if blkcg is enabled
  block: fix rq-qos breakage from skipping rq_qos_done_bio()
  block: flush plug based on hardware and software queue order
  block: ensure plug merging checks the correct queue at least once
  block: move rq_qos_exit() into disk_release()
  block: do more work in elevator_exit
  block: move blk_exit_queue into disk_release
  block: move q_usage_counter release into blk_queue_release
  block: don't remove hctx debugfs dir from blk_mq_exit_queue
  block: move blkcg initialization/destroy into disk allocation/release handler
  sr: implement ->free_disk to simplify refcounting
  sd: implement ->free_disk to simplify refcounting
  sd: delay calling free_opal_dev
  sd: call sd_zbc_release_disk before releasing the scsi_device reference
  ...
2022-03-21 16:48:55 -07:00
Ingo Molnar
a7b2553b5e sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
This header is not (yet) standalone.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-15 10:33:53 +01:00
Ingo Molnar
ccacfe56d7 Merge branch 'sched/fast-headers' into sched/core
Merge the scheduler build speedup of the fast-headers tree.

Cumulative scheduler (kernel/sched/) build time speedup on a
Linux distribution's config, which enables all scheduler features,
compared to the vanilla kernel:

      _____________________________________________________________________________
     |
     |  Vanilla kernel (v5.13-rc7):
     |_____________________________________________________________________________
     |
     |  Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
     |
     |   126,975,564,374      instructions              #    1.45  insn per cycle           ( +-  0.00% )
     |    87,637,847,671      cycles                    #    3.959 GHz                      ( +-  0.30% )
     |         22,136.96 msec cpu-clock                 #    7.499 CPUs utilized            ( +-  0.29% )
     |
     |            2.9520 +- 0.0169 seconds time elapsed  ( +-  0.57% )
     |_____________________________________________________________________________
     |
     |  Patched kernel:
     |_____________________________________________________________________________
     |
     | Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
     |
     |    50,420,496,914      instructions              #    1.47  insn per cycle           ( +-  0.00% )
     |    34,234,322,038      cycles                    #    3.946 GHz                      ( +-  0.31% )
     |          8,675.81 msec cpu-clock                 #    3.053 CPUs utilized            ( +-  0.45% )
     |
     |            2.8420 +- 0.0181 seconds time elapsed  ( +-  0.64% )
     |_____________________________________________________________________________

    Summary:

      - CPU time used to build the scheduler dropped by -60.9%, a reduction
        from 22.1 clock-seconds to 8.7 clock-seconds.

      - Wall-clock time to build the scheduler dropped by -3.9%, a reduction
        from 2.95 seconds to 2.84 seconds.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-15 09:05:05 +01:00
K Prateek Nayak
7f434dff76 sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
While investigating the sparse warning reported by the LKP bot [1],
observed that we have a redundant variable "top" in the function
build_sched_domains that was introduced in the recent commit
e496132ebedd ("sched/fair: Adjust the allowed NUMA imbalance when
SD_NUMA spans multiple LLCs")

The existing variable "sd" suffices which allows us to remove the
redundant variable "top" while annotating the other variable "top_p"
with the "__rcu" annotation to silence the sparse warning.

[1] https://lore.kernel.org/lkml/202202170853.9vofgC3O-lkp@intel.com/

Fixes: e496132ebedd ("sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20220218162743.1134-1-kprateek.nayak@amd.com
2022-03-08 16:08:40 +01:00
Dietmar Eggemann
821aecd09e sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
The `struct rq *rq` parameter isn't used. Remove it.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-7-dietmar.eggemann@arm.com
2022-03-08 16:08:40 +01:00
Dietmar Eggemann
71d29747b0 sched/deadline,rt: Remove unused functions for !CONFIG_SMP
The need_pull_[rt|dl]_task() and pull_[rt|dl]_task() functions are not
used on a !CONFIG_SMP system. Remove them.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-6-dietmar.eggemann@arm.com
2022-03-08 16:08:39 +01:00
Dietmar Eggemann
f4478e7c85 sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
Deploy __node_2_pdl(node), __node_2_dle(node) and rb_first_cached()
consistently throughout the sched class source file which makes the
code at least easier to read.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-5-dietmar.eggemann@arm.com
2022-03-08 16:08:39 +01:00
Dietmar Eggemann
772b6539fd sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
Both functions are doing almost the same, that is checking if admission
control is still respected.

With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.

dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.

Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
2022-03-08 16:08:39 +01:00
Dietmar Eggemann
f1304ecbef sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
Move the deadline bandwidth management (admission control) functions
__dl_add(), __dl_sub() and __dl_overflow() as well as the bandwidth
reclaim function __dl_update() from private task scheduler header file
to the deadline sched class source file.
The functions are only used internally so they don't have to be
exported.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-3-dietmar.eggemann@arm.com
2022-03-08 16:08:39 +01:00
Dietmar Eggemann
eb77cf1c15 sched/deadline: Remove unused def_dl_bandwidth
Since commit 1724813d9f2c ("sched/deadline: Remove the sysctl_sched_dl
knobs") the default deadline bandwidth control structure has no purpose.
Remove it.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
2022-03-08 16:08:38 +01:00
Valentin Schneider
fa2c3254d7 sched/tracing: Don't re-read p->state when emitting sched_switch event
As of commit

  c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")

the following sequence becomes possible:

		      p->__state = TASK_INTERRUPTIBLE;
		      __schedule()
			deactivate_task(p);
  ttwu()
    READ !p->on_rq
    p->__state=TASK_WAKING
			trace_sched_switch()
			  __trace_sched_switch_state()
			    task_state_index()
			      return 0;

TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in
the trace event.

Prevent this by pushing the value read from __schedule() down the trace
event.

Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com
2022-03-01 16:18:39 +01:00
Valentin Schneider
49bef33e4b sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
John reported that push_rt_task() can end up invoking
find_lowest_rq(rq->curr) when curr is not an RT task (in this case a CFS
one), which causes mayhem down convert_prio().

This can happen when current gets demoted to e.g. CFS when releasing an
rt_mutex, and the local CPU gets hit with an rto_push_work irqwork before
getting the chance to reschedule. Exactly who triggers this work isn't
entirely clear to me - switched_from_rt() only invokes rt_queue_pull_task()
if there are no RT tasks on the local RQ, which means the local CPU can't
be in the rto_mask.

My current suspected sequence is something along the lines of the below,
with the demoted task being current.

  mark_wakeup_next_waiter()
    rt_mutex_adjust_prio()
      rt_mutex_setprio() // deboost originally-CFS task
	check_class_changed()
	  switched_from_rt() // Only rt_queue_pull_task() if !rq->rt.rt_nr_running
	  switched_to_fair() // Sets need_resched
      __balance_callbacks() // if pull_rt_task(), tell_cpu_to_push() can't select local CPU per the above
      raw_spin_rq_unlock(rq)

       // need_resched is set, so task_woken_rt() can't
       // invoke push_rt_tasks(). Best I can come up with is
       // local CPU has rt_nr_migratory >= 2 after the demotion, so stays
       // in the rto_mask, and then:

       <some other CPU running rto_push_irq_work_func() queues rto_push_work on this CPU>
	 push_rt_task()
	   // breakage follows here as rq->curr is CFS

Move an existing check to check rq->curr vs the next pushable task's
priority before getting anywhere near find_lowest_rq(). While at it, add an
explicit sched_class of rq->curr check prior to invoking
find_lowest_rq(rq->curr). Align the DL logic to also reschedule regardless
of next_task's migratability.

Fixes: a7c81556ec4d ("sched: Fix migrate_disable() vs rt/dl balancing")
Reported-by: John Keeping <john@metanate.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: John Keeping <john@metanate.com>
Link: https://lore.kernel.org/r/20220127154059.974729-1-valentin.schneider@arm.com
2022-03-01 16:18:38 +01:00
Chengming Zhou
3eba0505d0 sched/cpuacct: Remove redundant RCU read lock
The cpuacct_account_field() and it's cgroup v2 wrapper
cgroup_account_cputime_field() is only called from cputime
in task_group_account_field(), which is already in RCU read-side
critical section. So remove these redundant RCU read lock.

Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220220051426.5274-3-zhouchengming@bytedance.com
2022-03-01 16:18:38 +01:00
Chengming Zhou
dc6e0818bc sched/cpuacct: Optimize away RCU read lock
Since cpuacct_charge() is called from the scheduler update_curr(),
we must already have rq lock held, then the RCU read lock can
be optimized away.

And do the same thing in it's wrapper cgroup_account_cputime(),
but we can't use lockdep_assert_rq_held() there, which defined
in kernel/sched/sched.h.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220220051426.5274-2-zhouchengming@bytedance.com
2022-03-01 16:18:38 +01:00
Chengming Zhou
248cc9993d sched/cpuacct: Fix charge percpu cpuusage
The cpuacct_account_field() is always called by the current task
itself, so it's ok to use __this_cpu_add() to charge the tick time.

But cpuacct_charge() maybe called by update_curr() in load_balance()
on a random CPU, different from the CPU on which the task is running.
So __this_cpu_add() will charge that cputime to a random incorrect CPU.

Fixes: 73e6aafd9ea8 ("sched/cpuacct: Simplify the cpuacct code")
Reported-by: Minye Zhu <zhuminye@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20220220051426.5274-1-zhouchengming@bytedance.com
2022-03-01 16:18:37 +01:00
Rafael J. Wysocki
075c3c483c Merge back cpufreq changes for v5.18. 2022-02-28 20:47:57 +01:00
Ingo Molnar
4ff8f2ca6c sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
Remove all headers, except the ones required to make this header
build standalone.

Also include stats.h in sched.h explicitly - dependencies already
require this.

Summary of the build speedup gained through the last ~15 scheduler build &
header dependency patches:

Cumulative scheduler (kernel/sched/) build time speedup on a
Linux distribution's config, which enables all scheduler features,
compared to the vanilla kernel:

  _____________________________________________________________________________
 |
 |  Vanilla kernel (v5.13-rc7):
 |_____________________________________________________________________________
 |
 |  Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
 |
 |   126,975,564,374      instructions              #    1.45  insn per cycle           ( +-  0.00% )
 |    87,637,847,671      cycles                    #    3.959 GHz                      ( +-  0.30% )
 |         22,136.96 msec cpu-clock                 #    7.499 CPUs utilized            ( +-  0.29% )
 |
 |            2.9520 +- 0.0169 seconds time elapsed  ( +-  0.57% )
 |_____________________________________________________________________________
 |
 |  Patched kernel:
 |_____________________________________________________________________________
 |
 | Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
 |
 |    50,420,496,914      instructions              #    1.47  insn per cycle           ( +-  0.00% )
 |    34,234,322,038      cycles                    #    3.946 GHz                      ( +-  0.31% )
 |          8,675.81 msec cpu-clock                 #    3.053 CPUs utilized            ( +-  0.45% )
 |
 |            2.8420 +- 0.0181 seconds time elapsed  ( +-  0.64% )
 |_____________________________________________________________________________

Summary:

  - CPU time used to build the scheduler dropped by -60.9%, a reduction
    from 22.1 clock-seconds to 8.7 clock-seconds.

  - Wall-clock time to build the scheduler dropped by -3.9%, a reduction
    from 2.95 seconds to 2.84 seconds.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:34 +01:00
Ingo Molnar
e81daa7b64 sched/headers: Reorganize, clean up and optimize kernel/sched/build_utility.c dependencies
Use all generic headers from kernel/sched/sched.h that are required
for it to build.

Sort the sections alphabetically.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:34 +01:00
Ingo Molnar
0dda4eeb48 sched/headers: Reorganize, clean up and optimize kernel/sched/build_policy.c dependencies
Use all generic headers from kernel/sched/sched.h that are required
for it to build.

Sort the sections alphabetically.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
c4ad6fcb67 sched/headers: Reorganize, clean up and optimize kernel/sched/fair.c dependencies
Use all generic headers from kernel/sched/sched.h that are required
for it to build.

Sort the sections alphabetically.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
e66f6481a8 sched/headers: Reorganize, clean up and optimize kernel/sched/core.c dependencies
Use all generic headers from kernel/sched/sched.h that are required
for it to build.

Sort the sections alphabetically.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
b9e9c6ca6e sched/headers: Standardize kernel/sched/sched.h header dependencies
kernel/sched/sched.h is a weird mix of ad-hoc headers included
in the middle of the header.

Two of them rely on being included in the middle of kernel/sched/sched.h,
due to definitions they require:

 - "stat.h" needs the rq definitions.
 - "autogroup.h" needs the task_group definition.

Move the inclusion of these two files out of kernel/sched/sched.h, and
include them in all files that require them.

Move of the rest of the header dependencies to the top of the
kernel/sched/sched.h file.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
f96eca4320 sched/headers: Introduce kernel/sched/build_policy.c and build multiple .c files there
Similarly to kernel/sched/build_utility.c, collect all 'scheduling policy' related
source code files into kernel/sched/build_policy.c:

    kernel/sched/idle.c

    kernel/sched/rt.c

    kernel/sched/cpudeadline.c
    kernel/sched/pelt.c

    kernel/sched/cputime.c
    kernel/sched/deadline.c

With the exception of fair.c, which we continue to build as a separate file
for build efficiency and parallelism reasons.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
801c141955 sched/headers: Introduce kernel/sched/build_utility.c and build multiple .c files there
Collect all utility functionality source code files into a single kernel/sched/build_utility.c file,
via #include-ing the .c files:

    kernel/sched/clock.c
    kernel/sched/completion.c
    kernel/sched/loadavg.c
    kernel/sched/swait.c
    kernel/sched/wait_bit.c
    kernel/sched/wait.c

CONFIG_CPU_FREQ:
    kernel/sched/cpufreq.c

CONFIG_CPU_FREQ_GOV_SCHEDUTIL:
    kernel/sched/cpufreq_schedutil.c

CONFIG_CGROUP_CPUACCT:
    kernel/sched/cpuacct.c

CONFIG_SCHED_DEBUG:
    kernel/sched/debug.c

CONFIG_SCHEDSTATS:
    kernel/sched/stats.c

CONFIG_SMP:
   kernel/sched/cpupri.c
   kernel/sched/stop_task.c
   kernel/sched/topology.c

CONFIG_SCHED_CORE:
   kernel/sched/core_sched.c

CONFIG_PSI:
   kernel/sched/psi.c

CONFIG_MEMBARRIER:
   kernel/sched/membarrier.c

CONFIG_CPU_ISOLATION:
   kernel/sched/isolation.c

CONFIG_SCHED_AUTOGROUP:
   kernel/sched/autogroup.c

The goal is to amortize the 60+ KLOC header bloat from over a dozen build units into
a single build unit.

The build time of build_utility.c also roughly matches the build time of core.c and
fair.c - allowing better load-balancing of scheduler-only rebuilds.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
81de6572fe sched/headers: Fix comment typo in kernel/sched/cpudeadline.c
File name changed.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Ingo Molnar
fa28abed7a sched/headers: sched/clock: Mark all functions 'notrace', remove CC_FLAGS_FTRACE build asymmetry
Mark all non-init functions in kernel/sched.c as 'notrace', instead of
turning them all off via CC_FLAGS_FTRACE.

This is going to allow the treatment of this file as any other scheduler
file, and it can be #include-ed in compound compilation units as well.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 08:22:04 +01:00
Ingo Molnar
d90a2f160a sched/headers: Add header guard to kernel/sched/stats.h and kernel/sched/autogroup.h
Protect against multiple inclusion.

Also include "sched.h" in "stat.h", as it relies on it.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 08:22:00 +01:00
Ingo Molnar
95458477f5 sched/headers: Add header guard to kernel/sched/sched.h
Use the canonical header guard naming of the full path to the header.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 08:21:56 +01:00
Ingo Molnar
6255b48aeb Linux 5.17-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
 Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
 wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
 qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
 1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
 fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
 /PuMhEg=
 =eU1o
 -----END PGP SIGNATURE-----

Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts

New conflicts in sched/core due to the following upstream fixes:

  44585f7bc0cb ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
  a06247c6804f ("psi: Fix uaf issue when psi trigger is destroyed while being polled")

Conflicts:
	include/linux/psi_types.h
	kernel/sched/psi.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-02-21 11:53:51 +01:00
Mark Rutland
99cf983cc8 sched/preempt: Add PREEMPT_DYNAMIC using static keys
Where an architecture selects HAVE_STATIC_CALL but not
HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline
which will either branch to a callee or return to the caller.

On such architectures, a number of constraints can conspire to make
those trampolines more complicated and potentially less useful than we'd
like. For example:

* Hardware and software control flow integrity schemes can require the
  addition of "landing pad" instructions (e.g. `BTI` for arm64), which
  will also be present at the "real" callee.

* Limited branch ranges can require that trampolines generate or load an
  address into a register and perform an indirect branch (or at least
  have a slow path that does so). This loses some of the benefits of
  having a direct branch.

* Interaction with SW CFI schemes can be complicated and fragile, e.g.
  requiring that we can recognise idiomatic codegen and remove
  indirections understand, at least until clang proves more helpful
  mechanisms for dealing with this.

For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we
really only need to enable/disable specific preemption functions. We can
achieve the same effect without a number of the pain points above by
using static keys to fold early returns into the preemption functions
themselves rather than in an out-of-line trampoline, effectively
inlining the trampoline into the start of the function.

For arm64, this results in good code generation. For example, the
dynamic_cond_resched() wrapper looks as follows when enabled. When
disabled, the first `B` is replaced with a `NOP`, resulting in an early
return.

| <dynamic_cond_resched>:
|        bti     c
|        b       <dynamic_cond_resched+0x10>     // or `nop`
|        mov     w0, #0x0
|        ret
|        mrs     x0, sp_el0
|        ldr     x0, [x0, #8]
|        cbnz    x0, <dynamic_cond_resched+0x8>
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

... compared to the regular form of the function:

| <__cond_resched>:
|        bti     c
|        mrs     x0, sp_el0
|        ldr     x1, [x0, #8]
|        cbz     x1, <__cond_resched+0x18>
|        mov     w0, #0x0
|        ret
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

Any architecture which implements static keys should be able to use this
to implement PREEMPT_DYNAMIC with similar cost to non-inlined static
calls. Since this is likely to have greater overhead than (inlined)
static calls, PREEMPT_DYNAMIC is only defaulted to enabled when
HAVE_PREEMPT_DYNAMIC_CALL is selected.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
2022-02-19 11:11:08 +01:00
Mark Rutland
33c64734be sched/preempt: Decouple HAVE_PREEMPT_DYNAMIC from GENERIC_ENTRY
Now that the enabled/disabled states for the preemption functions are
declared alongside their definitions, the core PREEMPT_DYNAMIC logic is
no longer tied to GENERIC_ENTRY, and can safely be selected so long as
an architecture provides enabled/disabled states for
irqentry_exit_cond_resched().

Make it possible to select HAVE_PREEMPT_DYNAMIC without GENERIC_ENTRY.

For existing users of HAVE_PREEMPT_DYNAMIC there should be no functional
change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-5-mark.rutland@arm.com
2022-02-19 11:11:08 +01:00
Mark Rutland
8a69fe0be1 sched/preempt: Refactor sched_dynamic_update()
Currently sched_dynamic_update needs to open-code the enabled/disabled
function names for each preemption model it supports, when in practice
this is a boolean enabled/disabled state for each function.

Make this clearer and avoid repetition by defining the enabled/disabled
states at the function definition, and using helper macros to perform the
static_call_update(). Where x86 currently overrides the enabled
function, it is made to provide both the enabled and disabled states for
consistency, with defaults provided by the core code otherwise.

In subsequent patches this will allow us to support PREEMPT_DYNAMIC
without static calls.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-3-mark.rutland@arm.com
2022-02-19 11:11:07 +01:00
Mark Rutland
4c7485584d sched/preempt: Move PREEMPT_DYNAMIC logic later
The PREEMPT_DYNAMIC logic in kernel/sched/core.c patches static calls
for a bunch of preemption functions. While most are defined prior to
this, the definition of cond_resched() is later in the file, and so we
only have its declarations from include/linux/sched.h.

In subsequent patches we'd like to define some macros alongside the
definition of each of the preemption functions, which we can use within
sched_dynamic_update(). For this to be possible, the PREEMPT_DYNAMIC
logic needs to be placed after the various preemption functions.

As a preparatory step, this patch moves the PREEMPT_DYNAMIC logic after
the various preemption functions, with no other changes -- this is
purely a move.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-2-mark.rutland@arm.com
2022-02-19 11:11:07 +01:00
Peter Zijlstra
b1e8206582 sched: Fix yet more sched_fork() races
Where commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.

Commit 13765de8148f ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.

Fixes: 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
2022-02-19 11:11:05 +01:00
Frederic Weisbecker
ed3b362d54 sched/isolation: Split housekeeping cpumask per isolation features
To prepare for supporting each housekeeping feature toward cpuset, split
the global housekeeping cpumask per HK_TYPE_* entry.

This will later allow, for example, to runtime modify the cpulist passed
through "isolcpus=", "nohz_full=" and "rcu_nocbs=" kernel boot
parameters.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-9-frederic@kernel.org
2022-02-16 15:57:56 +01:00
Frederic Weisbecker
65e53f869e sched/isolation: Fix housekeeping_mask memory leak
If "nohz_full=" or "isolcpus=nohz" are called with CONFIG_NO_HZ_FULL=n,
housekeeping_mask doesn't get freed despite it being unused if
housekeeping_setup() is called for the first time.

Check this scenario first to fix this, so that no useless allocation
is performed.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-8-frederic@kernel.org
2022-02-16 15:57:56 +01:00
Frederic Weisbecker
0cd3e59de1 sched/isolation: Consolidate error handling
Centralize the mask freeing and return value for the error path. This
makes potential leaks more visible.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-7-frederic@kernel.org
2022-02-16 15:57:55 +01:00
Frederic Weisbecker
6367b600e3 sched/isolation: Consolidate check for housekeeping minimum service
There can be two subsequent calls to housekeeping_setup() due to
"nohz_full=" and "isolcpus=" that can mix up.  The two passes each have
their own way to deal with an empty housekeeping set of CPUs.
Consolidate this part and remove the awful "tmp" based naming.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-6-frederic@kernel.org
2022-02-16 15:57:55 +01:00
Frederic Weisbecker
04d4e665a6 sched/isolation: Use single feature type while referring to housekeeping cpumask
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
2022-02-16 15:57:55 +01:00
Zhaoyang Huang
e6df4ead85 psi: fix possible trigger missing in the window
When a new threshold breaching stall happens after a psi event was
generated and within the window duration, the new event is not
generated because the events are rate-limited to one per window. If
after that no new stall is recorded then the event will not be
generated even after rate-limiting duration has passed. This is
happening because with no new stall, window_update will not be called
even though threshold was previously breached. To fix this, record
threshold breaching occurrence and generate the event once window
duration is passed.

Suggested-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Link: https://lore.kernel.org/r/1643093818-19835-1-git-send-email-huangzhaoyang@gmail.com
2022-02-16 15:57:54 +01:00
Huang Ying
5c7b1aaf13 sched/numa: Avoid migrating task to CPU-less node
In a typical memory tiering system, there's no CPU in slow (PMEM) NUMA
nodes.  But if the number of the hint page faults on a PMEM node is
the max for a task, The current NUMA balancing policy may try to place
the task on the PMEM node instead of DRAM node.  This is unreasonable,
because there's no CPU in PMEM NUMA nodes.  To fix this, CPU-less
nodes are ignored when searching the migration target node for a task
in this patch.

To test the patch, we run a workload that accesses more memory in PMEM
node than memory in DRAM node.  Without the patch, the PMEM node will
be chosen as preferred node in task_numa_placement().  While the DRAM
node will be chosen instead with the patch.

Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-2-ying.huang@intel.com
2022-02-16 15:57:53 +01:00
Huang Ying
0fb3978b0a sched/numa: Fix NUMA topology for systems with CPU-less nodes
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.

For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,

[000h 0000   4]                    Signature : "SLIT"    [System Locality Information Table]
[004h 0004   4]                 Table Length : 0000042C
[008h 0008   1]                     Revision : 01
[009h 0009   1]                     Checksum : 59
[00Ah 0010   6]                       Oem ID : "XXXX"
[010h 0016   8]                 Oem Table ID : "XXXXXXX"
[018h 0024   4]                 Oem Revision : 00000001
[01Ch 0028   4]              Asl Compiler ID : "INTL"
[020h 0032   4]        Asl Compiler Revision : 20091013

[024h 0036   8]                   Localities : 0000000000000004
[02Ch 0044   4]                 Locality   0 : 0A 15 11 1C
[030h 0048   4]                 Locality   1 : 15 0A 1C 11
[034h 0052   4]                 Locality   2 : 11 1C 0A 1C
[038h 0056   4]                 Locality   3 : 1C 11 1C 0A

While the `numactl -H` output is as follows,

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node   0   1   2   3
  0:  10  21  17  28
  1:  21  10  28  17
  2:  17  28  10  28
  3:  28  17  28  10

In this system, there are only 2 sockets.  In each memory controller,
both DRAM and PMEM DIMMs are installed.  Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex.  Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3.  And the whole system appears to be a glueless mesh NUMA
topology type.  But it's definitely not, there is even no CPU in node 3.

This isn't a practical problem now yet.  Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot.  So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT.  And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in.  And there's no CPU in the
PMEM nodes.  But it appears better to fix this to make the code more
robust.

To test the potential problem.  We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()).  With that, the NUMA parameters
identified by scheduler is as follows,

sched_numa_topology_type:	NUMA_GLUELESS_MESH
sched_domains_numa_levels:	4
sched_max_numa_distance:	28

To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified.  Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.

With the patch, the NUMA parameters identified for the example system
above is as follows,

sched_numa_topology_type:	NUMA_DIRECT
sched_domains_numa_levels:	2
sched_max_numa_distance:	21

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
2022-02-16 15:57:53 +01:00
Yury Norov
1087ad4e3f sched: replace cpumask_weight with cpumask_empty where appropriate
In some places, kernel/sched code calls cpumask_weight() to check if
any bit of a given cpumask is set. We can do it more efficiently with
cpumask_empty() because cpumask_empty() stops traversing the cpumask as
soon as it finds first set bit, while cpumask_weight() counts all bits
unconditionally.

Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220210224933.379149-23-yury.norov@gmail.com
2022-02-16 15:57:53 +01:00
Mel Gorman
e496132ebe sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs
Commit 7d2b5dd0bcc4 ("sched/numa: Allow a floating imbalance between NUMA
nodes") allowed an imbalance between NUMA nodes such that communicating
tasks would not be pulled apart by the load balancer. This works fine when
there is a 1:1 relationship between LLC and node but can be suboptimal
for multiple LLCs if independent tasks prematurely use CPUs sharing cache.

Zen* has multiple LLCs per node with local memory channels and due to
the allowed imbalance, it's far harder to tune some workloads to run
optimally than it is on hardware that has 1 LLC per node. This patch
allows an imbalance to exist up to the point where LLCs should be balanced
between nodes.

On a Zen3 machine running STREAM parallelised with OMP to have on instance
per LLC the results and without binding, the results are

                            5.17.0-rc0             5.17.0-rc0
                               vanilla       sched-numaimb-v6
MB/sec copy-16    162596.94 (   0.00%)   580559.74 ( 257.05%)
MB/sec scale-16   136901.28 (   0.00%)   374450.52 ( 173.52%)
MB/sec add-16     157300.70 (   0.00%)   564113.76 ( 258.62%)
MB/sec triad-16   151446.88 (   0.00%)   564304.24 ( 272.61%)

STREAM can use directives to force the spread if the OpenMP is new
enough but that doesn't help if an application uses threads and
it's not known in advance how many threads will be created.

Coremark is a CPU and cache intensive benchmark parallelised with
threads. When running with 1 thread per core, the vanilla kernel
allows threads to contend on cache. With the patch;

                               5.17.0-rc0             5.17.0-rc0
                                  vanilla       sched-numaimb-v5
Min       Score-16   368239.36 (   0.00%)   389816.06 (   5.86%)
Hmean     Score-16   388607.33 (   0.00%)   427877.08 *  10.11%*
Max       Score-16   408945.69 (   0.00%)   481022.17 (  17.62%)
Stddev    Score-16    15247.04 (   0.00%)    24966.82 ( -63.75%)
CoeffVar  Score-16        3.92 (   0.00%)        5.82 ( -48.48%)

It can also make a big difference for semi-realistic workloads
like specjbb which can execute arbitrary numbers of threads without
advance knowledge of how they should be placed. Even in cases where
the average performance is neutral, the results are more stable.

                               5.17.0-rc0             5.17.0-rc0
                                  vanilla       sched-numaimb-v6
Hmean     tput-1      71631.55 (   0.00%)    73065.57 (   2.00%)
Hmean     tput-8     582758.78 (   0.00%)   556777.23 (  -4.46%)
Hmean     tput-16   1020372.75 (   0.00%)  1009995.26 (  -1.02%)
Hmean     tput-24   1416430.67 (   0.00%)  1398700.11 (  -1.25%)
Hmean     tput-32   1687702.72 (   0.00%)  1671357.04 (  -0.97%)
Hmean     tput-40   1798094.90 (   0.00%)  2015616.46 *  12.10%*
Hmean     tput-48   1972731.77 (   0.00%)  2333233.72 (  18.27%)
Hmean     tput-56   2386872.38 (   0.00%)  2759483.38 (  15.61%)
Hmean     tput-64   2909475.33 (   0.00%)  2925074.69 (   0.54%)
Hmean     tput-72   2585071.36 (   0.00%)  2962443.97 (  14.60%)
Hmean     tput-80   2994387.24 (   0.00%)  3015980.59 (   0.72%)
Hmean     tput-88   3061408.57 (   0.00%)  3010296.16 (  -1.67%)
Hmean     tput-96   3052394.82 (   0.00%)  2784743.41 (  -8.77%)
Hmean     tput-104  2997814.76 (   0.00%)  2758184.50 (  -7.99%)
Hmean     tput-112  2955353.29 (   0.00%)  2859705.09 (  -3.24%)
Hmean     tput-120  2889770.71 (   0.00%)  2764478.46 (  -4.34%)
Hmean     tput-128  2871713.84 (   0.00%)  2750136.73 (  -4.23%)
Stddev    tput-1       5325.93 (   0.00%)     2002.53 (  62.40%)
Stddev    tput-8       6630.54 (   0.00%)    10905.00 ( -64.47%)
Stddev    tput-16     25608.58 (   0.00%)     6851.16 (  73.25%)
Stddev    tput-24     12117.69 (   0.00%)     4227.79 (  65.11%)
Stddev    tput-32     27577.16 (   0.00%)     8761.05 (  68.23%)
Stddev    tput-40     59505.86 (   0.00%)     2048.49 (  96.56%)
Stddev    tput-48    168330.30 (   0.00%)    93058.08 (  44.72%)
Stddev    tput-56    219540.39 (   0.00%)    30687.02 (  86.02%)
Stddev    tput-64    121750.35 (   0.00%)     9617.36 (  92.10%)
Stddev    tput-72    223387.05 (   0.00%)    34081.13 (  84.74%)
Stddev    tput-80    128198.46 (   0.00%)    22565.19 (  82.40%)
Stddev    tput-88    136665.36 (   0.00%)    27905.97 (  79.58%)
Stddev    tput-96    111925.81 (   0.00%)    99615.79 (  11.00%)
Stddev    tput-104   146455.96 (   0.00%)    28861.98 (  80.29%)
Stddev    tput-112    88740.49 (   0.00%)    58288.23 (  34.32%)
Stddev    tput-120   186384.86 (   0.00%)    45812.03 (  75.42%)
Stddev    tput-128    78761.09 (   0.00%)    57418.48 (  27.10%)

Similarly, for embarassingly parallel problems like NPB-ep, there are
improvements due to better spreading across LLC when the machine is not
fully utilised.

                              vanilla       sched-numaimb-v6
Min       ep.D       31.79 (   0.00%)       26.11 (  17.87%)
Amean     ep.D       31.86 (   0.00%)       26.17 *  17.86%*
Stddev    ep.D        0.07 (   0.00%)        0.05 (  24.41%)
CoeffVar  ep.D        0.22 (   0.00%)        0.20 (   7.97%)
Max       ep.D       31.93 (   0.00%)       26.21 (  17.91%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.net
2022-02-11 23:30:08 +01:00
Mel Gorman
2cfb7a1b03 sched/fair: Improve consistency of allowed NUMA balance calculations
There are inconsistencies when determining if a NUMA imbalance is allowed
that should be corrected.

o allow_numa_imbalance changes types and is not always examining
  the destination group so both the type should be corrected as
  well as the naming.
o find_idlest_group uses the sched_domain's weight instead of the
  group weight which is different to find_busiest_group
o find_busiest_group uses the source group instead of the destination
  which is different to task_numa_find_cpu
o Both find_idlest_group and find_busiest_group should account
  for the number of running tasks if a move was allowed to be
  consistent with task_numa_find_cpu

Fixes: 7d2b5dd0bcc4 ("sched/numa: Allow a floating imbalance between NUMA nodes")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-2-mgorman@techsingularity.net
2022-02-11 23:30:08 +01:00
Tadeusz Struk
13765de814 sched/fair: Fix fault in reweight_entity
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")

There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit.  For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.

In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.

Before the mentioned change the cfs_rq pointer for the task  has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group.  Now it is done in
the sched_post_fork(), which is called after that.  To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set.

Fixes: 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: syzbot+af7a719bc92395ee41b3@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220203161846.1160750-1-tadeusz.struk@linaro.org
2022-02-06 22:37:26 +01:00