1258 Commits

Author SHA1 Message Date
Michal Hocko
ce612879dd mm: move pcp and lru-pcp draining into single wq
We currently have 2 specific WQ_RECLAIM workqueues in the mm code.
vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain
per cpu lru caches.  This seems more than necessary because both can run
on a single WQ.  Both do not block on locks requiring a memory
allocation nor perform any allocations themselves.  We will save one
rescuer thread this way.

On the other hand drain_all_pages() queues work on the system wq which
doesn't have rescuer and so this depend on memory allocation (when all
workers are stuck allocating and new ones cannot be created).

Initially we thought this would be more of a theoretical problem but
Hugh Dickins has reported:

: 4.11-rc has been giving me hangs after hours of swapping load.  At
: first they looked like memory leaks ("fork: Cannot allocate memory");
: but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh"
: before looking at /proc/meminfo one time, and the stat_refresh stuck
: in D state, waiting for completion of flush_work like many kworkers.
: kthreadd waiting for completion of flush_work in drain_all_pages().

This worker should be using WQ_RECLAIM as well in order to guarantee a
forward progress.  We can reuse the same one as for lru draining and
vmstat.

Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Yang Li <pku.leo@gmail.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-08 00:47:49 -07:00
Alexander Polakov
1f06b81aea mm/page_alloc.c: fix print order in show_free_areas()
Fixes: 11fb998986a72a ("mm: move most file-based accounting to the node")
Link: http://lkml.kernel.org/r/1490377730.30219.2.camel@beget.ru
Signed-off-by: Alexander Polyakov <apolyakov@beget.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-08 00:47:48 -07:00
Tony Luck
b4fb8f66f1 mm, page_alloc: Add missing check for memory holes
Commit 13ad59df67f1 ("mm, page_alloc: avoid page_to_pfn() when merging
buddies") moved the check for memory holes out of page_is_buddy() and
had the callers do the check.

But this wasn't done correctly in one place which caused ia64 to crash
very early in boot.

Update to fix that and make ia64 boot again.

[ v2: Vlastimil pointed out we don't need to call page_to_pfn()
      since we already have the result of that in "buddy_pfn" ]

Fixes: 13ad59df67f1 ("avoid page_to_pfn() when merging buddies")
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-08 11:10:10 -08:00
Ingo Molnar
5b3cc15aff sched/headers: Prepare to move the memalloc_noio_*() APIs to <linux/sched/mm.h>
Update the .c files that depend on these APIs.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:33 +01:00
Masahiro Yamada
89d790ab31 scripts/spelling.txt: add "algined" pattern and fix typo instances
Fix typos and add the following to the scripts/spelling.txt:

  algined||aligned

While we are here, fix the "appplication" in the touched line in
drivers/block/loop.c.  Also, fix the "may not naturally ..." to
"may not be naturally ..." in the touched line in mm/page_alloc.

Link: http://lkml.kernel.org/r/1481573103-11329-9-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-27 18:43:46 -08:00
Wei Yang
ad69444e75 mm/page_alloc.c: remove redundant init code for ZONE_MOVABLE
arch_zone_lowest/highest_possible_pfn[] is set to 0 and [ZONE_MOVABLE]
is skipped in the loop.  No need to reset them to 0 again.

This patch just removes the redundant code.

Link: http://lkml.kernel.org/r/20170209141731.60208-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Gavin Shan
e02dc017c3 mm/page_alloc: fix nodes for reclaim in fast path
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark.  On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A.  So the preferred node even won't be scanned for
page reclaim.

   __alloc_pages_nodemask()
   get_page_from_freelist()
      zone_allows_reclaim()

Anton proposed the test code as below:

   # cat alloc.c
      :
   int main(int argc, char *argv[])
   {
	void *p;
	unsigned long size;
	unsigned long start, end;

	start = time(NULL);
	size = strtoul(argv[1], NULL, 0);
	printf("To allocate %ldGB memory\n", size);

	size <<= 30;
	p = malloc(size);
	assert(p);
	memset(p, 0, size);

	end = time(NULL);
	printf("Used time: %ld seconds\n", end - start);
	sleep(3600);
	return 0;
   }

The system I use for testing has two NUMA nodes.  Both have 128GB
memory.  In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.

   # echo 2 > /proc/sys/vm/zone_reclaim_mode; \
     sync; \
     echo 3 > /proc/sys/vm/drop_caches; \
   # taskset -c 0 cat file.32G > /dev/null; \
     grep FilePages /sys/devices/system/node/node0/meminfo
     Node 0 FilePages:       33619712 kB
   # taskset -c 0 ./alloc 128
   # grep FilePages /sys/devices/system/node/node0/meminfo
     Node 0 FilePages:       33619840 kB
   # grep MemFree /sys/devices/system/node/node0/meminfo
     Node 0 MemFree:          186816 kB

With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out.  It's the expected behaviour.

   # echo 2 > /proc/sys/vm/zone_reclaim_mode; \
     sync; \
     echo 3 > /proc/sys/vm/drop_caches
   # taskset -c 0 cat file.32G > /dev/null; \
     grep FilePages /sys/devices/system/node/node0/meminfo
     Node 0 FilePages:       33605568 kB
   # taskset -c 0 ./alloc 128
   # grep FilePages /sys/devices/system/node/node0/meminfo
     Node 0 FilePages:        1379520 kB
   # grep MemFree /sys/devices/system/node/node0/meminfo
     Node 0 MemFree:           317120 kB

Fixes: 5f7a75acdb24 ("mm: page_alloc: do not cache reclaim distances")
Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>	[3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Masanari Iida
f2bf14d14d mm/page_alloc.c: remove duplicate inclusion of page_ext.h
Link: http://lkml.kernel.org/r/20170202011942.1609-1-standby24x7@gmail.com
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Lucas Stach
ca96b62534 mm: alloc_contig_range: allow to specify GFP mask
Currently alloc_contig_range assumes that the compaction should be done
with the default GFP_KERNEL flags.  This is probably right for all
current uses of this interface, but may change as CMA is used in more
use-cases (including being the default DMA memory allocator on some
platforms).

Change the function prototype, to allow for passing through the GFP mask
set by upper layers.

Also respect global restrictions by applying memalloc_noio_flags to the
passed in flags.

Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Yisheng Xie
0efadf48bc mm/hotplug: enable memory hotplug for non-lru movable pages
We had considered all of the non-lru pages as unmovable before commit
bda807d44454 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable.  So we can offline such blocks by using non-lru page
migration.

This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.

Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Mel Gorman
bd233f538d mm, page_alloc: use static global work_struct for draining per-cpu pages
As suggested by Vlastimil Babka and Tejun Heo, this patch uses a static
work_struct to co-ordinate the draining of per-cpu pages on the
workqueue.  Only one task can drain at a time but this is better than
the previous scheme that allowed multiple tasks to send IPIs at a time.

One consideration is whether parallel requests should synchronise
against each other.  This patch does not synchronise for a global drain
as the common case for such callers is expected to be multiple parallel
direct reclaimers competing for pages when the watermark is close to
min.  Draining the per-cpu list is unlikely to make much progress and
serialising the drain is of dubious merit.  Drains are synchonrised for
callers such as memory hotplug and CMA that care about the drain being
complete when the function returns.

Link: http://lkml.kernel.org/r/20170125083038.rzb5f43nptmk7aed@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Tejun Heo <tj@kernel.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Vlastimil Babka
5104782011 mm, page_alloc: don't check cpuset allowed twice in fast-path
Since commit 682a3385e773 ("mm, page_alloc: inline the fast path of the
zonelist iterator") we replace a NULL nodemask with
cpuset_current_mems_allowed in the fast path, so that
get_page_from_freelist() filters nodes allowed by the cpuset via
for_next_zone_zonelist_nodemask().

In that case it's pointless to additionaly check __cpuset_zone_allowed()
in each iteration, which we can avoid by not adding ALLOC_CPUSET to
alloc_flags in that scenario.

This saves some cycles in the allocator fast path on systems with one or
more non-root cpuset configured.  In the slow path, ALLOC_CPUSET is
reset according to __alloc_pages_slowpath().  Without configured
cpusets, this code is disabled by a static key.

Link: http://lkml.kernel.org/r/20170124150511.5710-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Vlastimil Babka
df76cee6bb mm, page_alloc: remove redundant checks from alloc fastpath
The allocation fast path contains two similar checks for zoneref->zone
being NULL, where zoneref points either to the first zone in the
zonelist, or to the preferred zone.  These can be NULL either due to
empty zonelist, or no zone being compatible with given nodemask or
task's cpuset.

These checks are unnecessary, because the zonelist walks in
first_zones_zonelist() and get_page_from_freelist() handle a NULL
starting zoneref->zone or preferred_zoneref->zone safely.  It's safe to
fallback to __alloc_pages_slowpath() where we also have the check early
enough.

Link: http://lkml.kernel.org/r/20170124150511.5710-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Mel Gorman
374ad05ab6 mm, page_alloc: only use per-cpu allocator for irq-safe requests
Many workloads that allocate pages are not handling an interrupt at a
time.  As allocation requests may be from IRQ context, it's necessary to
disable/enable IRQs for every page allocation.  This cost is the bulk of
the free path but also a significant percentage of the allocation path.

This patch alters the locking and checks such that only irq-safe
allocation requests use the per-cpu allocator.  All others acquire the
irq-safe zone->lock and allocate from the buddy allocator.  It relies on
disabling preemption to safely access the per-cpu structures.  It could
be slightly modified to avoid soft IRQs using it but it's not clear it's
worthwhile.

This modification may slow allocations from IRQ context slightly but the
main gain from the per-cpu allocator is that it scales better for
allocations from multiple contexts.  There is an implicit assumption
that intensive allocations from IRQ contexts on multiple CPUs from a
single NUMA node are rare and that the fast majority of scaling issues
are encountered in !IRQ contexts such as page faulting.  It's worth
noting that this patch is not required for a bulk page allocator but it
significantly reduces the overhead.

The following is results from a page allocator micro-benchmark.  Only
order-0 is interesting as higher orders do not use the per-cpu allocator

                                          4.10.0-rc2                 4.10.0-rc2
                                             vanilla               irqsafe-v1r5
Amean    alloc-odr0-1               287.15 (  0.00%)           219.00 ( 23.73%)
Amean    alloc-odr0-2               221.23 (  0.00%)           183.23 ( 17.18%)
Amean    alloc-odr0-4               187.00 (  0.00%)           151.38 ( 19.05%)
Amean    alloc-odr0-8               167.54 (  0.00%)           132.77 ( 20.75%)
Amean    alloc-odr0-16              156.00 (  0.00%)           123.00 ( 21.15%)
Amean    alloc-odr0-32              149.00 (  0.00%)           118.31 ( 20.60%)
Amean    alloc-odr0-64              138.77 (  0.00%)           116.00 ( 16.41%)
Amean    alloc-odr0-128             145.00 (  0.00%)           118.00 ( 18.62%)
Amean    alloc-odr0-256             136.15 (  0.00%)           125.00 (  8.19%)
Amean    alloc-odr0-512             147.92 (  0.00%)           121.77 ( 17.68%)
Amean    alloc-odr0-1024            147.23 (  0.00%)           126.15 ( 14.32%)
Amean    alloc-odr0-2048            155.15 (  0.00%)           129.92 ( 16.26%)
Amean    alloc-odr0-4096            164.00 (  0.00%)           136.77 ( 16.60%)
Amean    alloc-odr0-8192            166.92 (  0.00%)           138.08 ( 17.28%)
Amean    alloc-odr0-16384           159.00 (  0.00%)           138.00 ( 13.21%)
Amean    free-odr0-1                165.00 (  0.00%)            89.00 ( 46.06%)
Amean    free-odr0-2                113.00 (  0.00%)            63.00 ( 44.25%)
Amean    free-odr0-4                 99.00 (  0.00%)            54.00 ( 45.45%)
Amean    free-odr0-8                 88.00 (  0.00%)            47.38 ( 46.15%)
Amean    free-odr0-16                83.00 (  0.00%)            46.00 ( 44.58%)
Amean    free-odr0-32                80.00 (  0.00%)            44.38 ( 44.52%)
Amean    free-odr0-64                72.62 (  0.00%)            43.00 ( 40.78%)
Amean    free-odr0-128               78.00 (  0.00%)            42.00 ( 46.15%)
Amean    free-odr0-256               80.46 (  0.00%)            57.00 ( 29.16%)
Amean    free-odr0-512               96.38 (  0.00%)            64.69 ( 32.88%)
Amean    free-odr0-1024             107.31 (  0.00%)            72.54 ( 32.40%)
Amean    free-odr0-2048             108.92 (  0.00%)            78.08 ( 28.32%)
Amean    free-odr0-4096             113.38 (  0.00%)            82.23 ( 27.48%)
Amean    free-odr0-8192             112.08 (  0.00%)            82.85 ( 26.08%)
Amean    free-odr0-16384            110.38 (  0.00%)            81.92 ( 25.78%)
Amean    total-odr0-1               452.15 (  0.00%)           308.00 ( 31.88%)
Amean    total-odr0-2               334.23 (  0.00%)           246.23 ( 26.33%)
Amean    total-odr0-4               286.00 (  0.00%)           205.38 ( 28.19%)
Amean    total-odr0-8               255.54 (  0.00%)           180.15 ( 29.50%)
Amean    total-odr0-16              239.00 (  0.00%)           169.00 ( 29.29%)
Amean    total-odr0-32              229.00 (  0.00%)           162.69 ( 28.96%)
Amean    total-odr0-64              211.38 (  0.00%)           159.00 ( 24.78%)
Amean    total-odr0-128             223.00 (  0.00%)           160.00 ( 28.25%)
Amean    total-odr0-256             216.62 (  0.00%)           182.00 ( 15.98%)
Amean    total-odr0-512             244.31 (  0.00%)           186.46 ( 23.68%)
Amean    total-odr0-1024            254.54 (  0.00%)           198.69 ( 21.94%)
Amean    total-odr0-2048            264.08 (  0.00%)           208.00 ( 21.24%)
Amean    total-odr0-4096            277.38 (  0.00%)           219.00 ( 21.05%)
Amean    total-odr0-8192            279.00 (  0.00%)           220.92 ( 20.82%)
Amean    total-odr0-16384           269.38 (  0.00%)           219.92 ( 18.36%)

This is the alloc, free and total overhead of allocating order-0 pages
in batches of 1 page up to 16384 pages.  Avoiding disabling/enabling
overhead massively reduces overhead.  Alloc overhead is roughly reduced
by 14-20% in most cases.  The free path is reduced by 26-46% and the
total reduction is significant.

Many users require zeroing of pages from the page allocator which is the
vast cost of allocation.  Hence, the impact on a basic page faulting
benchmark is not that significant

                              4.10.0-rc2            4.10.0-rc2
                                 vanilla          irqsafe-v1r5
Hmean    page_test   656632.98 (  0.00%)   675536.13 (  2.88%)
Hmean    brk_test   3845502.67 (  0.00%)  3867186.94 (  0.56%)
Stddev   page_test    10543.29 (  0.00%)     4104.07 ( 61.07%)
Stddev   brk_test     33472.36 (  0.00%)    15538.39 ( 53.58%)
CoeffVar page_test        1.61 (  0.00%)        0.61 ( 62.15%)
CoeffVar brk_test         0.87 (  0.00%)        0.40 ( 53.84%)
Max      page_test   666513.33 (  0.00%)   678640.00 (  1.82%)
Max      brk_test   3882800.00 (  0.00%)  3887008.66 (  0.11%)

This is from aim9 and the most notable outcome is that fault variability
is reduced by the patch.  The headline improvement is small as the
overall fault cost, zeroing, page table insertion etc dominate relative
to disabling/enabling IRQs in the per-cpu allocator.

Similarly, little benefit was seen on networking benchmarks both
localhost and between physical server/clients where other costs
dominate.  It's possible that this will only be noticable on very high
speed networks.

Jesper Dangaard Brouer independently tested this with a separate
microbenchmark from
  https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench

Micro-benchmarked with [1] page_bench02:
 modprobe page_bench02 page_order=0 run_flags=$((2#010)) loops=$((10**8)); \
  rmmod page_bench02 ; dmesg --notime | tail -n 4

Compared to baseline: 213 cycles(tsc) 53.417 ns
 - against this     : 184 cycles(tsc) 46.056 ns
 - Saving           : -29 cycles
 - Very close to expected 27 cycles saving [see below [2]]

Micro benchmarking via time_bench_sample[3], we get the cost of these
operations:

 time_bench: Type:for_loop                 Per elem: 0 cycles(tsc) 0.232 ns (step:0)
 time_bench: Type:spin_lock_unlock         Per elem: 33 cycles(tsc) 8.334 ns (step:0)
 time_bench: Type:spin_lock_unlock_irqsave Per elem: 62 cycles(tsc) 15.607 ns (step:0)
 time_bench: Type:irqsave_before_lock      Per elem: 57 cycles(tsc) 14.344 ns (step:0)
 time_bench: Type:spin_lock_unlock_irq     Per elem: 34 cycles(tsc) 8.560 ns (step:0)
 time_bench: Type:simple_irq_disable_before_lock Per elem: 37 cycles(tsc) 9.289 ns (step:0)
 time_bench: Type:local_BH_disable_enable  Per elem: 19 cycles(tsc) 4.920 ns (step:0)
 time_bench: Type:local_IRQ_disable_enable Per elem: 7 cycles(tsc) 1.864 ns (step:0)
 time_bench: Type:local_irq_save_restore   Per elem: 38 cycles(tsc) 9.665 ns (step:0)
 [Mel's patch removes a ^^^^^^^^^^^^^^^^]            ^^^^^^^^^ expected saving - preempt cost
 time_bench: Type:preempt_disable_enable   Per elem: 11 cycles(tsc) 2.794 ns (step:0)
 [adds a preempt  ^^^^^^^^^^^^^^^^^^^^^^]            ^^^^^^^^^ adds this cost
 time_bench: Type:funcion_call_cost        Per elem: 6 cycles(tsc) 1.689 ns (step:0)
 time_bench: Type:func_ptr_call_cost       Per elem: 11 cycles(tsc) 2.767 ns (step:0)
 time_bench: Type:page_alloc_put           Per elem: 211 cycles(tsc) 52.803 ns (step:0)

Thus, expected improvement is: 38-11 = 27 cycles.

[mgorman@techsingularity.net: s/preempt_enable_no_resched/preempt_enable/]
  Link: http://lkml.kernel.org/r/20170208143128.25ahymqlyspjcixu@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Michal Hocko
a459eeb7b8 mm, page_alloc: do not depend on cpu hotplug locks inside the allocator
Dmitry has reported the following lockdep splat
  lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3753
  __mutex_lock_common kernel/locking/mutex.c:521 [inline]
  mutex_lock_nested+0x24e/0xff0 kernel/locking/mutex.c:621
  pcpu_alloc+0xbda/0x1280 mm/percpu.c:896
  __alloc_percpu+0x24/0x30 mm/percpu.c:1075
  smpcfd_prepare_cpu+0x73/0xd0 kernel/smp.c:44
  cpuhp_invoke_callback+0x254/0x1480 kernel/cpu.c:136
  cpuhp_up_callbacks+0x81/0x2a0 kernel/cpu.c:493
  _cpu_up+0x1e3/0x2a0 kernel/cpu.c:1057
  do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
  cpu_up+0x18/0x20 kernel/cpu.c:1095
  smp_init+0xe9/0xee kernel/smp.c:564
  kernel_init_freeable+0x439/0x690 init/main.c:1010
  kernel_init+0x13/0x180 init/main.c:941
  ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433

cpu_hotplug_begin
  cpu_hotplug.lock
pcpu_alloc
  pcpu_alloc_mutex

  get_online_cpus+0x62/0x90 kernel/cpu.c:248
  drain_all_pages+0xf8/0x710 mm/page_alloc.c:2385
  __alloc_pages_direct_reclaim mm/page_alloc.c:3440 [inline]
  __alloc_pages_slowpath+0x8fd/0x2370 mm/page_alloc.c:3778
  __alloc_pages_nodemask+0x8f5/0xc60 mm/page_alloc.c:3980
  __alloc_pages include/linux/gfp.h:426 [inline]
  __alloc_pages_node include/linux/gfp.h:439 [inline]
  alloc_pages_node include/linux/gfp.h:453 [inline]
  pcpu_alloc_pages mm/percpu-vm.c:93 [inline]
  pcpu_populate_chunk+0x1e1/0x900 mm/percpu-vm.c:282
  pcpu_alloc+0xe01/0x1280 mm/percpu.c:998
  __alloc_percpu_gfp+0x27/0x30 mm/percpu.c:1062
  bpf_array_alloc_percpu kernel/bpf/arraymap.c:34 [inline]
  array_map_alloc+0x532/0x710 kernel/bpf/arraymap.c:99
  find_and_alloc_map kernel/bpf/syscall.c:34 [inline]
  map_create kernel/bpf/syscall.c:188 [inline]
  SYSC_bpf kernel/bpf/syscall.c:870 [inline]
  SyS_bpf+0xd64/0x2500 kernel/bpf/syscall.c:827
  entry_SYSCALL_64_fastpath+0x1f/0xc2

pcpu_alloc
  pcpu_alloc_mutex
drain_all_pages
  get_online_cpus
    cpu_hotplug.lock

  cpu_hotplug_begin+0x206/0x2e0 kernel/cpu.c:304
  _cpu_up+0xca/0x2a0 kernel/cpu.c:1011
  do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
  cpu_up+0x18/0x20 kernel/cpu.c:1095
  smp_init+0xe9/0xee kernel/smp.c:564
  kernel_init_freeable+0x439/0x690 init/main.c:1010
  kernel_init+0x13/0x180 init/main.c:941
  ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433

cpu_hotplug_begin
  cpu_hotplug.lock

Pulling cpu hotplug locks inside the page allocator is just too
dangerous.  Let's remove the dependency by dropping get_online_cpus()
from drain_all_pages.  This is not so simple though because now we do
not have a protection against cpu hotplug which means 2 things:

  - the work item might be executed on a different cpu in worker from
    unbound pool so it doesn't run on pinned on the cpu

  - we have to make sure that we do not race with page_alloc_cpu_dead
    calling drain_pages_zone

Disabling preemption in drain_local_pages_wq will solve the first
problem drain_local_pages will determine its local CPU from the WQ
context which will be stable after that point, page_alloc_cpu_dead is
pinned to the CPU already.  The later condition is achieved by disabling
IRQs in drain_pages_zone.

Fixes: mm, page_alloc: drain per-cpu pages from workqueue context
Link: http://lkml.kernel.org/r/20170207201950.20482-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Mel Gorman
0ccce3b924 mm, page_alloc: drain per-cpu pages from workqueue context
The per-cpu page allocator can be drained immediately via
drain_all_pages() which sends IPIs to every CPU.  In the next patch, the
per-cpu allocator will only be used for interrupt-safe allocations which
prevents draining it from IPI context.  This patch uses workqueues to
drain the per-cpu lists instead.

This is slower but no slowdown during intensive reclaim was measured and
the paths that use drain_all_pages() are not that sensitive to
performance.  This is particularly true as the path would only be
triggered when reclaim is failing.  It also makes a some sense to avoid
storming a machine with IPIs when it's under memory pressure.  Arguably,
it should be further adjusted so that only one caller at a time is
draining pages but it's beyond the scope of the current patch.

Link: http://lkml.kernel.org/r/20170123153906.3122-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Mel Gorman
9cd7555875 mm, page_alloc: split alloc_pages_nodemask()
alloc_pages_nodemask does a number of preperation steps that determine
what zones can be used for the allocation depending on a variety of
factors.  This is fine but a hypothetical caller that wanted multiple
order-0 pages has to do the preparation steps multiple times.  This
patch structures __alloc_pages_nodemask such that it's relatively easy
to build a bulk order-0 page allocator.  There is no functional change.

Link: http://lkml.kernel.org/r/20170123153906.3122-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Mel Gorman
066b239355 mm, page_alloc: split buffered_rmqueue()
Patch series "Use per-cpu allocator for !irq requests and prepare for a
bulk allocator", v5.

This series is motivated by a conversation led by Jesper Dangaard Brouer
at the last LSF/MM proposing a generic page pool for DMA-coherent pages.
Part of his motivation was due to the overhead of allocating multiple
order-0 that led some drivers to use high-order allocations and
splitting them.  This is very slow in some cases.

The first two patches in this series restructure the page allocator such
that it is relatively easy to introduce an order-0 bulk page allocator.
A patch exists to do that and has been handed over to Jesper until an
in-kernel users is created.  The third patch prevents the per-cpu
allocator being drained from IPI context as that can potentially corrupt
the list after patch four is merged.  The final patch alters the per-cpu
alloctor to make it exclusive to !irq requests.  This cuts
allocation/free overhead by roughly 30%.

Performance tests from both Jesper and me are included in the patch.

This patch (of 4):

buffered_rmqueue removes a page from a given zone and uses the per-cpu
list for order-0.  This is fine but a hypothetical caller that wanted
multiple order-0 pages has to disable/reenable interrupts multiple
times.  This patch structures buffere_rmqueue such that it's relatively
easy to build a bulk order-0 page allocator.  There is no functional
change.

[mgorman@techsingularity.net: failed per-cpu refill may blow up]
  Link: http://lkml.kernel.org/r/20170124112723.mshmgwq2ihxku2um@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
David Rientjes
685dbf6f5a mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
The patch "mm, page_alloc: warn_alloc print nodemask" implicitly sets
the allocation nodemask to cpuset_current_mems_allowed when there is no
effective mempolicy.  cpuset_current_mems_allowed is only effective when
cpusets are enabled, which is also printed by warn_alloc(), so setting
the nodemask to cpuset_current_mems_allowed is redundant and prevents
debugging issues where ac->nodemask is not set properly in the page
allocator.

This provides better debugging output since
cpuset_print_current_mems_allowed() is already provided.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701181347320.142399@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
6c18ba7a18 mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
Now that __GFP_NOFAIL doesn't override decisions to skip the oom killer
we are left with requests which require to loop inside the allocator
without invoking the oom killer (e.g.  GFP_NOFS|__GFP_NOFAIL used by fs
code) and so they might, in very unlikely situations, loop for ever -
e.g.  other parallel request could starve them.

This patch tries to limit the likelihood of such a lockup by giving
these __GFP_NOFAIL requests a chance to move on by consuming a small
part of memory reserves.  We are using ALLOC_HARDER which should be
enough to prevent from the starvation by regular allocation requests,
yet it shouldn't consume enough from the reserves to disrupt high
priority requests (ALLOC_HIGH).

While we are at it, let's introduce a helper __alloc_pages_cpuset_fallback
which enforces the cpusets but allows to fallback to ignore them if the
first attempt fails.  __GFP_NOFAIL requests can be considered important
enough to allow cpuset runaway in order for the system to move on.  It
is highly unlikely that any of these will be GFP_USER anyway.

Link: http://lkml.kernel.org/r/20161220134904.21023-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
06ad276ac1 mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
__alloc_pages_may_oom makes sure to skip the OOM killer depending on the
allocation request.  This includes lowmem requests, costly high order
requests and others.  For a long time __GFP_NOFAIL acted as an override
for all those rules.  This is not documented and it can be quite
surprising as well.  E.g.  GFP_NOFS requests are not invoking the OOM
killer but GFP_NOFS|__GFP_NOFAIL does so if we try to convert some of
the existing open coded loops around allocator to nofail request (and we
have done that in the past) then such a change would have a non trivial
side effect which is far from obvious.  Note that the primary motivation
for skipping the OOM killer is to prevent from pre-mature invocation.

The exception has been added by commit 82553a937f12 ("oom: invoke oom
killer for __GFP_NOFAIL").  The changelog points out that the oom killer
has to be invoked otherwise the request would be looping for ever.  But
this argument is rather weak because the OOM killer doesn't really
guarantee a forward progress for those exceptional cases:

- it will hardly help to form costly order which in turn can result in
  the system panic because of no oom killable task in the end - I believe
  we certainly do not want to put the system down just because there is a
  nasty driver asking for order-9 page with GFP_NOFAIL not realizing all
  the consequences.  It is much better this request would loop for ever
  than the massive system disruption

- lowmem is also highly unlikely to be freed during OOM killer

- GFP_NOFS request could trigger while there is still a lot of memory
  pinned by filesystems.

This patch simply removes the __GFP_NOFAIL special case in order to have a
more clear semantic without surprising side effects.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
9a67f6488e mm: consolidate GFP_NOFAIL checks in the allocator slowpath
Tetsuo Handa has pointed out that commit 0a0337e0d1d1 ("mm, oom: rework
oom detection") has subtly changed semantic for costly high order
requests with __GFP_NOFAIL and withtout __GFP_REPEAT and those can fail
right now.  My code inspection didn't reveal any such users in the tree
but it is true that this might lead to unexpected allocation failures
and subsequent OOPs.

__alloc_pages_slowpath wrt.  GFP_NOFAIL is hard to follow currently.
There are few special cases but we are lacking a catch all place to be
sure we will not miss any case where the non failing allocation might
fail.  This patch reorganizes the code a bit and puts all those special
cases under nopage label which is the generic go-to-fail path.  Non
failing allocations are retried or those that cannot retry like
non-sleeping allocation go to the failure point directly.  This should
make the code flow much easier to follow and make it less error prone
for future changes.

While we are there we have to move the stall check up to catch
potentially looping non-failing allocations.

[akpm@linux-foundation.org: fix alloc_flags may-be-used-uninitalized]
Link: http://lkml.kernel.org/r/20161220134904.21023-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
9af744d743 lib/show_mem.c: teach show_mem to work with the given nodemask
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES.  The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process.  This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions.  E.g.  memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).

Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed.  NULL
nodemask is interpreted as cpuset_current_mems_allowed.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170117091543.25850-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
a8e99259e7 mm, page_alloc: warn_alloc print nodemask
warn_alloc is currently used for to report an allocation failure or an
allocation stall.  We print some details of the allocation request like
the gfp mask and the request order.  We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well.  We alreaddy print the nodemask in the OOM report.

Add nodemask to warn_alloc and print it in warn_alloc as well.

Link: http://lkml.kernel.org/r/20170117091543.25850-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Michal Hocko
c02e50bb8a mm, page_alloc: do not report all nodes in show_mem
Patch series "show_mem updates", v2.

This is a mixture of one bug fix (patch 1), an enhancement (patch 2) and
cleanups (the rest of the series).  First two patches should be really
straightforward.  Patch 3 removes some arch specific show_mem
implementations because I think they are quite outdated and do not
really serve any useful purpose anymore.  I think we should really
strive to have a consistent show_mem output regardless of the
architecture.  If some architecture is really special and wants to dump
something additional we should do that via an arch specific hook.

The last patch adds nodemask parameter so that we do not rely on the
hardcoded mems_allowed of the current task when doing the node
filtering.  I consider this more a cleanup than a fix because basically
all users use a nodemask which is a subset of mems_allowed.  There is
only one call path in the memory hotplug which doesn't comply with this
but that is hardly something to worry about.

This patch (of 4):

Commit 599d0c954f91 ("mm, vmscan: move LRU lists to node") has added per
numa node statistics to show_mem but it forgot to add
skip_free_areas_node to filter out nodes which are outside of the
allocating task numa policy.  Add this check to not pollute the output
with the pointless information.

Link: http://lkml.kernel.org/r/20170117091543.25850-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Paul Burton
b92df1de5d mm: page_alloc: skip over regions of invalid pfns where possible
When using a sparse memory model memmap_init_zone() when invoked with
the MEMMAP_EARLY context will skip over pages which aren't valid - ie.
which aren't in a populated region of the sparse memory map.  However if
the memory map is extremely sparse then it can spend a long time
linearly checking each PFN in a large non-populated region of the memory
map & skipping it in turn.

When CONFIG_HAVE_MEMBLOCK_NODE_MAP is enabled, we have sufficient
information to quickly discover the next valid PFN given an invalid one
by searching through the list of memory regions & skipping forwards to
the first PFN covered by the memory region to the right of the
non-populated region.  Implement this in order to speed up
memmap_init_zone() for systems with extremely sparse memory maps.

James said "I have tested this patch on a virtual model of a Samurai CPU
with a sparse memory map.  The kernel boot time drops from 109 to
62 seconds. "

Link: http://lkml.kernel.org/r/20161125185518.29885-1-paul.burton@imgtec.com
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Tested-by: James Hartley <james.hartley@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:29 -08:00
Michal Hocko
65190cff3c oom, trace: add compaction retry tracepoint
Higher order requests oom debugging is currently quite hard.  We do have
some compaction points which can tell us how the compaction is operating
but there is no trace point to tell us about compaction retry logic.
This patch adds a one which will have the following format

            bash-3126  [001] ....  1498.220001: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=withdrawn retries=0 max_retries=16 should_retry=0

we can see that the order 9 request is not retried even though we are in
the highest compaction priority mode becase the last compaction attempt
was withdrawn.  This means that compaction_zonelist_suitable must have
returned false and there is no suitable zone to compact for this request
and so no need to retry further.

another example would be
           <...>-3137  [001] ....    81.501689: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=failed retries=0 max_retries=16 should_retry=0

in this case the order-9 compaction failed to find any suitable block.
We do not retry anymore because this is a costly request and those do
not go below COMPACT_PRIO_SYNC_LIGHT priority.

Link: http://lkml.kernel.org/r/20161220130135.15719-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Michal Hocko
d379f01de0 oom, trace: add oom detection tracepoints
should_reclaim_retry is the central decision point for declaring the
OOM.  It might be really useful to expose data used for this decision
making when debugging an unexpected oom situations.

Say we have an OOM report:
[   52.264001] mem_eater invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_score_adj=0
[   52.267549] CPU: 3 PID: 3148 Comm: mem_eater Tainted: G        W       4.8.0-oomtrace3-00006-gb21338b386d2 #1024

Now we can check the tracepoint data to see how we have ended up in this
situation:
       mem_eater-3148  [003] ....    52.432801: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11134 min_wmark=11084 no_progress_loops=1 wmark_check=1
       mem_eater-3148  [003] ....    52.433269: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11103 min_wmark=11084 no_progress_loops=1 wmark_check=1
       mem_eater-3148  [003] ....    52.433712: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11100 min_wmark=11084 no_progress_loops=2 wmark_check=1
       mem_eater-3148  [003] ....    52.434067: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11097 min_wmark=11084 no_progress_loops=3 wmark_check=1
       mem_eater-3148  [003] ....    52.434414: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11094 min_wmark=11084 no_progress_loops=4 wmark_check=1
       mem_eater-3148  [003] ....    52.434761: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11091 min_wmark=11084 no_progress_loops=5 wmark_check=1
       mem_eater-3148  [003] ....    52.435108: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11087 min_wmark=11084 no_progress_loops=6 wmark_check=1
       mem_eater-3148  [003] ....    52.435478: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11084 min_wmark=11084 no_progress_loops=7 wmark_check=0
       mem_eater-3148  [003] ....    52.435478: reclaim_retry_zone: node=0 zone=DMA order=0 reclaimable=0 available=1126 min_wmark=179 no_progress_loops=7 wmark_check=0

The above shows that we can quickly deduce that the reclaim stopped
making any progress (see no_progress_loops increased in each round) and
while there were still some 51 reclaimable pages they couldn't be
dropped for some reason (vmscan trace points would tell us more about
that part).  available will represent reclaimable + free_pages scaled
down per no_progress_loops factor.  This is essentially an optimistic
estimate of how much memory we would have when reclaiming everything.
This can be compared to min_wmark to get a rought idea but the
wmark_check tells the result of the watermark check which is more
precise (includes lowmem reserves, considers the order etc.).  As we can
see no zone is eligible in the end and that is why we have triggered the
oom in this situation.

Please note that higher order requests might fail on the wmark_check
even when there is much more memory available than min_wmark - e.g.
when the memory is fragmented.  A follow up tracepoint will help to
debug those situations.

Link: http://lkml.kernel.org/r/20161220130135.15719-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Vlastimil Babka
13ad59df67 mm, page_alloc: avoid page_to_pfn() when merging buddies
On architectures that allow memory holes, page_is_buddy() has to perform
page_to_pfn() to check for the memory hole.  After the previous patch,
we have the pfn already available in __free_one_page(), which is the
only caller of page_is_buddy(), so move the check there and avoid
page_to_pfn().

Link: http://lkml.kernel.org/r/20161216120009.20064-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Vlastimil Babka
76741e776a mm, page_alloc: don't convert pfn to idx when merging
In __free_one_page() we do the buddy merging arithmetics on "page/buddy
index", which is just the lower MAX_ORDER bits of pfn.  The operations
we do that affect the higher bits are bitwise AND and subtraction (in
that order), where the final result will be the same with the higher
bits left unmasked, as long as these bits are equal for both buddies -
which must be true by the definition of a buddy.

We can therefore use pfn's directly instead of "index" and skip the
zeroing of >MAX_ORDER bits.  This can help a bit by itself, although
compiler might be smart enough already.  It also helps the next patch to
avoid page_to_pfn() for memory hole checks.

Link: http://lkml.kernel.org/r/20161216120009.20064-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Michal Hocko
aa187507ef mm: throttle show_mem() from warn_alloc()
Tetsuo has been stressing OOM killer path with many parallel allocation
requests when he has noticed that it is not all that hard to swamp
kernel logs with warn_alloc messages caused by allocation stalls.  Even
though the allocation stall message is triggered only once in 10s there
might be many different tasks hitting it roughly around the same time.

A big part of the output is show_mem() which can generate a lot of
output even on a small machines.  There is no reason to show the state
of memory counter for each allocation stall, especially when multiple of
them are reported in a short time period.  Chances are that not much has
changed since the last report.  This patch simply rate limits show_mem
called from warn_alloc to only dump something once per second.  This
should be enough to give us a clue why an allocation might be stalling
while burst of warnings will not swamp log with too much data.

While we are at it, extract all the show_mem related handling (filters)
into a separate function warn_alloc_show_mem.  This will make the code
cleaner and as a bonus point we can distinguish which part of warn_alloc
got throttled due to rate limiting as ___ratelimit dumps the caller.

[akpm@linux-foundation.org: reduce scope of the ratelimit_states]
Link: http://lkml.kernel.org/r/20161215101510.9030-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Vlastimil Babka
e47483bca2 mm, page_alloc: fix premature OOM when racing with cpuset mems update
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory.  The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.

The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed.  This was
masked in the past by sufficient retries, but since commit 682a3385e773
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.

A previous patch fixed this problem for current->mems_allowed.  However,
cpuset changes also update the task's mempolicy nodemask.  The fix has
two parts.  We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.

[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f60f ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Vlastimil Babka
5ce9bfef1d mm, page_alloc: move cpuset seqcount checking to slowpath
This is a preparation for the following patch to make review simpler.
While the primary motivation is a bug fix, this also simplifies the fast
path, although the moved code is only enabled when cpusets are in use.

Link: http://lkml.kernel.org/r/20170120103843.24587-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Vlastimil Babka
16096c25bf mm, page_alloc: fix fast-path race with cpuset update or removal
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory.  The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.

One possible cause is that in the fast path we find the preferred
zoneref according to current mems_allowed, so that it points to the
middle of the zonelist, skipping e.g.  zones of node 1 completely.  If
the mems_allowed is updated to contain only node 1, we never reach it in
the zonelist, and trigger OOM before checking the cpuset_mems_cookie.

This patch fixes the particular case by redoing the preferred zoneref
search if we switch back to the original nodemask.  The condition is
also slightly changed so that when the last non-root cpuset is removed,
we don't miss it.

Note that this is not a full fix, and more patches will follow.

Link: http://lkml.kernel.org/r/20170120103843.24587-3-vbabka@suse.cz
Fixes: 682a3385e773 ("mm, page_alloc: inline the fast path of the zonelist iterator")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Vlastimil Babka
ea57485af8 mm, page_alloc: fix check for NULL preferred_zone
Patch series "fix premature OOM regression in 4.7+ due to cpuset races".

This is v2 of my attempt to fix the recent report based on LTP cpuset
stress test [1].  The intention is to go to stable 4.9 LTSS with this,
as triggering repeated OOMs is not nice.  That's why the patches try to
be not too intrusive.

Unfortunately why investigating I found that modifying the testcase to
use per-VMA policies instead of per-task policies will bring the OOM's
back, but that seems to be much older and harder to fix problem.  I have
posted a RFC [2] but I believe that fixing the recent regressions has a
higher priority.

Longer-term we might try to think how to fix the cpuset mess in a better
and less error prone way.  I was for example very surprised to learn,
that cpuset updates change not only task->mems_allowed, but also
nodemask of mempolicies.  Until now I expected the parameter to
alloc_pages_nodemask() to be stable.  I wonder why do we then treat
cpusets specially in get_page_from_freelist() and distinguish HARDWALL
etc, when there's unconditional intersection between mempolicy and
cpuset.  I would expect the nodemask adjustment for saving overhead in
g_p_f(), but that clearly doesn't happen in the current form.  So we
have both crazy complexity and overhead, AFAICS.

[1] https://lkml.kernel.org/r/CAFpQJXUq-JuEP=QPidy4p_=FN0rkH5Z-kfB4qBvsf6jMS87Edg@mail.gmail.com
[2] https://lkml.kernel.org/r/7c459f26-13a6-a817-e508-b65b903a8378@suse.cz

This patch (of 4):

Since commit c33d6c06f60f ("mm, page_alloc: avoid looking up the first
zone in a zonelist twice") we have a wrong check for NULL preferred_zone,
which can theoretically happen due to concurrent cpuset modification.  We
check the zoneref pointer which is never NULL and we should check the zone
pointer.  Also document this in first_zones_zonelist() comment per Michal
Hocko.

Fixes: c33d6c06f60f ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20170120103843.24587-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Lucas Stach
424f6c4818 mm: alloc_contig: re-allow CMA to compact FS pages
Commit 73e64c51afc5 ("mm, compaction: allow compaction for GFP_NOFS
requests") changed compation to skip FS pages if not explicitly allowed
to touch them, but missed to update the CMA compact_control.

This leads to a very high isolation failure rate, crippling performance
of CMA even on a lightly loaded system.  Re-allow CMA to compact FS
pages by setting the correct GFP flags, restoring CMA behavior and
performance to the kernel 4.9 level.

Fixes: 73e64c51afc5 (mm, compaction: allow compaction for GFP_NOFS requests)
Link: http://lkml.kernel.org/r/20170113115155.24335-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Alexander Duyck
2976db8018 mm: rename __page_frag functions to __page_frag_cache, drop order from drain
This patch does two things.

First it goes through and renames the __page_frag prefixed functions to
__page_frag_cache so that we can be clear that we are draining or
refilling the cache, not the frags themselves.

Second we drop the order parameter from __page_frag_cache_drain since we
don't actually need to pass it since all fragments are either order 0 or
must be a compound page.

Link: http://lkml.kernel.org/r/20170104023954.13451.5678.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Alexander Duyck
8c2dd3e4a4 mm: rename __alloc_page_frag to page_frag_alloc and __free_page_frag to page_frag_free
Patch series "Page fragment updates", v4.

This patch series takes care of a few cleanups for the page fragments
API.

First we do some renames so that things are much more consistent.  First
we move the page_frag_ portion of the name to the front of the functions
names.  Secondly we split out the cache specific functions from the
other page fragment functions by adding the word "cache" to the name.

Finally I added a bit of documentation that will hopefully help to
explain some of this.  I plan to revisit this later as we get things
more ironed out in the near future with the changes planned for the DMA
setup to support eXpress Data Path.

This patch (of 3):

This patch renames the page frag functions to be more consistent with
other APIs.  Specifically we place the name page_frag first in the name
and then have either an alloc or free call name that we append as the
suffix.  This makes it a bit clearer in terms of naming.

In addition we drop the leading double underscores since we are
technically no longer a backing interface and instead the front end that
is called from the networking APIs.

Link: http://lkml.kernel.org/r/20170104023854.13451.67390.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Ard Biesheuvel
f073bdc517 mm: don't dereference struct page fields of invalid pages
The VM_BUG_ON() check in move_freepages() checks whether the node id of
a page matches the node id of its zone.  However, it does this before
having checked whether the struct page pointer refers to a valid struct
page to begin with.  This is guaranteed in most cases, but may not be
the case if CONFIG_HOLES_IN_ZONE=y.

So reorder the VM_BUG_ON() with the pfn_valid_within() check.

Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Robert Richter <rrichter@cavium.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Michal Hocko
41b6167e8f mm: get rid of __GFP_OTHER_NODE
The flag was introduced by commit 78afd5612deb ("mm: add
__GFP_OTHER_NODE flag") to allow proper accounting of remote node
allocations done by kernel daemons on behalf of a process - e.g.
khugepaged.

After "mm: fix remote numa hits statistics" we do not need and actually
use the flag so we can safely remove it because all allocations which
are satisfied from their "home" node are accounted properly.

[mhocko@suse.com: fix build]
Link: http://lkml.kernel.org/r/20170106122225.GK5556@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170102153057.9451-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Michal Hocko
2df26639e7 mm: fix remote numa hits statistics
Jia He has noticed that commit b9f00e147f27 ("mm, page_alloc: reduce
branches in zone_statistics") has an unintentional side effect that
remote node allocation requests are accounted as NUMA_MISS rathat than
NUMA_HIT and NUMA_OTHER if such a request doesn't use __GFP_OTHER_NODE.

There are many of these potentially because the flag is used very rarely
while we have many users of __alloc_pages_node.

Fix this by simply ignoring __GFP_OTHER_NODE (it can be removed in a
follow up patch) and treat all allocations that were satisfied from the
preferred zone's node as NUMA_HITS because this is the same node we
requested the allocation from in most cases.  If this is not the local
node then we just account it as NUMA_OTHER rather than NUMA_LOCAL.

One downsize would be that an allocation request for a node which is
outside of the mempolicy nodemask would be reported as a hit which is a
bit weird but that was the case before b9f00e147f27 already.

Fixes: b9f00e147f27 ("mm, page_alloc: reduce branches in zone_statistics")
Link: http://lkml.kernel.org/r/20170102153057.9451-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz> # with cbmc[1] superpowers
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:54 -08:00
Alexander Duyck
44fdffd705 mm: add support for releasing multiple instances of a page
Add a function that allows us to batch free a page that has multiple
references outstanding.  Specifically this function can be used to drop
a page being used in the page frag alloc cache.  With this drivers can
make use of functionality similar to the page frag alloc cache without
having to do any workarounds for the fact that there is no function that
frees multiple references.

Link: http://lkml.kernel.org/r/20161110113606.76501.70752.stgit@ahduyck-blue-test.jf.intel.com
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Keguang Zhang <keguang.zhang@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-14 16:04:08 -08:00
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Linus Torvalds
e71c3978d6 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner:
 "This is the final round of converting the notifier mess to the state
  machine. The removal of the notifiers and the related infrastructure
  will happen around rc1, as there are conversions outstanding in other
  trees.

  The whole exercise removed about 2000 lines of code in total and in
  course of the conversion several dozen bugs got fixed. The new
  mechanism allows to test almost every hotplug step standalone, so
  usage sites can exercise all transitions extensively.

  There is more room for improvement, like integrating all the
  pointlessly different architecture mechanisms of synchronizing,
  setting cpus online etc into the core code"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  tracing/rb: Init the CPU mask on allocation
  soc/fsl/qbman: Convert to hotplug state machine
  soc/fsl/qbman: Convert to hotplug state machine
  zram: Convert to hotplug state machine
  KVM/PPC/Book3S HV: Convert to hotplug state machine
  arm64/cpuinfo: Convert to hotplug state machine
  arm64/cpuinfo: Make hotplug notifier symmetric
  mm/compaction: Convert to hotplug state machine
  iommu/vt-d: Convert to hotplug state machine
  mm/zswap: Convert pool to hotplug state machine
  mm/zswap: Convert dst-mem to hotplug state machine
  mm/zsmalloc: Convert to hotplug state machine
  mm/vmstat: Convert to hotplug state machine
  mm/vmstat: Avoid on each online CPU loops
  mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
  tracing/rb: Convert to hotplug state machine
  oprofile/nmi timer: Convert to hotplug state machine
  net/iucv: Use explicit clean up labels in iucv_init()
  x86/pci/amd-bus: Convert to hotplug state machine
  x86/oprofile/nmi: Convert to hotplug state machine
  ...
2016-12-12 19:25:04 -08:00
Mel Gorman
a6de734bc0 mm, page_alloc: keep pcp count and list contents in sync if struct page is corrupted
Vlastimil Babka pointed out that commit 479f854a207c ("mm, page_alloc:
defer debugging checks of pages allocated from the PCP") will allow the
per-cpu list counter to be out of sync with the per-cpu list contents if
a struct page is corrupted.

The consequence is an infinite loop if the per-cpu lists get fully
drained by free_pcppages_bulk because all the lists are empty but the
count is positive.  The infinite loop occurs here

                do {
                        batch_free++;
                        if (++migratetype == MIGRATE_PCPTYPES)
                                migratetype = 0;
                        list = &pcp->lists[migratetype];
                } while (list_empty(list));

What the user sees is a bad page warning followed by a soft lockup with
interrupts disabled in free_pcppages_bulk().

This patch keeps the accounting in sync.

Fixes: 479f854a207c ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20161202112951.23346-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Minchan Kim
29fac03bef mm: make unreserve highatomic functions reliable
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.

This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.

Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype.  In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages.  We could solve it simply via
draining all of reserved pages before the OOM.  It would have a
safeguard role to exhuast reserved pages before converging to OOM.

Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
04c8716f7b mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages.  As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.

Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
4855e4a7f2 mm: prevent double decrease of nr_reserved_highatomic
There is race between page freeing and unreserved highatomic.

 CPU 0				    CPU 1

    free_hot_cold_page
      mt = get_pfnblock_migratetype
      set_pcppage_migratetype(page, mt)
    				    unreserve_highatomic_pageblock
    				    spin_lock_irqsave(&zone->lock)
    				    move_freepages_block
    				    set_pageblock_migratetype(page)
    				    spin_unlock_irqrestore(&zone->lock)
      free_pcppages_bulk
        __free_one_page(mt) <- mt is stale

By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed.  By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.

So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.

Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
88ed365ea2 mm: don't steal highatomic pageblock
Patch series "use up highorder free pages before OOM", v3.

I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.

This patch (of 4):

In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list.  If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).

So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare.  Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.

Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Ingo Molnar
89a01c51cb Merge branch 'x86/cpufeature' into x86/asm, to pick up dependency
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-17 08:30:54 +01:00