7558 Commits

Author SHA1 Message Date
Darrick J. Wong
932b42c66c xfs: replace XFS_IFORK_Q with a proper predicate function
Replace this shouty macro with a real C function that has a more
descriptive name.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-12 11:17:27 -07:00
Darrick J. Wong
e45d7cb235 xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero.  This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.

While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Darrick J. Wong
2ed5b09b3e xfs: make inode attribute forks a permanent part of struct xfs_inode
Syzkaller reported a UAF bug a while back:

==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958

CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
 __kasan_report mm/kasan/report.c:442 [inline]
 kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399
 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
 do_truncate+0xc3/0x1e0 fs/open.c:56
 handle_truncate fs/namei.c:3084 [inline]
 do_open fs/namei.c:3432 [inline]
 path_openat+0x30ab/0x396d fs/namei.c:3561
 do_filp_open+0x1c4/0x290 fs/namei.c:3588
 do_sys_openat2+0x60d/0x98c fs/open.c:1212
 do_sys_open+0xcf/0x13c fs/open.c:1228
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
 </TASK>

Allocated by task 2953:
 kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
 kasan_set_track mm/kasan/common.c:46 [inline]
 set_alloc_info mm/kasan/common.c:434 [inline]
 __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
 kasan_slab_alloc include/linux/kasan.h:254 [inline]
 slab_post_alloc_hook mm/slab.h:519 [inline]
 slab_alloc_node mm/slub.c:3213 [inline]
 slab_alloc mm/slub.c:3221 [inline]
 kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
 kmem_cache_zalloc include/linux/slab.h:711 [inline]
 xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180
 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
 vfs_setxattr+0x154/0x33d fs/xattr.c:301
 setxattr+0x216/0x29f fs/xattr.c:575
 __do_sys_fsetxattr fs/xattr.c:632 [inline]
 __se_sys_fsetxattr fs/xattr.c:621 [inline]
 __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0

Freed by task 2949:
 kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
 ____kasan_slab_free mm/kasan/common.c:366 [inline]
 ____kasan_slab_free mm/kasan/common.c:328 [inline]
 __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
 kasan_slab_free include/linux/kasan.h:230 [inline]
 slab_free_hook mm/slub.c:1700 [inline]
 slab_free_freelist_hook mm/slub.c:1726 [inline]
 slab_free mm/slub.c:3492 [inline]
 kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
 __vfs_removexattr+0x106/0x16a fs/xattr.c:468
 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
 security_inode_killpriv+0x54/0xa1 security/security.c:1414
 setattr_prepare+0x1a6/0x897 fs/attr.c:146
 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
 notify_change+0xae5/0x10a1 fs/attr.c:410
 do_truncate+0x134/0x1e0 fs/open.c:64
 handle_truncate fs/namei.c:3084 [inline]
 do_open fs/namei.c:3432 [inline]
 path_openat+0x30ab/0x396d fs/namei.c:3561
 do_filp_open+0x1c4/0x290 fs/namei.c:3588
 do_sys_openat2+0x60d/0x98c fs/open.c:1212
 do_sys_open+0xcf/0x13c fs/open.c:1228
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0

The buggy address belongs to the object at ffff88802cec9188
 which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
 40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
 ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
                            ^
 ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
 ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================

The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data.  Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:

xfs_attr_set:                          xfs_attr_get:
xfs_attr_fork_remove:                  xfs_ilock_attr_map_shared:

xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);

                                       if (ip->i_afp &&

ip->i_afp = NULL;

                                           xfs_need_iread_extents(ip->i_afp))
                                       <KABOOM>

ip->i_forkoff = 0;

Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.

Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up.  That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.

An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems.  However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.

On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference.  Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes.  Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.

This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase.  The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Darrick J. Wong
732436ef91 xfs: convert XFS_IFORK_PTR to a static inline helper
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Andrey Strachuk
0f38063d7a xfs: removed useless condition in function xfs_attr_node_get
At line 1561, variable "state" is being compared
with NULL every loop iteration.

-------------------------------------------------------------------
1561	for (i = 0; state != NULL && i < state->path.active; i++) {
1562		xfs_trans_brelse(args->trans, state->path.blk[i].bp);
1563		state->path.blk[i].bp = NULL;
1564	}
-------------------------------------------------------------------

However, it cannot be NULL.

----------------------------------------
1546	state = xfs_da_state_alloc(args);
----------------------------------------

xfs_da_state_alloc calls kmem_cache_zalloc. kmem_cache_zalloc is
called with __GFP_NOFAIL flag and, therefore, it cannot return NULL.

--------------------------------------------------------------------------
	struct xfs_da_state *
	xfs_da_state_alloc(
	struct xfs_da_args	*args)
	{
		struct xfs_da_state	*state;

		state = kmem_cache_zalloc(xfs_da_state_cache, GFP_NOFS | __GFP_NOFAIL);
		state->args = args;
		state->mp = args->dp->i_mount;
		return state;
	}
--------------------------------------------------------------------------

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Signed-off-by: Andrey Strachuk <strochuk@ispras.ru>

Fixes: 4d0cdd2bb8f0 ("xfs: clean up xfs_attr_node_hasname")
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-09 10:56:02 -07:00
Eric Sandeen
70b589a37e xfs: add selinux labels to whiteout inodes
We got a report that "renameat2() with flags=RENAME_WHITEOUT doesn't
apply an SELinux label on xfs" as it does on other filesystems
(for example, ext4 and tmpfs.)  While I'm not quite sure how labels
may interact w/ whiteout files, leaving them as unlabeled seems
inconsistent at best. Now that xfs_init_security is not static,
rename it to xfs_inode_init_security per dchinner's suggestion.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-09 10:56:02 -07:00
Darrick J. Wong
fddb564f62 xfs: per-ag conversions for 5.20
This series drives the perag down into the AGI, AGF and AGFL access
 routines and unifies the perag structure initialisation with the
 high level AG header read functions. This largely replaces the
 xfs_mount/agno pair that is passed to all these functions with a
 perag, and in most places we already have a perag ready to pass in.
 There are a few places where perags need to be grabbed before
 reading the AG header buffers - some of these will need to be driven
 to higher layers to ensure we can run operations on AGs without
 getting stuck part way through waiting on a perag reference.
 
 The latter section of this patchset moves some of the AG geometry
 information from the xfs_mount to the xfs_perag, and starts
 converting code that requires geometry validation to use a perag
 instead of a mount and having to extract the AGNO from the object
 location. This also allows us to store the AG size in the perag and
 then we can stop having to compare the agno against sb_agcount to
 determine if the AG is the last AG and so has a runt size.  This
 greatly simplifies some of the type validity checking we do and
 substantially reduces the CPU overhead of type validity checking. It
 also cuts over 1.2kB out of the binary size.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLHawsUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h09BhAAzsBr2K8yj+2eCwGZO7g4/Cynf/bb
 nbukVogeMkFuUOmxniQzY6F3NUNo9du0FcDgEfbh6mYJtGRVQZaVCBKyPmcMXPOZ
 q/1VRTod20XdMdvPfXvXP3FJoSp1W7/dPIx9Mxl4b5zCdFfeUTTfScl12MAePrdW
 TaJpRBmxP+CZ0/bocAyHL4/2kqY2FNVgbR4vGxxHgqyjfwgQrdmOBetw7xoVxze1
 lK3Iogm0btBd1bkGO83x7DceGl41JGEutx+92gI+/43rzP7Q4BRqXZm5Ik5taWVN
 QLcLgAyj5X91D/e5dmg9NkDvVyzo7QHx0/0O/HOfw5XbzNcVw81se49yUjUS7+VM
 n2LocVCLYsx9/DxqSJxd9lJUXlLtY/YvY7lewNknmeASwtHH8ReOvMPS89L5PJqD
 InPDKay7OVsBkJd9I2yG43Q/MzQTuJuVWmbP5yVoFqR/wX9V8bjf8ng9kkkfVqMj
 1nXnMyCr/41zSwvM12fEkv67ilwsbke3j5jYrO/TcfjAV8xqb6D6HaEx1PCRQpT2
 w1FATNRGDdc2m+ojU4/ETe36KHYO/eivio1oBtqzdoaE13GRJjCqQVErg9nsDSQn
 34zEcShHuhKwn5VLsR6ngZVZOOHSkAjAw4G6XsvoUKpjwtVH0Ueu/bja7/ZwOq7W
 ySka+/95OgHNS64=
 =71q3
 -----END PGP SIGNATURE-----

Merge tag 'xfs-perag-conv-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeA

xfs: per-ag conversions for 5.20

This series drives the perag down into the AGI, AGF and AGFL access
routines and unifies the perag structure initialisation with the
high level AG header read functions. This largely replaces the
xfs_mount/agno pair that is passed to all these functions with a
perag, and in most places we already have a perag ready to pass in.
There are a few places where perags need to be grabbed before
reading the AG header buffers - some of these will need to be driven
to higher layers to ensure we can run operations on AGs without
getting stuck part way through waiting on a perag reference.

The latter section of this patchset moves some of the AG geometry
information from the xfs_mount to the xfs_perag, and starts
converting code that requires geometry validation to use a perag
instead of a mount and having to extract the AGNO from the object
location. This also allows us to store the AG size in the perag and
then we can stop having to compare the agno against sb_agcount to
determine if the AG is the last AG and so has a runt size.  This
greatly simplifies some of the type validity checking we do and
substantially reduces the CPU overhead of type validity checking. It
also cuts over 1.2kB out of the binary size.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-perag-conv-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: make is_log_ag() a first class helper
  xfs: replace xfs_ag_block_count() with perag accesses
  xfs: Pre-calculate per-AG agino geometry
  xfs: Pre-calculate per-AG agbno geometry
  xfs: pass perag to xfs_alloc_read_agfl
  xfs: pass perag to xfs_alloc_put_freelist
  xfs: pass perag to xfs_alloc_get_freelist
  xfs: pass perag to xfs_read_agf
  xfs: pass perag to xfs_read_agi
  xfs: pass perag to xfs_alloc_read_agf()
  xfs: kill xfs_alloc_pagf_init()
  xfs: pass perag to xfs_ialloc_read_agi()
  xfs: kill xfs_ialloc_pagi_init()
  xfs: make last AG grow/shrink perag centric
2022-07-09 10:55:44 -07:00
Dave Chinner
85c73bf726 xfs: rework xfs_buf_incore() API
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 22:05:18 +10:00
Dave Chinner
36029dee38 xfs: make is_log_ag() a first class helper
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:21 +10:00
Dave Chinner
3829c9a10f xfs: replace xfs_ag_block_count() with perag accesses
Many of the places that call xfs_ag_block_count() have a perag
available. These places can just read pag->block_count directly
instead of calculating the AG block count from first principles.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:17 +10:00
Dave Chinner
2d6ca8321c xfs: Pre-calculate per-AG agino geometry
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

xfs_verify_agino_or_null() gets the same perag treatment.

xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.

Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1482185	 329588	    572	1812345	 1ba779	(TOTALS)
after	1481937	 329588	    572	1812097	 1ba681	(TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:10 +10:00
Dave Chinner
0800169e3e xfs: Pre-calculate per-AG agbno geometry
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).

Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.

Future commits will make similar changes for other per-ag geometry
validation functions.

Further:

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1483006	 329588	    572	1813166	 1baaae	(TOTALS)
after	1482185	 329588	    572	1812345	 1ba779	(TOTALS)

This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:02 +10:00
Dave Chinner
cec7bb7d58 xfs: pass perag to xfs_alloc_read_agfl
We have the perag in most places we call xfs_alloc_read_agfl, so
pass the perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:15 +10:00
Dave Chinner
8c392eb27f xfs: pass perag to xfs_alloc_put_freelist
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:08 +10:00
Dave Chinner
49f0d84ec1 xfs: pass perag to xfs_alloc_get_freelist
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:01 +10:00
Dave Chinner
fa044ae70c xfs: pass perag to xfs_read_agf
We have the perag in most places we call xfs_read_agf, so pass the
perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:54 +10:00
Dave Chinner
61021deb1f xfs: pass perag to xfs_read_agi
We have the perag in most palces we call xfs_read_agi, so pass the
perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:47 +10:00
Dave Chinner
08d3e84fee xfs: pass perag to xfs_alloc_read_agf()
xfs_alloc_read_agf() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Whilst modifying the xfs_reflink_find_shared() function definition,
declare it static and remove the extern declaration as it is an
internal function only these days.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:40 +10:00
Dave Chinner
76b47e528e xfs: kill xfs_alloc_pagf_init()
Trivial wrapper around xfs_alloc_read_agf(), can be easily replaced
by passing a NULL agfbp to xfs_alloc_read_agf().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:32 +10:00
Dave Chinner
99b13c7f0b xfs: pass perag to xfs_ialloc_read_agi()
xfs_ialloc_read_agi() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:24 +10:00
Dave Chinner
a95fee40e3 xfs: kill xfs_ialloc_pagi_init()
This is just a basic wrapper around xfs_ialloc_read_agi(), which can
be entirely handled by xfs_ialloc_read_agi() by passing a NULL
agibpp....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:16 +10:00
Dave Chinner
c6aee24814 xfs: make last AG grow/shrink perag centric
Because the perag must exist for these operations, look it up as
part of the common shrink operations and pass it instead of the
mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:09 +10:00
Dave Chinner
d9f68777b2 xfs: xlog_sync() manually adjusts grant head space
When xlog_sync() rounds off the tail the iclog that is being
flushed, it manually subtracts that space from the grant heads. This
space is actually reserved by the transaction ticket that covers
the xlog_sync() call from xlog_write(), but we don't plumb the
ticket down far enough for it to account for the space consumed in
the current log ticket.

The grant heads are hot, so we really should be accounting this to
the ticket is we can, rather than adding thousands of extra grant
head updates every CIL commit.

Interestingly, this actually indicates a potential log space overrun
can occur when we force the log. By the time that xfs_log_force()
pushes out an active iclog and consumes the roundoff space, the
reservation for that roundoff space has been returned to the grant
heads and is no longer covered by a reservation. In theory the
roundoff added to log force on an already full log could push the
write head past the tail. In practice, the CIL commit that writes to
the log and needs the iclog pushed will have reserved space for
roundoff, so when it releases the ticket there will still be
physical space for the roundoff to be committed to the log, even
though it is no longer reserved. This roundoff won't be enough space
to allow a transaction to be woken if the log is full, so overruns
should not actually occur in practice.

That said, it indicates that we should not release the CIL context
log ticket until after we've released the commit iclog. It also
means that xlog_sync() still needs the direct grant head
manipulation if we don't provide it with a ticket. Log forces are
rare when we are in fast paths running 1.5 million transactions/s
that make the grant heads hot, so let's optimise the hot case and
pass CIL log tickets down to the xlog_sync() code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:56:09 +10:00
Dave Chinner
1ccb0745a9 xfs: avoid cil push lock if possible
Because now it hurts when the CIL fills up.

  - 37.20% __xfs_trans_commit
      - 35.84% xfs_log_commit_cil
         - 19.34% _raw_spin_lock
            - do_raw_spin_lock
                 19.01% __pv_queued_spin_lock_slowpath
         - 4.20% xfs_log_ticket_ungrant
              0.90% xfs_log_space_wake


Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:56:08 +10:00
Dave Chinner
4eb56069cb xfs: move CIL ordering to the logvec chain
Adding a list_sort() call to the CIL push work while the xc_ctx_lock
is held exclusively has resulted in fairly long lock hold times and
that stops all front end transaction commits from making progress.

We can move the sorting out of the xc_ctx_lock if we can transfer
the ordering information to the log vectors as they are detached
from the log items and then we can sort the log vectors.  With these
changes, we can move the list_sort() call to just before we call
xlog_write() when we aren't holding any locks at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:56:08 +10:00
Dave Chinner
169248536a xfs: convert log vector chain to use list heads
Because the next change is going to require sorting log vectors, and
that requires arbitrary rearrangement of the list which cannot be
done easily with a single linked list.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:55:59 +10:00
Dave Chinner
c0fb4765c5 xfs: convert CIL to unordered per cpu lists
So that we can remove the cil_lock which is a global serialisation
point. We've already got ordering sorted, so all we need to do is
treat the CIL list like the busy extent list and reconstruct it
before the push starts.

This is what we're trying to avoid:

 -   75.35%     1.83%  [kernel]            [k] xfs_log_commit_cil
    - 46.35% xfs_log_commit_cil
       - 41.54% _raw_spin_lock
          - 67.30% do_raw_spin_lock
               66.96% __pv_queued_spin_lock_slowpath

Which happens on a 32p system when running a 32-way 'rm -rf'
workload. After this patch:

-   20.90%     3.23%  [kernel]               [k] xfs_log_commit_cil
   - 17.67% xfs_log_commit_cil
      - 6.51% xfs_log_ticket_ungrant
           1.40% xfs_log_space_wake
        2.32% memcpy_erms
      - 2.18% xfs_buf_item_committing
         - 2.12% xfs_buf_item_release
            - 1.03% xfs_buf_unlock
                 0.96% up
              0.72% xfs_buf_rele
        1.33% xfs_inode_item_format
        1.19% down_read
        0.91% up_read
        0.76% xfs_buf_item_format
      - 0.68% kmem_alloc_large
         - 0.67% kmem_alloc
              0.64% __kmalloc
        0.50% xfs_buf_item_size

It kinda looks like the workload is running out of log space all
the time. But all the spinlock contention is gone and the
transaction commit rate has gone from 800k/s to 1.3M/s so the amount
of real work being done has gone up a *lot*.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:54:59 +10:00
Dave Chinner
016a23388c xfs: Add order IDs to log items in CIL
Before we split the ordered CIL up into per cpu lists, we need a
mechanism to track the order of the items in the CIL. We need to do
this because there are rules around the order in which related items
must physically appear in the log even inside a single checkpoint
transaction.

An example of this is intents - an intent must appear in the log
before it's intent done record so that log recovery can cancel the
intent correctly. If we have these two records misordered in the
CIL, then they will not be recovered correctly by journal replay.

We also will not be able to move items to the tail of
the CIL list when they are relogged, hence the log items will need
some mechanism to allow the correct log item order to be recreated
before we write log items to the hournal.

Hence we need to have a mechanism for recording global order of
transactions in the log items  so that we can recover that order
from un-ordered per-cpu lists.

Do this with a simple monotonic increasing commit counter in the CIL
context. Each log item in the transaction gets stamped with the
current commit order ID before it is added to the CIL. If the item
is already in the CIL, leave it where it is instead of moving it to
the tail of the list and instead sort the list before we start the
push work.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:53:59 +10:00
Dave Chinner
df7a4a2134 xfs: convert CIL busy extents to per-cpu
To get them out from under the CIL lock.

This is an unordered list, so we can simply punt it to per-cpu lists
during transaction commits and reaggregate it back into a single
list during the CIL push work.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:52:59 +10:00
Dave Chinner
1dd2a2c18e xfs: track CIL ticket reservation in percpu structure
To get it out from under the cil spinlock.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:51:59 +10:00
Dave Chinner
7c8ade2121 xfs: implement percpu cil space used calculation
Now that we have the CIL percpu structures in place, implement the
space used counter as a per-cpu counter.

We have to be really careful now about ensuring that the checks and
updates run without arbitrary delays, which means they need to run
with pre-emption disabled. We do this by careful placement of
the get_cpu_ptr/put_cpu_ptr calls to access the per-cpu structures
for that CPU.

We need to be able to reliably detect that the CIL has reached
the hard limit threshold so we can take extra reservations for the
iclog headers when the space used overruns the original reservation.
hence we factor out xlog_cil_over_hard_limit() from
xlog_cil_push_background().

The global CIL space used is an atomic variable that is backed by
per-cpu aggregation to minimise the number of atomic updates we do
to the global state in the fast path. While we are under the soft
limit, we aggregate only when the per-cpu aggregation is over the
proportion of the soft limit assigned to that CPU. This means that
all CPUs can use all but one byte of their aggregation threshold
and we will not go over the soft limit.

Hence once we detect that we've gone over both a per-cpu aggregation
threshold and the soft limit, we know that we have only
exceeded the soft limit by one per-cpu aggregation threshold. Even
if all CPUs hit this at the same time, we can't be over the hard
limit, so we can run an aggregation back into the atomic counter
at this point and still be under the hard limit.

At this point, we will be over the soft limit and hence we'll
aggregate into the global atomic used space directly rather than the
per-cpu counters, hence providing accurate detection of hard limit
excursion for accounting and reservation purposes.

Hence we get the best of both worlds - lockless, scalable per-cpu
fast path plus accurate, atomic detection of hard limit excursion.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 18:50:59 +10:00
Roman Gushchin
e33c267ab7 mm: shrinkers: provide shrinkers with names
Currently shrinkers are anonymous objects.  For debugging purposes they
can be identified by count/scan function names, but it's not always
useful: e.g.  for superblock's shrinkers it's nice to have at least an
idea of to which superblock the shrinker belongs.

This commit adds names to shrinkers.  register_shrinker() and
prealloc_shrinker() functions are extended to take a format and arguments
to master a name.

In some cases it's not possible to determine a good name at the time when
a shrinker is allocated.  For such cases shrinker_debugfs_rename() is
provided.

The expected format is:
    <subsystem>-<shrinker_type>[:<instance>]-<id>
For some shrinkers an instance can be encoded as (MAJOR:MINOR) pair.

After this change the shrinker debugfs directory looks like:
  $ cd /sys/kernel/debug/shrinker/
  $ ls
    dquota-cache-16     sb-devpts-28     sb-proc-47       sb-tmpfs-42
    mm-shadow-18        sb-devtmpfs-5    sb-proc-48       sb-tmpfs-43
    mm-zspool:zram0-34  sb-hugetlbfs-17  sb-pstore-31     sb-tmpfs-44
    rcu-kfree-0         sb-hugetlbfs-33  sb-rootfs-2      sb-tmpfs-49
    sb-aio-20           sb-iomem-12      sb-securityfs-6  sb-tracefs-13
    sb-anon_inodefs-15  sb-mqueue-21     sb-selinuxfs-22  sb-xfs:vda1-36
    sb-bdev-3           sb-nsfs-4        sb-sockfs-8      sb-zsmalloc-19
    sb-bpf-32           sb-pipefs-14     sb-sysfs-26      thp-deferred_split-10
    sb-btrfs:vda2-24    sb-proc-25       sb-tmpfs-1       thp-zero-9
    sb-cgroup2-30       sb-proc-39       sb-tmpfs-27      xfs-buf:vda1-37
    sb-configfs-23      sb-proc-41       sb-tmpfs-29      xfs-inodegc:vda1-38
    sb-dax-11           sb-proc-45       sb-tmpfs-35
    sb-debugfs-7        sb-proc-46       sb-tmpfs-40

[roman.gushchin@linux.dev: fix build warnings]
  Link: https://lkml.kernel.org/r/Yr+ZTnLb9lJk6fJO@castle
  Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20220601032227.4076670-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:40 -07:00
Dave Chinner
af1c2146a5 xfs: introduce per-cpu CIL tracking structure
The CIL push lock is highly contended on larger machines, becoming a
hard bottleneck that about 700,000 transaction commits/s on >16p
machines. To address this, start moving the CIL tracking
infrastructure to utilise per-CPU structures.

We need to track the space used, the amount of log reservation space
reserved to write the CIL, the log items in the CIL and the busy
extents that need to be completed by the CIL commit.  This requires
a couple of per-cpu counters, an unordered per-cpu list and a
globally ordered per-cpu list.

Create a per-cpu structure to hold these and all the management
interfaces needed, as well as the hooks to handle hotplug CPUs.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-02 02:13:52 +10:00
Dave Chinner
31151cc342 xfs: rework per-iclog header CIL reservation
For every iclog that a CIL push will use up, we need to ensure we
have space reserved for the iclog header in each iclog. It is
extremely difficult to do this accurately with a per-cpu counter
without expensive summing of the counter in every commit. However,
we know what the maximum CIL size is going to be because of the
hard space limit we have, and hence we know exactly how many iclogs
we are going to need to write out the CIL.

We are constrained by the requirement that small transactions only
have reservation space for a single iclog header built into them.
At commit time we don't know how much of the current transaction
reservation is made up of iclog header reservations as calculated by
xfs_log_calc_unit_res() when the ticket was reserved. As larger
reservations have multiple header spaces reserved, we can steal
more than one iclog header reservation at a time, but we only steal
the exact number needed for the given log vector size delta.

As a result, we don't know exactly when we are going to steal iclog
header reservations, nor do we know exactly how many we are going to
need for a given CIL.

To make things simple, start by calculating the worst case number of
iclog headers a full CIL push will require. Record this into an
atomic variable in the CIL. Then add a byte counter to the log
ticket that records exactly how much iclog header space has been
reserved in this ticket by xfs_log_calc_unit_res(). This tells us
exactly how much space we can steal from the ticket at transaction
commit time.

Now, at transaction commit time, we can check if the CIL has a full
iclog header reservation and, if not, steal the entire reservation
the current ticket holds for iclog headers. This minimises the
number of times we need to do atomic operations in the fast path,
but still guarantees we get all the reservations we need.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-02 02:12:52 +10:00
Dave Chinner
12380d237b xfs: lift init CIL reservation out of xc_cil_lock
The xc_cil_lock is the most highly contended lock in XFS now. To
start the process of getting rid of it, lift the initial reservation
of the CIL log space out from under the xc_cil_lock.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-02 02:11:52 +10:00
Dave Chinner
88591e7f06 xfs: use the CIL space used counter for emptiness checks
In the next patches we are going to make the CIL list itself
per-cpu, and so we cannot use list_empty() to check is the list is
empty. Replace the list_empty() checks with a flag in the CIL to
indicate we have committed at least one transaction to the CIL and
hence the CIL is not empty.

We need this flag to be an atomic so that we can clear it without
holding any locks in the commit fast path, but we also need to be
careful to avoid atomic operations in the fast path. Hence we use
the fact that test_bit() is not an atomic op to first check if the
flag is set and then run the atomic test_and_clear_bit() operation
to clear it and steal the initial unit reservation for the CIL
context checkpoint.

When we are switching to a new context in a push, we place the
setting of the XLOG_CIL_EMPTY flag under the xc_push_lock. THis
allows all the other places that need to check whether the CIL is
empty to use test_bit() and still be serialised correctly with the
CIL context swaps that set the bit.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-02 02:10:52 +10:00
Darrick J. Wong
7561cea5db xfs: prevent a UAF when log IO errors race with unmount
KASAN reported the following use after free bug when running
generic/475:

 XFS (dm-0): Mounting V5 Filesystem
 XFS (dm-0): Starting recovery (logdev: internal)
 XFS (dm-0): Ending recovery (logdev: internal)
 Buffer I/O error on dev dm-0, logical block 20639616, async page read
 Buffer I/O error on dev dm-0, logical block 20639617, async page read
 XFS (dm-0): log I/O error -5
 XFS (dm-0): Filesystem has been shut down due to log error (0x2).
 XFS (dm-0): Unmounting Filesystem
 XFS (dm-0): Please unmount the filesystem and rectify the problem(s).
 ==================================================================
 BUG: KASAN: use-after-free in do_raw_spin_lock+0x246/0x270
 Read of size 4 at addr ffff888109dd84c4 by task 3:1H/136

 CPU: 3 PID: 136 Comm: 3:1H Not tainted 5.19.0-rc4-xfsx #rc4 8e53ab5ad0fddeb31cee5e7063ff9c361915a9c4
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
 Workqueue: xfs-log/dm-0 xlog_ioend_work [xfs]
 Call Trace:
  <TASK>
  dump_stack_lvl+0x34/0x44
  print_report.cold+0x2b8/0x661
  ? do_raw_spin_lock+0x246/0x270
  kasan_report+0xab/0x120
  ? do_raw_spin_lock+0x246/0x270
  do_raw_spin_lock+0x246/0x270
  ? rwlock_bug.part.0+0x90/0x90
  xlog_force_shutdown+0xf6/0x370 [xfs 4ad76ae0d6add7e8183a553e624c31e9ed567318]
  xlog_ioend_work+0x100/0x190 [xfs 4ad76ae0d6add7e8183a553e624c31e9ed567318]
  process_one_work+0x672/0x1040
  worker_thread+0x59b/0xec0
  ? __kthread_parkme+0xc6/0x1f0
  ? process_one_work+0x1040/0x1040
  ? process_one_work+0x1040/0x1040
  kthread+0x29e/0x340
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>

 Allocated by task 154099:
  kasan_save_stack+0x1e/0x40
  __kasan_kmalloc+0x81/0xa0
  kmem_alloc+0x8d/0x2e0 [xfs]
  xlog_cil_init+0x1f/0x540 [xfs]
  xlog_alloc_log+0xd1e/0x1260 [xfs]
  xfs_log_mount+0xba/0x640 [xfs]
  xfs_mountfs+0xf2b/0x1d00 [xfs]
  xfs_fs_fill_super+0x10af/0x1910 [xfs]
  get_tree_bdev+0x383/0x670
  vfs_get_tree+0x7d/0x240
  path_mount+0xdb7/0x1890
  __x64_sys_mount+0x1fa/0x270
  do_syscall_64+0x2b/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

 Freed by task 154151:
  kasan_save_stack+0x1e/0x40
  kasan_set_track+0x21/0x30
  kasan_set_free_info+0x20/0x30
  ____kasan_slab_free+0x110/0x190
  slab_free_freelist_hook+0xab/0x180
  kfree+0xbc/0x310
  xlog_dealloc_log+0x1b/0x2b0 [xfs]
  xfs_unmountfs+0x119/0x200 [xfs]
  xfs_fs_put_super+0x6e/0x2e0 [xfs]
  generic_shutdown_super+0x12b/0x3a0
  kill_block_super+0x95/0xd0
  deactivate_locked_super+0x80/0x130
  cleanup_mnt+0x329/0x4d0
  task_work_run+0xc5/0x160
  exit_to_user_mode_prepare+0xd4/0xe0
  syscall_exit_to_user_mode+0x1d/0x40
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

This appears to be a race between the unmount process, which frees the
CIL and waits for in-flight iclog IO; and the iclog IO completion.  When
generic/475 runs, it starts fsstress in the background, waits a few
seconds, and substitutes a dm-error device to simulate a disk falling
out of a machine.  If the fsstress encounters EIO on a pure data write,
it will exit but the filesystem will still be online.

The next thing the test does is unmount the filesystem, which tries to
clean the log, free the CIL, and wait for iclog IO completion.  If an
iclog was being written when the dm-error switch occurred, it can race
with log unmounting as follows:

Thread 1				Thread 2

					xfs_log_unmount
					xfs_log_clean
					xfs_log_quiesce
xlog_ioend_work
<observe error>
xlog_force_shutdown
test_and_set_bit(XLOG_IOERROR)
					xfs_log_force
					<log is shut down, nop>
					xfs_log_umount_write
					<log is shut down, nop>
					xlog_dealloc_log
					xlog_cil_destroy
					<wait for iclogs>
spin_lock(&log->l_cilp->xc_push_lock)
<KABOOM>

Therefore, free the CIL after waiting for the iclogs to complete.  I
/think/ this race has existed for quite a few years now, though I don't
remember the ~2014 era logging code well enough to know if it was a real
threat then or if the actual race was exposed only more recently.

Fixes: ac983517ec59 ("xfs: don't sleep in xlog_cil_force_lsn on shutdown")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-01 09:09:52 -07:00
Darrick J. Wong
8944c6fb8a xfs: dont treat rt extents beyond EOF as eofblocks to be cleared
On a system with a realtime volume and a 28k realtime extent,
generic/491 fails because the test opens a file on a frozen filesystem
and closing it causes xfs_release -> xfs_can_free_eofblocks to
mistakenly think that the the blocks of the realtime extent beyond EOF
are posteof blocks to be freed.  Realtime extents cannot be partially
unmapped, so this is pointless.  Worse yet, this triggers posteof
cleanup, which stalls on a transaction allocation, which is why the test
fails.

Teach the predicate to account for realtime extents properly.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-06-29 08:47:56 -07:00
Darrick J. Wong
e53bcffad0 xfs: don't hold xattr leaf buffers across transaction rolls
Now that we've established (again!) that empty xattr leaf buffers are
ok, we no longer need to bhold them to transactions when we're creating
new leaf blocks.  Get rid of the entire mechanism, which should simplify
the xattr code quite a bit.

The original justification for using bhold here was to prevent the AIL
from trying to write the empty leaf block into the fs during the brief
time that we release the buffer lock.  The reason for /that/ was to
prevent recovery from tripping over the empty ondisk block.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-29 08:47:56 -07:00
Darrick J. Wong
7be3bd8856 xfs: empty xattr leaf header blocks are not corruption
TLDR: Revert commit 51e6104fdb95 ("xfs: detect empty attr leaf blocks in
xfs_attr3_leaf_verify") because it was wrong.

Every now and then we get a corruption report from the kernel or
xfs_repair about empty leaf blocks in the extended attribute structure.
We've long thought that these shouldn't be possible, but prior to 5.18
one would shake loose in the recoveryloop fstests about once a month.

A new addition to the xattr leaf block verifier in 5.19-rc1 makes this
happen every 7 minutes on my testing cloud.  I added a ton of logging to
detect any time we set the header count on an xattr leaf block to zero.
This produced the following dmesg output on generic/388:

XFS (sda4): ino 0x21fcbaf leaf 0x129bf78 hdcount==0!
Call Trace:
 <TASK>
 dump_stack_lvl+0x34/0x44
 xfs_attr3_leaf_create+0x187/0x230
 xfs_attr_shortform_to_leaf+0xd1/0x2f0
 xfs_attr_set_iter+0x73e/0xa90
 xfs_xattri_finish_update+0x45/0x80
 xfs_attr_finish_item+0x1b/0xd0
 xfs_defer_finish_noroll+0x19c/0x770
 __xfs_trans_commit+0x153/0x3e0
 xfs_attr_set+0x36b/0x740
 xfs_xattr_set+0x89/0xd0
 __vfs_setxattr+0x67/0x80
 __vfs_setxattr_noperm+0x6e/0x120
 vfs_setxattr+0x97/0x180
 setxattr+0x88/0xa0
 path_setxattr+0xc3/0xe0
 __x64_sys_setxattr+0x27/0x30
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

So now we know that someone is creating empty xattr leaf blocks as part
of converting a sf xattr structure into a leaf xattr structure.  The
conversion routine logs any existing sf attributes in the same
transaction that creates the leaf block, so we know this is a setxattr
to a file that has no attributes at all.

Next, g/388 calls the shutdown ioctl and cycles the mount to trigger log
recovery.  I also augmented buffer item recovery to call ->verify_struct
on any attr leaf blocks and complain if it finds a failure:

XFS (sda4): Unmounting Filesystem
XFS (sda4): Mounting V5 Filesystem
XFS (sda4): Starting recovery (logdev: internal)
XFS (sda4): xattr leaf daddr 0x129bf78 hdrcount == 0!
Call Trace:
 <TASK>
 dump_stack_lvl+0x34/0x44
 xfs_attr3_leaf_verify+0x3b8/0x420
 xlog_recover_buf_commit_pass2+0x60a/0x6c0
 xlog_recover_items_pass2+0x4e/0xc0
 xlog_recover_commit_trans+0x33c/0x350
 xlog_recovery_process_trans+0xa5/0xe0
 xlog_recover_process_data+0x8d/0x140
 xlog_do_recovery_pass+0x19b/0x720
 xlog_do_log_recovery+0x62/0xc0
 xlog_do_recover+0x33/0x1d0
 xlog_recover+0xda/0x190
 xfs_log_mount+0x14c/0x360
 xfs_mountfs+0x517/0xa60
 xfs_fs_fill_super+0x6bc/0x950
 get_tree_bdev+0x175/0x280
 vfs_get_tree+0x1a/0x80
 path_mount+0x6f5/0xaa0
 __x64_sys_mount+0x103/0x140
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fc61e241eae

And a moment later, the _delwri_submit of the recovered buffers trips
the same verifier and recovery fails:

XFS (sda4): Metadata corruption detected at xfs_attr3_leaf_verify+0x393/0x420 [xfs], xfs_attr3_leaf block 0x129bf78
XFS (sda4): Unmount and run xfs_repair
XFS (sda4): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 00 00 00 00  ........;.......
00000010: 00 00 00 00 01 29 bf 78 00 00 00 00 00 00 00 00  .....).x........
00000020: a5 1b d0 02 b2 9a 49 df 8e 9c fb 8d f8 31 3e 9d  ......I......1>.
00000030: 00 00 00 00 02 1f cb af 00 00 00 00 10 00 00 00  ................
00000040: 00 50 0f b0 00 00 00 00 00 00 00 00 00 00 00 00  .P..............
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
XFS (sda4): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply+0x37f/0x3b0 [xfs] (fs/xfs/xfs_buf.c:1518).  Shutting down filesystem.
XFS (sda4): Please unmount the filesystem and rectify the problem(s)
XFS (sda4): log mount/recovery failed: error -117
XFS (sda4): log mount failed

I think I see what's going on here -- setxattr is racing with something
that shuts down the filesystem:

Thread 1				Thread 2
--------				--------
xfs_attr_sf_addname
xfs_attr_shortform_to_leaf
<create empty leaf>
xfs_trans_bhold(leaf)
xattri_dela_state = XFS_DAS_LEAF_ADD
<roll transaction>
					<flush log>
					<shut down filesystem>
xfs_trans_bhold_release(leaf)
<discover fs is dead, bail>

Thread 3
--------
<cycle mount, start recovery>
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
<replay empty leaf buffer from recovered buf item>
xfs_buf_delwri_queue(leaf)
xfs_buf_delwri_submit
_xfs_buf_ioapply(leaf)
xfs_attr3_leaf_write_verify
<trip over empty leaf buffer>
<fail recovery>

As you can see, the bhold keeps the leaf buffer locked and thus prevents
the *AIL* from tripping over the ichdr.count==0 check in the write
verifier.  Unfortunately, it doesn't prevent the log from getting
flushed to disk, which sets up log recovery to fail.

So.  It's clear that the kernel has always had the ability to persist
attr leaf blocks with ichdr.count==0, which means that it's part of the
ondisk format now.

Unfortunately, this check has been added and removed multiple times
throughout history.  It first appeared in[1] kernel 3.10 as part of the
early V5 format patches.  The check was later discovered to break log
recovery and hence disabled[2] during log recovery in kernel 4.10.
Simultaneously, the check was added[3] to xfs_repair 4.9.0 to try to
weed out the empty leaf blocks.  This was still not correct because log
recovery would recover an empty attr leaf block successfully only for
regular xattr operations to trip over the empty block during of the
block during regular operation.  Therefore, the check was removed
entirely[4] in kernel 5.7 but removal of the xfs_repair check was
forgotten.  The continued complaints from xfs_repair lead to us
mistakenly re-adding[5] the verifier check for kernel 5.19.  Remove it
once again.

[1] 517c22207b04 ("xfs: add CRCs to attr leaf blocks")
[2] 2e1d23370e75 ("xfs: ignore leaf attr ichdr.count in verifier
                   during log replay")
[3] f7140161 ("xfs_repair: junk leaf attribute if count == 0")
[4] f28cef9e4dac ("xfs: don't fail verifier on empty attr3 leaf
                   block")
[5] 51e6104fdb95 ("xfs: detect empty attr leaf blocks in
                   xfs_attr3_leaf_verify")

Looking at the rest of the xattr code, it seems that files with empty
leaf blocks behave as expected -- listxattr reports no attributes;
getxattr on any xattr returns nothing as expected; removexattr does
nothing; and setxattr can add attributes just fine.

Original-bug: 517c22207b04 ("xfs: add CRCs to attr leaf blocks")
Still-not-fixed-by: 2e1d23370e75 ("xfs: ignore leaf attr ichdr.count in verifier during log replay")
Removed-in: f28cef9e4dac ("xfs: don't fail verifier on empty attr3 leaf block")
Fixes: 51e6104fdb95 ("xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-06-29 08:47:56 -07:00
Darrick J. Wong
f94e08b602 xfs: clean up the end of xfs_attri_item_recover
The end of this function could use some cleanup -- the EAGAIN
conditionals make it harder to figure out what's going on with the
disposal of xattri_leaf_bp, and the dual error/ret variables aren't
needed.  Turn the EAGAIN case into a separate block documenting all the
subtleties of recovering in the middle of an xattr update chain, which
makes the rest of the prologue much simpler.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-06-26 14:43:28 -07:00
Darrick J. Wong
b822ea17fd xfs: always free xattri_leaf_bp when cancelling a deferred op
While running the following fstest with logged xattrs DISabled, I
noticed the following:

# FSSTRESS_AVOID="-z -f unlink=1 -f rmdir=1 -f creat=2 -f mkdir=2 -f
getfattr=3 -f listfattr=3 -f attr_remove=4 -f removefattr=4 -f
setfattr=20 -f attr_set=60" ./check generic/475

INFO: task u9:1:40 blocked for more than 61 seconds.
      Tainted: G           O      5.19.0-rc2-djwx #rc2
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:u9:1            state:D stack:12872 pid:   40 ppid:     2 flags:0x00004000
Workqueue: xfs-cil/dm-0 xlog_cil_push_work [xfs]
Call Trace:
 <TASK>
 __schedule+0x2db/0x1110
 schedule+0x58/0xc0
 schedule_timeout+0x115/0x160
 __down_common+0x126/0x210
 down+0x54/0x70
 xfs_buf_lock+0x2d/0xe0 [xfs 0532c1cb1d67dd81d15cb79ac6e415c8dec58f73]
 xfs_buf_item_unpin+0x227/0x3a0 [xfs 0532c1cb1d67dd81d15cb79ac6e415c8dec58f73]
 xfs_trans_committed_bulk+0x18e/0x320 [xfs 0532c1cb1d67dd81d15cb79ac6e415c8dec58f73]
 xlog_cil_committed+0x2ea/0x360 [xfs 0532c1cb1d67dd81d15cb79ac6e415c8dec58f73]
 xlog_cil_push_work+0x60f/0x690 [xfs 0532c1cb1d67dd81d15cb79ac6e415c8dec58f73]
 process_one_work+0x1df/0x3c0
 worker_thread+0x53/0x3b0
 kthread+0xea/0x110
 ret_from_fork+0x1f/0x30
 </TASK>

This appears to be the result of shortform_to_leaf creating a new leaf
buffer as part of adding an xattr to a file.  The new leaf buffer is
held and attached to the xfs_attr_intent structure, but then the
filesystem shuts down.  Instead of the usual path (which adds the attr
to the held leaf buffer which releases the hold), we instead cancel the
entire deferred operation.

Unfortunately, xfs_attr_cancel_item doesn't release any attached leaf
buffers, so we leak the locked buffer.  The CIL cannot do anything
about that, and hangs.  Fix this by teaching it to release leaf buffers,
and make XFS a little more careful about not leaving a dangling
reference.

The prologue of xfs_attri_item_recover is (in this author's opinion) a
little hard to figure out, so I'll clean that up in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-06-26 14:43:28 -07:00
Kaixu Xia
82af880639 xfs: use invalidate_lock to check the state of mmap_lock
We should use invalidate_lock and XFS_MMAPLOCK_SHARED to check the state
of mmap_lock rw_semaphore in xfs_isilocked(), rather than i_rwsem and
XFS_IOLOCK_SHARED.

Fixes: 2433480a7e1d ("xfs: Convert to use invalidate_lock")
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-26 14:43:28 -07:00
Kaixu Xia
ca76a761ea xfs: factor out the common lock flags assert
There are similar lock flags assert in xfs_ilock(), xfs_ilock_nowait(),
xfs_iunlock(), thus we can factor it out into a helper that is clear.

Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-26 14:43:28 -07:00
Christian Brauner
b27c82e129
attr: port attribute changes to new types
Now that we introduced new infrastructure to increase the type safety
for filesystems supporting idmapped mounts port the first part of the
vfs over to them.

This ports the attribute changes codepaths to rely on the new better
helpers using a dedicated type.

Before this change we used to take a shortcut and place the actual
values that would be written to inode->i_{g,u}id into struct iattr. This
had the advantage that we moved idmappings mostly out of the picture
early on but it made reasoning about changes more difficult than it
should be.

The filesystem was never explicitly told that it dealt with an idmapped
mount. The transition to the value that needed to be stored in
inode->i_{g,u}id appeared way too early and increased the probability of
bugs in various codepaths.

We know place the same value in struct iattr no matter if this is an
idmapped mount or not. The vfs will only deal with type safe
vfs{g,u}id_t. This makes it massively safer to perform permission checks
as the type will tell us what checks we need to perform and what helpers
we need to use.

Fileystems raising FS_ALLOW_IDMAP can't simply write ia_vfs{g,u}id to
inode->i_{g,u}id since they are different types. Instead they need to
use the dedicated vfs{g,u}id_to_k{g,u}id() helpers that map the
vfs{g,u}id into the filesystem.

The other nice effect is that filesystems like overlayfs don't need to
care about idmappings explicitly anymore and can simply set up struct
iattr accordingly directly.

Link: https://lore.kernel.org/lkml/CAHk-=win6+ahs1EwLkcq8apqLi_1wXFWbrPf340zYEhObpz4jA@mail.gmail.com [1]
Link: https://lore.kernel.org/r/20220621141454.2914719-9-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-06-26 18:18:56 +02:00
Christian Brauner
35faf3109a
fs: port to iattr ownership update helpers
Earlier we introduced new helpers to abstract ownership update and
remove code duplication. This converts all filesystems supporting
idmapped mounts to make use of these new helpers.

For now we always pass the initial idmapping which makes the idmapping
functions these helpers call nops.

This is done because we currently always pass the actual value to be
written to i_{g,u}id via struct iattr. While this allowed us to treat
the {g,u}id values in struct iattr as values that can be directly
written to inode->i_{g,u}id it also increases the potential for
confusion for filesystems.

Now that we are have dedicated types to prevent this confusion we will
ultimately only map the value from the idmapped mount into a filesystem
value that can be written to inode->i_{g,u}id when the filesystem
actually updates the inode. So pass down the initial idmapping until we
finished that conversion at which point we pass down the mount's
idmapping.

No functional changes intended.

Link: https://lore.kernel.org/r/20220621141454.2914719-6-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-06-26 18:18:55 +02:00
Dave Chinner
5e672cd69f xfs: introduce xfs_inodegc_push()
The current blocking mechanism for pushing the inodegc queue out to
disk can result in systems becoming unusable when there is a long
running inodegc operation. This is because the statfs()
implementation currently issues a blocking flush of the inodegc
queue and a significant number of common system utilities will call
statfs() to discover something about the underlying filesystem.

This can result in userspace operations getting stuck on inodegc
progress, and when trying to remove a heavily reflinked file on slow
storage with a full journal, this can result in delays measuring in
hours.

Avoid this problem by adding "push" function that expedites the
flushing of the inodegc queue, but doesn't wait for it to complete.

Convert xfs_fs_statfs() and xfs_qm_scall_getquota() to use this
mechanism so they don't block but still ensure that queued
operations are expedited.

Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Reported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: fix _getquota_next to use _inodegc_push too]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-23 13:34:38 -07:00
Dave Chinner
7cf2b0f961 xfs: bound maximum wait time for inodegc work
Currently inodegc work can sit queued on the per-cpu queue until
the workqueue is either flushed of the queue reaches a depth that
triggers work queuing (and later throttling). This means that we
could queue work that waits for a long time for some other event to
trigger flushing.

Hence instead of just queueing work at a specific depth, use a
delayed work that queues the work at a bound time. We can still
schedule the work immediately at a given depth, but we no long need
to worry about leaving a number of items on the list that won't get
processed until external events prevail.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-23 13:34:38 -07:00
Darrick J. Wong
e89ab76d7e xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
It is vitally important that we preserve the state of the NREXT64 inode
flag when we're changing the other flags2 fields.

Fixes: 9b7d16e34bbe ("xfs: Introduce XFS_DIFLAG2_NREXT64 and associated helpers")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2022-06-15 23:13:33 -07:00
Darrick J. Wong
10930b254d xfs: fix variable state usage
The variable @args is fed to a tracepoint, and that's the only place
it's used.  This is fine for the kernel, but for userspace, tracepoints
are #define'd out of existence, which results in this warning on gcc
11.2:

xfs_attr.c: In function ‘xfs_attr_node_try_addname’:
xfs_attr.c:1440:42: warning: unused variable ‘args’ [-Wunused-variable]
 1440 |         struct xfs_da_args              *args = attr->xattri_da_args;
      |                                          ^~~~

Clean this up.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2022-06-15 23:13:32 -07:00