IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
* arm64/for-next/perf:
perf: hisi: Fix use-after-free when register pmu fails
drivers/perf: hisi_pcie: Initialize event->cpu only on success
drivers/perf: hisi_pcie: Check the type first in pmu::event_init()
perf/arm-cmn: Enable per-DTC counter allocation
perf/arm-cmn: Rework DTC counters (again)
perf/arm-cmn: Fix DTC domain detection
drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init()
drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
drivers/perf: xgene: Use device_get_match_data()
perf/amlogic: add missing MODULE_DEVICE_TABLE
docs/perf: Add ampere_cspmu to toctree to fix a build warning
perf: arm_cspmu: ampere_cspmu: Add support for Ampere SoC PMU
perf: arm_cspmu: Support implementation specific validation
perf: arm_cspmu: Support implementation specific filters
perf: arm_cspmu: Split 64-bit write to 32-bit writes
perf: arm_cspmu: Separate Arm and vendor module
* for-next/sve-remove-pseudo-regs:
: arm64/fpsimd: Remove the vector length pseudo registers
arm64/sve: Remove SMCR pseudo register from cpufeature code
arm64/sve: Remove ZCR pseudo register from cpufeature code
* for-next/backtrace-ipi:
: Add IPI for backtraces/kgdb, use NMI
arm64: smp: Don't directly call arch_smp_send_reschedule() for wakeup
arm64: smp: avoid NMI IPIs with broken MediaTek FW
arm64: smp: Mark IPI globals as __ro_after_init
arm64: kgdb: Implement kgdb_roundup_cpus() to enable pseudo-NMI roundup
arm64: smp: IPI_CPU_STOP and IPI_CPU_CRASH_STOP should try for NMI
arm64: smp: Add arch support for backtrace using pseudo-NMI
arm64: smp: Remove dedicated wakeup IPI
arm64: idle: Tag the arm64 idle functions as __cpuidle
irqchip/gic-v3: Enable support for SGIs to act as NMIs
* for-next/kselftest:
: Various arm64 kselftest updates
kselftest/arm64: Validate SVCR in streaming SVE stress test
* for-next/misc:
: Miscellaneous patches
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n
arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper
clocksource/drivers/arm_arch_timer: limit XGene-1 workaround
arm64: Remove system_uses_lse_atomics()
arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused
arm64/mm: Hoist synchronization out of set_ptes() loop
arm64: swiotlb: Reduce the default size if no ZONE_DMA bouncing needed
* for-next/cpufeat-display-cores:
: arm64 cpufeature display enabled cores
arm64: cpufeature: Change DBM to display enabled cores
arm64: cpufeature: Display the set of cores with a feature
Now that we have the ability to display the list of cores
with a feature when its selectivly enabled, lets convert
DBM to use that as well.
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/r/20231017052322.1211099-3-jeremy.linton@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The AMU feature can be enabled on a subset of the cores in a system.
Because of that, it prints a message for each core as it is detected.
This becomes tedious when there are hundreds of cores. Instead, for
CPU features which can be enabled on a subset of the present cores,
lets wait until update_cpu_capabilities() and print the subset of cores
the feature was enabled on.
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Tested-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Punit Agrawal <punit.agrawal@bytedance.com>
Tested-by: Punit Agrawal <punit.agrawal@bytedance.com>
Link: https://lore.kernel.org/r/20231017052322.1211099-2-jeremy.linton@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For reasons that are not currently apparent during cpufeature enumeration
we maintain a pseudo register for SMCR which records the maximum supported
vector length using the value that would be written to SMCR_EL1.LEN to
configure it. This is not exposed to userspace and is not sufficient for
detecting unsupportable configurations, we need the more detailed checks in
vec_update_vq_map() for that since we can't cope with missing vector
lengths on late CPUs and KVM requires an exactly matching set of supported
vector lengths as EL1 can enumerate VLs directly with the hardware.
Remove the code, replacing the usage in sme_setup() with a query of the
vq_map.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230913-arm64-vec-len-cpufeature-v1-2-cc69b0600a8a@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For reasons that are not currently apparent during cpufeature enumeration
we maintain a pseudo register for ZCR which records the maximum supported
vector length using the value that would be written to ZCR_EL1.LEN to
configure it. This is not exposed to userspace and is not sufficient for
detecting unsupportable configurations, we need the more detailed checks in
vec_update_vq_map() for that since we can't cope with missing vector
lengths on late CPUs and KVM requires an exactly matching set of supported
vector lengths as EL1 can enumerate VLs directly with the hardware.
Remove the code, replacing the usage in sve_setup() with a query of the
vq_map.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230913-arm64-vec-len-cpufeature-v1-1-cc69b0600a8a@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ClearBHB support is indicated by the CLRBHB field in ID_AA64ISAR2_EL1.
Following some refactoring the kernel incorrectly checks the BC field
instead. Fix the detection to use the right field.
(Note: The original ClearBHB support had it as FTR_HIGHER_SAFE, but this
patch uses FTR_LOWER_SAFE, which seems more correct.)
Also fix the detection of BC (hinted conditional branches) to use
FTR_LOWER_SAFE, so that it is not reported on mismatched systems.
Fixes: 356137e68a9f ("arm64/sysreg: Make BHB clear feature defines match the architecture")
Fixes: 8fcc8285c0e3 ("arm64/sysreg: Convert ID_AA64ISAR2_EL1 to automatic generation")
Cc: stable@vger.kernel.org
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230912133429.2606875-1-kristina.martsenko@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* Clean up vCPU targets, always returning generic v8 as the preferred target
* Trap forwarding infrastructure for nested virtualization (used for traps
that are taken from an L2 guest and are needed by the L1 hypervisor)
* FEAT_TLBIRANGE support to only invalidate specific ranges of addresses
when collapsing a table PTE to a block PTE. This avoids that the guest
refills the TLBs again for addresses that aren't covered by the table PTE.
* Fix vPMU issues related to handling of PMUver.
* Don't unnecessary align non-stack allocations in the EL2 VA space
* Drop HCR_VIRT_EXCP_MASK, which was never used...
* Don't use smp_processor_id() in kvm_arch_vcpu_load(),
but the cpu parameter instead
* Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
* Remove prototypes without implementations
RISC-V:
* Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
* Added ONE_REG interface for SATP mode
* Added ONE_REG interface to enable/disable multiple ISA extensions
* Improved error codes returned by ONE_REG interfaces
* Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
* Added get-reg-list selftest for KVM RISC-V
s390:
* PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
* Guest debug fixes (Ilya)
x86:
* Clean up KVM's handling of Intel architectural events
* Intel bugfixes
* Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug
registers and generate/handle #DBs
* Clean up LBR virtualization code
* Fix a bug where KVM fails to set the target pCPU during an IRTE update
* Fix fatal bugs in SEV-ES intrahost migration
* Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
* Retry APIC map recalculation if a vCPU is added/enabled
* Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
* Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR cannot diverge from the default when TSC scaling is disabled
up related code
* Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
* Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
* Fix KVM's handling of !visible guest roots to avoid premature triple fault
injection
* Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface
that is needed by external users (currently only KVMGT), and fix a variety
of issues in the process
This last item had a silly one-character bug in the topic branch that
was sent to me. Because it caused pretty bad selftest failures in
some configurations, I decided to squash in the fix. So, while the
exact commit ids haven't been in linux-next, the code has (from the
kvm-x86 tree).
Generic:
* Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
action specific data without needing to constantly update the main handlers.
* Drop unused function declarations
Selftests:
* Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
* Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
* Clean up the PMU event filter test and add new testcases
* Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1
CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj
5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM
v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n
hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu
RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g==
=W+4p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
In order to allow us to have shared code for managing fine grained traps
for KVM guests add it as a detected feature rather than relying on it
being a dependency of other features.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
[maz: converted to ARM64_CPUID_FIELDS()]
Link: https://lore.kernel.org/r/20230301-kvm-arm64-fgt-v4-1-1bf8d235ac1f@kernel.org
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230815183903.2735724-10-maz@kernel.org
Add a HWCAP for FEAT_HBC, so that userspace can make a decision on using
this feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230804143746.3900803-2-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The recently added Enhanced Virtualization Traps cpufeature does not use
the ARM64_CPUID_FIELDS() helper, convert it to do so. No functional
change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Zenghui Yu <zenghui.yu@linux.dev>
Link: https://lore.kernel.org/r/20230718-arm64-evt-cpuid-helper-v1-1-68375d1e6b92@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
* arm64/for-next/perf:
docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst
docs: perf: Add new description for HiSilicon UC PMU
drivers/perf: hisi: Add support for HiSilicon UC PMU driver
drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver
perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE
perf/arm-cmn: Add sysfs identifier
perf/arm-cmn: Revamp model detection
perf/arm_dmc620: Add cpumask
dt-bindings: perf: fsl-imx-ddr: Add i.MX93 compatible
drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driver
perf/arm_cspmu: Decouple APMT dependency
perf/arm_cspmu: Clean up ACPI dependency
ACPI/APMT: Don't register invalid resource
perf/arm_cspmu: Fix event attribute type
perf: arm_cspmu: Set irq affinitiy only if overflow interrupt is used
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
drivers/perf: apple_m1: Force 63bit counters for M2 CPUs
perf/arm-cmn: Fix DTC reset
perf: qcom_l2_pmu: Make l2_cache_pmu_probe_cluster() more robust
perf/arm-cci: Slightly optimize cci_pmu_sync_counters()
* for-next/kpti:
: Simplify KPTI trampoline exit code
arm64: entry: Simplify tramp_alias macro and tramp_exit routine
arm64: entry: Preserve/restore X29 even for compat tasks
* for-next/missing-proto-warn:
: Address -Wmissing-prototype warnings
arm64: add alt_cb_patch_nops prototype
arm64: move early_brk64 prototype to header
arm64: signal: include asm/exception.h
arm64: kaslr: add kaslr_early_init() declaration
arm64: flush: include linux/libnvdimm.h
arm64: module-plts: inline linux/moduleloader.h
arm64: hide unused is_valid_bugaddr()
arm64: efi: add efi_handle_corrupted_x18 prototype
arm64: cpuidle: fix #ifdef for acpi functions
arm64: kvm: add prototypes for functions called in asm
arm64: spectre: provide prototypes for internal functions
arm64: move cpu_suspend_set_dbg_restorer() prototype to header
arm64: avoid prototype warnings for syscalls
arm64: add scs_patch_vmlinux prototype
arm64: xor-neon: mark xor_arm64_neon_*() static
* for-next/iss2-decode:
: Add decode of ISS2 to data abort reports
arm64/esr: Add decode of ISS2 to data abort reporting
arm64/esr: Use GENMASK() for the ISS mask
* for-next/kselftest:
: Various arm64 kselftest improvements
kselftest/arm64: Log signal code and address for unexpected signals
kselftest/arm64: Add a smoke test for ptracing hardware break/watch points
* for-next/misc:
: Miscellaneous patches
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
arm64: hibernate: remove WARN_ON in save_processor_state
arm64/fpsimd: Exit streaming mode when flushing tasks
arm64: mm: fix VA-range sanity check
arm64/mm: remove now-superfluous ISBs from TTBR writes
arm64: consolidate rox page protection logic
arm64: set __exception_irq_entry with __irq_entry as a default
arm64: syscall: unmask DAIF for tracing status
arm64: lockdep: enable checks for held locks when returning to userspace
arm64/cpucaps: increase string width to properly format cpucaps.h
arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature
* for-next/feat_mops:
: Support for ARMv8.8 memcpy instructions in userspace
kselftest/arm64: add MOPS to hwcap test
arm64: mops: allow disabling MOPS from the kernel command line
arm64: mops: detect and enable FEAT_MOPS
arm64: mops: handle single stepping after MOPS exception
arm64: mops: handle MOPS exceptions
KVM: arm64: hide MOPS from guests
arm64: mops: don't disable host MOPS instructions from EL2
arm64: mops: document boot requirements for MOPS
KVM: arm64: switch HCRX_EL2 between host and guest
arm64: cpufeature: detect FEAT_HCX
KVM: arm64: initialize HCRX_EL2
* for-next/module-alloc:
: Make the arm64 module allocation code more robust (clean-up, VA range expansion)
arm64: module: rework module VA range selection
arm64: module: mandate MODULE_PLTS
arm64: module: move module randomization to module.c
arm64: kaslr: split kaslr/module initialization
arm64: kasan: remove !KASAN_VMALLOC remnants
arm64: module: remove old !KASAN_VMALLOC logic
* for-next/sysreg: (21 commits)
: More sysreg conversions to automatic generation
arm64/sysreg: Convert TRBIDR_EL1 register to automatic generation
arm64/sysreg: Convert TRBTRG_EL1 register to automatic generation
arm64/sysreg: Convert TRBMAR_EL1 register to automatic generation
arm64/sysreg: Convert TRBSR_EL1 register to automatic generation
arm64/sysreg: Convert TRBBASER_EL1 register to automatic generation
arm64/sysreg: Convert TRBPTR_EL1 register to automatic generation
arm64/sysreg: Convert TRBLIMITR_EL1 register to automatic generation
arm64/sysreg: Rename TRBIDR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBTRG_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBMAR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBSR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBBASER_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBPTR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBLIMITR_EL1 fields per auto-gen tools format
arm64/sysreg: Convert OSECCR_EL1 to automatic generation
arm64/sysreg: Convert OSDTRTX_EL1 to automatic generation
arm64/sysreg: Convert OSDTRRX_EL1 to automatic generation
arm64/sysreg: Convert OSLAR_EL1 to automatic generation
arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1
arm64/sysreg: Convert MDSCR_EL1 to automatic register generation
...
* for-next/cpucap:
: arm64 cpucap clean-up
arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities()
arm64: cpufeature: use cpucap naming
arm64: alternatives: use cpucap naming
arm64: standardise cpucap bitmap names
* for-next/acpi:
: Various arm64-related ACPI patches
ACPI: bus: Consolidate all arm specific initialisation into acpi_arm_init()
* for-next/kdump:
: Simplify the crashkernel reservation behaviour of crashkernel=X,high on arm64
arm64: add kdump.rst into index.rst
Documentation: add kdump.rst to present crashkernel reservation on arm64
arm64: kdump: simplify the reservation behaviour of crashkernel=,high
* for-next/acpi-doc:
: Update ACPI documentation for Arm systems
Documentation/arm64: Update ACPI tables from BBR
Documentation/arm64: Update references in arm-acpi
Documentation/arm64: Update ARM and arch reference
* for-next/doc:
: arm64 documentation updates
Documentation/arm64: Add ptdump documentation
* for-next/tpidr2-fix:
: Fix the TPIDR2_EL0 register restoring on sigreturn
kselftest/arm64: Add a test case for TPIDR2 restore
arm64/signal: Restore TPIDR2 register rather than memory state
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Avoid trapping CTR_EL0 on systems with FEAT_EVT, as the register is
: commonly read by userspace
:
: - Make use of FEAT_BTI at hyp stage-1, setting the Guard Page bit to 1
: for executable mappings
:
: - Use a separate set of pointer authentication keys for the hypervisor
: when running in protected mode (i.e. pKVM)
:
: - Plug a few holes in timer initialization where KVM fails to free the
: timer IRQ(s)
KVM: arm64: Use different pointer authentication keys for pKVM
KVM: arm64: timers: Fix resource leaks in kvm_timer_hyp_init()
KVM: arm64: Use BTI for nvhe
KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/configurable-id-regs:
: Configurable ID register infrastructure, courtesy of Jing Zhang
:
: Create generalized infrastructure for allowing userspace to select the
: supported feature set for a VM, so long as the feature set is a subset
: of what hardware + KVM allows. This does not add any new features that
: are user-configurable, and instead focuses on the necessary refactoring
: to enable future work.
:
: As a consequence of the series, feature asymmetry is now deliberately
: disallowed for KVM. It is unlikely that VMMs ever configured VMs with
: asymmetry, nor does it align with the kernel's overall stance that
: features must be uniform across all cores in the system.
:
: Furthermore, KVM incorrectly advertised an IMP_DEF PMU to guests for
: some time. Migrations from affected kernels was supported by explicitly
: allowing such an ID register value from userspace, and forwarding that
: along to the guest. KVM now allows an IMP_DEF PMU version to be restored
: through the ID register interface, but reinterprets the user value as
: not implemented (0).
KVM: arm64: Rip out the vestiges of the 'old' ID register scheme
KVM: arm64: Handle ID register reads using the VM-wide values
KVM: arm64: Use generic sanitisation for ID_AA64PFR0_EL1
KVM: arm64: Use generic sanitisation for ID_(AA64)DFR0_EL1
KVM: arm64: Use arm64_ftr_bits to sanitise ID register writes
KVM: arm64: Save ID registers' sanitized value per guest
KVM: arm64: Reuse fields of sys_reg_desc for idreg
KVM: arm64: Rewrite IMPDEF PMU version as NI
KVM: arm64: Make vCPU feature flags consistent VM-wide
KVM: arm64: Relax invariance of KVM_ARM_VCPU_POWER_OFF
KVM: arm64: Separate out feature sanitisation and initialisation
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Rather than reinventing the wheel in KVM to do ID register sanitisation
we can rely on the work already done in the core kernel. Implement a
generalized sanitisation of ID registers based on the combination of the
arm64_ftr_bits definitions from the core kernel and (optionally) a set
of KVM-specific overrides.
This all amounts to absolutely nothing for now, but will be used in
subsequent changes to realize user-configurable ID registers.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-8-oliver.upton@linux.dev
[Oliver: split off from monster patch, rewrote commit description,
reworked RAZ handling, return EINVAL to userspace]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Expose a capability keying the hVHE feature as well as a new
predicate testing it. Nothing is so far using it, and nothing
is enabling it yet.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Disabling KASLR from the command line is implemented as a feature
override. Repaint it slightly so that it can further be used as
more generic infrastructure for SW override purposes.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We only use cpus_set_cap() in update_cpu_capabilities(), where we
open-code an analgous update to boot_cpucaps.
Due to the way the cpucap_ptrs[] array is initialized, we know that the
capability number cannot be greater than or equal to ARM64_NCAPS, so the
warning is superfluous.
Fold cpus_set_cap() into update_cpu_capabilities(), matching what we do
for the boot_cpucaps, and making the relationship between the two a bit
clearer.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230607164846.3967305-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To more clearly align the various users of the cpucap enumeration, this patch
changes the cpufeature code to use the term `cpucap` in favour of `cpu_hwcap`.
This more clearly aligns with other users of the cpucaps, and avoids confusion
with the ELF hwcaps.
There should be no functional change as a result of this patch; this is
purely a renaming exercise.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230607164846.3967305-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The 'cpu_hwcaps' and 'boot_capabilities' bitmaps are bitmaps have the
same enumerated bits, but are named wildly differently for no good
reason. The terms 'hwcaps' and 'capabilities' have become ambiguous over
time (e.g. due to clashes with ELF hwcaps and the structures used to
manage feature detection), and it would be nicer to use 'cpucaps',
matching the <asm/cpucaps.h> header the enumerated bit indices are
defined in.
While this isn't a functional problem, it makes the code harder than
necessary to understand, and hard to extend with related functionality
(e.g. per-cpu cpucap bitmaps).
To that end, this patch renames `boot_capabilities` to `boot_cpucaps`
and `cpu_hwcaps` to `system_cpucaps`. This more clearly indicates the
relationship between the two and aligns with terminology used elsewhere
in our feature management code.
This change was scripted with:
| find . -type f -name '*.[chS]' -print0 | \
| xargs -0 sed -i 's/\<boot_capabilities\>/boot_cpucaps/'
| find . -type f -name '*.[chS]' -print0 | \
| xargs -0 sed -i 's/\<cpu_hwcaps\>/system_cpucaps/'
... and the instance of "cpu_hwcap" (without a trailing "s") in
<asm/mmu_context.h> corrected manually to "system_cpucaps".
Subsequent patches will adjust the naming of related functions to better
align with the `cpucap` naming.
There should be no functional change as a result of this patch; this is
purely a renaming exercise.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230607164846.3967305-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This indicates if the system supports PIE. This is a CPUCAP_BOOT_CPU_FEATURE
as the boot CPU will enable PIE if it has it, so secondary CPUs must also
have this feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-8-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This capability indicates if the system supports the TCR2_ELx system register.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-7-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Arm v8.8/9.3 FEAT_MOPS feature provides new instructions that
perform a memory copy or set. Wire up the cpufeature code to detect the
presence of FEAT_MOPS and enable it.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20230509142235.3284028-10-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Detect if the system has the new HCRX_EL2 register added in ARMv8.7/9.2,
so that subsequent patches can check for its presence.
KVM currently relies on the register being present on all CPUs (or
none), so the kernel will panic if that is not the case. Fortunately no
such systems currently exist, but this can be revisited if they appear.
Note that the kernel will not panic if CONFIG_KVM is disabled.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20230509142235.3284028-3-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The newly added support for ECV CNTPOFF open codes the recently added
helper ARM64_CPUID_FIELDS(), make use of the helper. No functional
change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20230523-arm64-ecv-helper-v1-1-506dfb5fb199@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CTR_EL0 can often be used in userspace, and it would be nice if
KVM didn't have to emulate it unnecessarily.
While it isn't possible to trap the cache configuration registers
independently from CTR_EL0 in the base ARMv8.0 architecture, FEAT_EVT
allows these cache configuration registers (CCSIDR_EL1, CCSIDR2_EL1,
CLIDR_EL1 and CSSELR_EL1) to be trapped independently by setting
HCR_EL2.TID4.
Switch to using TID4 instead of TID2 in the cases where FEAT_EVT
is available *and* that KVM doesn't need to sanitise CTR_EL0 to
paper over mismatched cache configurations.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230515170016.965378-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
- Fix regression in CPU erratum workaround when disabling the MMU
- Fix detection of pointer authentication hwcaps
- Avoid writeable, executable ELF sections in vmlinux
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmRTe+UQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNJXqB/9C9DrrbHUg9ZPqAIUpXkyaxem4gpIS+kyU
+ard53uweuQHchuR/x2s2K9Sp/ano5jGnQXEjikNy29Opu2UYI/wmsqdJEn3km8q
kohTRsiFgQ40Y85/3iJ8ug6+llxCxK6AXdZCskdWTP56Jur0WpNiQd0a/ShYQLdX
wBHdInT3QpDVzd5bEWDtUEj4H//tTCy4rESQyGsLhrHgb/x8uZKgZMtPJp6+Q3Eq
ofs+PQc0qHr/Ri3ahQOCMbxTbNaLIgUzkyXbZN+y2JtxgE+l8E3Gsir2+Pv7mcSx
1gCSLCmpwE7rVJpTykN+jA6OSsoSUSJHXs6565nF4n8+ugdL7aqR
=Tba+
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"A few arm64 fixes that came in during the merge window for -rc1.
The main thing is restoring the pointer authentication hwcaps, which
disappeared during some recent refactoring
- Fix regression in CPU erratum workaround when disabling the MMU
- Fix detection of pointer authentication hwcaps
- Avoid writeable, executable ELF sections in vmlinux"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: lds: move .got section out of .text
arm64: kernel: remove SHF_WRITE|SHF_EXECINSTR from .idmap.text
arm64: cpufeature: Fix pointer auth hwcaps
arm64: Fix label placement in record_mmu_state()
The pointer auth hwcaps are not getting reported to userspace, as they
are missing the .matches field. Add the field back.
Fixes: 876e3c8efe79 ("arm64/cpufeature: Pull out helper for CPUID register definitions")
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230428132546.2513834-1-kristina.martsenko@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
When defining which value to look for in a system register field we
currently manually specify the register, field shift, width and sign and
the value to look for. This opens the potential for error with for example
the wrong field width or sign being specified, an enumeration value for
a different similarly named field or letting something be initialised to 0.
Since we now generate defines for all the ID registers we now have named
constants for all of these things generated from the system register
description, meaning that we can generate initialisation for all the fields
used in matching from a minimal specification of register, field and match
value. This is both shorter and eliminates or makes build failures several
potential errors.
No change in the generated binary.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-3-4c8f28a6f203@kernel.org
[will: Drop explicit '.sign' assignment for BTI feature]
Signed-off-by: Will Deacon <will@kernel.org>
A number of the cpufeatures use raw numbers for the minimum field values
specified rather than symbolic constants. In preparation for the use of
helper macros replace all these with the appropriate constants.
No change in the generated binary.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-2-4c8f28a6f203@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
We use the same structure to match hwcaps and CPU features so we can use
the same helper to generate the fields required. Pull the portion of the
current hwcaps helper that initialises the fields out into a separate
define placed earlier in the file so we can use it for cpufeatures.
No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-1-4c8f28a6f203@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add the probing code for the FEAT_ECV variant that implements CNTPOFF_EL2.
Why it is optional is a mystery, but let's try and detect it.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-4-maz@kernel.org
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20230313182918.1312597-11-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- In copy_highpage(), only reset the tag of the destination pointer if
KASAN_HW_TAGS is enabled so that user-space MTE does not interfere
with KASAN_SW_TAGS (which relies on top-byte-ignore).
- Remove warning if SME is detected without SVE, the kernel can cope
with such configuration (though none in the field currently).
- In cfi_handler(), pass the ESR_EL1 value to die() for consistency with
other die() callers.
- Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP on arm64 since the pte
manipulation from the generic vmemmap_remap_pte() does not follow the
required ARM break-before-make sequence (clear the pte, flush the
TLBs, set the new pte). It may be re-enabled once this sequence is
sorted.
- Fix possible memory leak in the arm64 ACPI code if the SMCCC version
and conduit checks fail.
- Forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE since gcc ignores
-falign-functions=N with -Os.
- Don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN as no
randomisation would actually take place.
-----BEGIN PGP SIGNATURE-----
iQIyBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmQBHFEACgkQa9axLQDI
XvHf9Q/3Zg8o/8HchnWSvzgV//9ljGrrDfAjbfZHrE2W4PCniSd0op0uXYsVK3IH
Nk6ZDiRe5uIXKgHuSq5caOoL4aRk0hk1TpQ3RKCuh8E3ybhQe9gwYm8xEWXDSSWh
QzcfENsKlZLpuMoSMILJ2NlMPMbMLprXNCUlgENBbRT7KUToHZKTwE6BL2AUI3tg
RdMntccorybxk1hiXV1YKT8482i+x2gAnylYXFsq3eI+G54rdfiks+tft0CQV3ng
1/i1PfbnGC45sBoxXPqYXzBSUDNHpAqb5dwvtlVinGo3J6STxIvbM6Zi5Ma5hl3u
QrhwyduwCTZ6wVOqzd4KAH9gmhJSzRG75OzCek2dTwU9KXVMOPEvp1ZfTwUXDx7J
5j8UkjGgrbtj6IioGqBAO/HiFfoty8EBtmlSZIj0thwxkM73ZBG6efQOJaVWh85m
ioUzMC2Y5yfKLfHEcy9yKIQVizMYoz6fl+QHOEbVSoFhJKNRc4wt5CCJCvsbMHsu
K8rvD/CI9jFMP9GEK7ObTaC7ICjUz/+8wbIrRrm5ObRQ65Tm2zv3OLqGnK8O5O4W
gcDEraTnSPHDUtgG6dAEPFN5Wi9hT3zYC0xAcNhc3aZC5ofS5RD6YXIWJvqjWrvL
5k8G1gfa57C/hfxO6pPw7bg/nY8vvYpxUkZ9erRWD430g7y0Sg==
=jfPa
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- In copy_highpage(), only reset the tag of the destination pointer if
KASAN_HW_TAGS is enabled so that user-space MTE does not interfere
with KASAN_SW_TAGS (which relies on top-byte-ignore).
- Remove warning if SME is detected without SVE, the kernel can cope
with such configuration (though none in the field currently).
- In cfi_handler(), pass the ESR_EL1 value to die() for consistency
with other die() callers.
- Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP on arm64 since the pte
manipulation from the generic vmemmap_remap_pte() does not follow the
required ARM break-before-make sequence (clear the pte, flush the
TLBs, set the new pte). It may be re-enabled once this sequence is
sorted.
- Fix possible memory leak in the arm64 ACPI code if the SMCCC version
and conduit checks fail.
- Forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE since gcc ignores
-falign-functions=N with -Os.
- Don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN as no
randomisation would actually take place.
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: kaslr: don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN
arm64: ftrace: forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE
arm64: acpi: Fix possible memory leak of ffh_ctxt
arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP
arm64: pass ESR_ELx to die() of cfi_handler
arm64/fpsimd: Remove warning for SME without SVE
arm64: Reset KASAN tag in copy_highpage with HW tags only
Our virtual KASLR displacement is a randomly chosen multiple of
2 MiB plus an offset that is equal to the physical placement modulo 2
MiB. This arrangement ensures that we can always use 2 MiB block
mappings (or contiguous PTE mappings for 16k or 64k pages) to map the
kernel.
This means that a KASLR offset of less than 2 MiB is simply the product
of this physical displacement, and no randomization has actually taken
place. Currently, we use 'kaslr_offset() > 0' to decide whether or not
randomization has occurred, and so we misidentify this case.
If the kernel image placement is not randomized, modules are allocated
from a dedicated region below the kernel mapping, which is only used for
modules and not for other vmalloc() or vmap() calls.
When randomization is enabled, the kernel image is vmap()'ed randomly
inside the vmalloc region, and modules are allocated in the vicinity of
this mapping to ensure that relative references are always in range.
However, unlike the dedicated module region below the vmalloc region,
this region is not reserved exclusively for modules, and so ordinary
vmalloc() calls may end up overlapping with it. This should rarely
happen, given that vmalloc allocates bottom up, although it cannot be
ruled out entirely.
The misidentified case results in a placement of the kernel image within
2 MiB of its default address. However, the logic that randomizes the
module region is still invoked, and this could result in the module
region overlapping with the start of the vmalloc region, instead of
using the dedicated region below it. If this happens, a single large
vmalloc() or vmap() call will use up the entire region, and leave no
space for loading modules after that.
Since commit 82046702e288 ("efi/libstub/arm64: Replace 'preferred'
offset with alignment check"), this is much more likely to occur on
systems that boot via EFI but lack an implementation of the EFI RNG
protocol, as in that case, the EFI stub will decide to leave the image
where it found it, and the EFI firmware uses 64k alignment only.
Fix this, by correctly identifying the case where the virtual
displacement is a result of the physical displacement only.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230223204101.1500373-1-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
* kvm-arm64/nv-prefix:
: Preamble to NV support, courtesy of Marc Zyngier.
:
: This brings in a set of prerequisite patches for supporting nested
: virtualization in KVM/arm64. Of course, there is a long way to go until
: NV is actually enabled in KVM.
:
: - Introduce cpucap / vCPU feature flag to pivot the NV code on
:
: - Add support for EL2 vCPU register state
:
: - Basic nested exception handling
:
: - Hide unsupported features from the ID registers for NV-capable VMs
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a new ARM64_HAS_NESTED_VIRT feature to indicate that the
CPU has the ARMv8.3 nested virtualization capability, together
with the 'kvm-arm.mode=nested' command line option.
This will be used to support nested virtualization in KVM.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: moved the command-line option to kvm-arm.mode]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* for-next/sysreg-hwcaps:
: Make use of sysreg helpers for hwcaps
arm64/cpufeature: Use helper macros to specify hwcaps
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
arm64/sysreg: Initial unsigned annotations for ID registers
arm64/sysreg: Initial annotation of signed ID registers
arm64/sysreg: Allow enumerations to be declared as signed or unsigned
* arm64/for-next/perf:
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event
perf: arm_spe: Use new PMSIDR_EL1 register enums
perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors
arm64/sysreg: Convert SPE registers to automatic generation
arm64: Drop SYS_ from SPE register defines
perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines
perf/marvell: Add ACPI support to TAD uncore driver
perf/marvell: Add ACPI support to DDR uncore driver
perf/arm-cmn: Reset DTM_PMU_CONFIG at probe
drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu"
drivers/perf: hisi: Simplify the parameters of hisi_pmu_init()
drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability
* for-next/sysreg:
: arm64 sysreg and cpufeature fixes/updates
KVM: arm64: Use symbolic definition for ISR_EL1.A
arm64/sysreg: Add definition of ISR_EL1
arm64/sysreg: Add definition for ICC_NMIAR1_EL1
arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK()
arm64/sysreg: Fix errors in 32 bit enumeration values
arm64/cpufeature: Fix field sign for DIT hwcap detection
* for-next/sme:
: SME-related updates
arm64/sme: Optimise SME exit on syscall entry
arm64/sme: Don't use streaming mode to probe the maximum SME VL
arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support
* for-next/kselftest: (23 commits)
: arm64 kselftest fixes and improvements
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA
kselftest/arm64: Fix enumeration of systems without 128 bit SME
kselftest/arm64: Don't require FA64 for streaming SVE tests
kselftest/arm64: Limit the maximum VL we try to set via ptrace
kselftest/arm64: Correct buffer size for SME ZA storage
kselftest/arm64: Remove the local NUM_VL definition
kselftest/arm64: Verify simultaneous SSVE and ZA context generation
kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set
kselftest/arm64: Remove spurious comment from MTE test Makefile
kselftest/arm64: Support build of MTE tests with clang
kselftest/arm64: Initialise current at build time in signal tests
kselftest/arm64: Don't pass headers to the compiler as source
kselftest/arm64: Remove redundant _start labels from FP tests
kselftest/arm64: Fix .pushsection for strings in FP tests
kselftest/arm64: Run BTI selftests on systems without BTI
kselftest/arm64: Fix test numbering when skipping tests
kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress
kselftest/arm64: Only enumerate power of two VLs in syscall-abi
...
* for-next/misc:
: Miscellaneous arm64 updates
arm64/mm: Intercept pfn changes in set_pte_at()
Documentation: arm64: correct spelling
arm64: traps: attempt to dump all instructions
arm64: Apply dynamic shadow call stack patching in two passes
arm64: el2_setup.h: fix spelling typo in comments
arm64: Kconfig: fix spelling
arm64: cpufeature: Use kstrtobool() instead of strtobool()
arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path
arm64: make ARCH_FORCE_MAX_ORDER selectable
* for-next/sme2: (23 commits)
: Support for arm64 SME 2 and 2.1
arm64/sme: Fix __finalise_el2 SMEver check
kselftest/arm64: Remove redundant _start labels from zt-test
kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps
kselftest/arm64: Add coverage of the ZT ptrace regset
kselftest/arm64: Add SME2 coverage to syscall-abi
kselftest/arm64: Add test coverage for ZT register signal frames
kselftest/arm64: Teach the generic signal context validation about ZT
kselftest/arm64: Enumerate SME2 in the signal test utility code
kselftest/arm64: Cover ZT in the FP stress test
kselftest/arm64: Add a stress test program for ZT0
arm64/sme: Add hwcaps for SME 2 and 2.1 features
arm64/sme: Implement ZT0 ptrace support
arm64/sme: Implement signal handling for ZT
arm64/sme: Implement context switching for ZT0
arm64/sme: Provide storage for ZT0
arm64/sme: Add basic enumeration for SME2
arm64/sme: Enable host kernel to access ZT0
arm64/sme: Manually encode ZT0 load and store instructions
arm64/esr: Document ISS for ZT0 being disabled
arm64/sme: Document SME 2 and SME 2.1 ABI
...
* for-next/tpidr2:
: Include TPIDR2 in the signal context
kselftest/arm64: Add test case for TPIDR2 signal frame records
kselftest/arm64: Add TPIDR2 to the set of known signal context records
arm64/signal: Include TPIDR2 in the signal context
arm64/sme: Document ABI for TPIDR2 signal information
* for-next/scs:
: arm64: harden shadow call stack pointer handling
arm64: Stash shadow stack pointer in the task struct on interrupt
arm64: Always load shadow stack pointer directly from the task struct
* for-next/compat-hwcap:
: arm64: Expose compat ARMv8 AArch32 features (HWCAPs)
arm64: Add compat hwcap SSBS
arm64: Add compat hwcap SB
arm64: Add compat hwcap I8MM
arm64: Add compat hwcap ASIMDBF16
arm64: Add compat hwcap ASIMDFHM
arm64: Add compat hwcap ASIMDDP
arm64: Add compat hwcap FPHP and ASIMDHP
* for-next/ftrace:
: Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS
arm64: avoid executing padding bytes during kexec / hibernation
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
arm64: ftrace: Update stale comment
arm64: patching: Add aarch64_insn_write_literal_u64()
arm64: insn: Add helpers for BTI
arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT
ACPI: Don't build ACPICA with '-Os'
Compiler attributes: GCC cold function alignment workarounds
ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS
* for-next/efi-boot-mmu-on:
: Permit arm64 EFI boot with MMU and caches on
arm64: kprobes: Drop ID map text from kprobes blacklist
arm64: head: Switch endianness before populating the ID map
efi: arm64: enter with MMU and caches enabled
arm64: head: Clean the ID map and the HYP text to the PoC if needed
arm64: head: avoid cache invalidation when entering with the MMU on
arm64: head: record the MMU state at primary entry
arm64: kernel: move identity map out of .text mapping
arm64: head: Move all finalise_el2 calls to after __enable_mmu
* for-next/ptrauth:
: arm64 pointer authentication cleanup
arm64: pauth: don't sign leaf functions
arm64: unify asm-arch manipulation
* for-next/pseudo-nmi:
: Pseudo-NMI code generation optimisations
arm64: irqflags: use alternative branches for pseudo-NMI logic
arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap
arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS
arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING
arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
At present the hwcaps are hard to read and a bit error prone since the
macros used to specify matches require us to write out the register name
multiple times and explicitly specify the width of the field, hopefully
using the correct constant. Now that all the ID registers are generated we
can improve this somewhat by redoing the macros so that we specify the
register, field and minimum value symbolically and use token pasting to
initialise the capability struct with the appropriate values.
We move from specifying like this:
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
to this:
HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
which is shorter due to having less duplicate information and makes it
much harder to make an error like specifying the wrong field width or
an invalid enumeration value since everything must be a constant defined
for the sysreg and names are only typed once.
There should be no functional effect from this change, a check of the
generated .rodata showed no differences.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-5-25b6b3fb9d18@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our table of hwcaps sometimes uses the defined constant to specify the
enumeration value they are attempting to match but in some cases an
unadorned number is used. In preparation for using helper macros to to
specify the hwcaps less verbosely replace the magic numbers with their
constants, this will hopefully make the conversion to helper macros
easier to review.
There should be no functional effect from this change, a check of the
generate .rodata showed no differences.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-4-25b6b3fb9d18@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When Priority Mask Hint Enable (PMHE) == 0b1, the GIC may use the PMR
value to determine whether to signal an IRQ to a PE, and consequently
after a change to the PMR value, a DSB SY may be required to ensure that
interrupts are signalled to a CPU in finite time. When PMHE == 0b0,
interrupts are always signalled to the relevant PE, and all masking
occurs locally, without requiring a DSB SY.
Since commit:
f226650494c6aa87 ("arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear")
... we handle this dynamically: in most cases a static key is used to
determine whether to issue a DSB SY, but the entry code must read from
ICC_CTLR_EL1 as static keys aren't accessible from plain assembly.
It would be much nicer to use an alternative instruction sequence for
the DSB, as this would avoid the need to read from ICC_CTLR_EL1 in the
entry code, and for most other code this will result in simpler code
generation with fewer instructions and fewer branches.
This patch adds a new ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap which is
only set when ICC_CTLR_EL1.PMHE == 0b0 (and GIC priority masking is in
use). This allows us to replace the existing users of the
`gic_pmr_sync` static key with alternative sequences which default to a
DSB SY and are relaxed to a NOP when PMHE is not in use.
The entry assembly management of the PMR is slightly restructured to use
a branch (rather than multiple NOPs) when priority masking is not in
use. This is more in keeping with other alternatives in the entry
assembly, and permits the use of a separate alternatives for the
PMHE-dependent DSB SY (and removal of the conditional branch this
currently requires). For consistency I've adjusted both the save and
restore paths.
According to bloat-o-meter, when building defconfig +
CONFIG_ARM64_PSEUDO_NMI=y this shrinks the kernel text by ~4KiB:
| add/remove: 4/2 grow/shrink: 42/310 up/down: 332/-5032 (-4700)
The resulting vmlinux is ~66KiB smaller, though the resulting Image size
is unchanged due to padding and alignment:
| [mark@lakrids:~/src/linux]% ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 137508344 Jan 17 14:11 vmlinux-after
| -rwxr-xr-x 1 mark mark 137575440 Jan 17 13:49 vmlinux-before
| [mark@lakrids:~/src/linux]% ls -al Image-*
| -rw-r--r-- 1 mark mark 38777344 Jan 17 14:11 Image-after
| -rw-r--r-- 1 mark mark 38777344 Jan 17 13:49 Image-before
Prior to this patch we did not verify the state of ICC_CTLR_EL1.PMHE on
secondary CPUs. As of this patch this is verified by the cpufeature code
when using GIC priority masking (i.e. when using pseudo-NMIs).
Note that since commit:
7e3a57fa6ca831fa ("arm64: Document ICC_CTLR_EL3.PMHE setting requirements")
... Documentation/arm64/booting.rst specifies:
| - ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across
| all CPUs the kernel is executing on, and must stay constant
| for the lifetime of the kernel.
... so that should not adversely affect any compliant systems, and as
we'll only check for the absense of PMHE when using pseudo-NMIs, this
will only fire when such mismatch will adversely affect the system.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the arm64_cpu_capabilities structure for
ARM64_HAS_GIC_PRIO_MASKING open-codes the same CPU field definitions as
the arm64_cpu_capabilities structure for ARM64_HAS_GIC_CPUIF_SYSREGS, so
that can_use_gic_priorities() can use has_useable_gicv3_cpuif().
This duplication isn't ideal for the legibility of the code, and sets a
bad example for any ARM64_HAS_GIC_* definitions added by subsequent
patches.
Instead, have ARM64_HAS_GIC_PRIO_MASKING check for the
ARM64_HAS_GIC_CPUIF_SYSREGS cpucap, and add a comment explaining why
this is safe. Subsequent patches will use the same pattern where one
cpucap depends upon another.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Subsequent patches will add more GIC-related cpucaps. When we do so, it
would be nice to give them a consistent HAS_GIC_* prefix.
In preparation for doing so, this patch renames the existing
ARM64_HAS_IRQ_PRIO_MASKING cap to ARM64_HAS_GIC_PRIO_MASKING.
The cpucaps file was hand-modified; all other changes were scripted
with:
find . -type f -name '*.[chS]' -print0 | \
xargs -0 sed -i 's/ARM64_HAS_IRQ_PRIO_MASKING/ARM64_HAS_GIC_PRIO_MASKING/'
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>