IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
With live migration support and finally a good solution for exception
event injection, nested VMX should be ready for having a stable userspace
ABI. The results of syzkaller fuzzing are not perfect but not horrible
either (and might be partially due to running on GCE, so that effectively
we're testing three-level nesting on a fork of upstream KVM!). Enabling
it by default seems like a nice way to conclude the 4.20 pull request. :)
Unfortunately, enabling nested SVM in 2009 (commit 4b6e4dca70) was a
bit premature. However, until live migration support is in place we can
reasonably expect that it does not offer much in terms of ABI guarantees.
Therefore we are still in time to break things and conform as much as
possible to the interface used for VMX.
Suggested-by: Jim Mattson <jmattson@google.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Celebrated-by: Liran Alon <liran.alon@oracle.com>
Celebrated-by: Wanpeng Li <kernellwp@gmail.com>
Celebrated-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86_64 zero-extends 32bit xor operation to a full 64bit register.
Also add a comment and remove unnecessary instruction suffix in vmx.c
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a per-VM capability which can be enabled by userspace so that
the faulting linear address will be included with the information
about a pending #PF in L2, and the "new DR6 bits" will be included
with the information about a pending #DB in L2. With this capability
enabled, the L1 hypervisor can now intercept #PF before CR2 is
modified. Under VMX, the L1 hypervisor can now intercept #DB before
DR6 and DR7 are modified.
When userspace has enabled KVM_CAP_EXCEPTION_PAYLOAD, it should
generally provide an appropriate payload when injecting a #PF or #DB
exception via KVM_SET_VCPU_EVENTS. However, to support restoring old
checkpoints, this payload is not required.
Note that bit 16 of the "new DR6 bits" is set to indicate that a debug
exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions was
enabled. This is the reverse of DR6.RTM, which is cleared in this
scenario.
This capability also enables exception.pending in struct
kvm_vcpu_events, which allows userspace to distinguish between pending
and injected exceptions.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When exception payloads are enabled by userspace (which is not yet
possible) and a #DB is raised in L2, defer the setting of DR6 until
later. Under VMX, this allows the L1 hypervisor to intercept the fault
before DR6 is modified. Under SVM, DR6 is modified before L1 can
intercept the fault (as has always been the case with DR7).
Note that the payload associated with a #DB exception includes only
the "new DR6 bits." When the payload is delievered, DR6.B0-B3 will be
cleared and DR6.RTM will be set prior to merging in the new DR6 bits.
Also note that bit 16 in the "new DR6 bits" is set to indicate that a
debug exception (#DB) or a breakpoint exception (#BP) occurred inside
an RTM region while advanced debugging of RTM transactional regions
was enabled. Though the reverse of DR6.RTM, this makes the #DB payload
field compatible with both the pending debug exceptions field under
VMX and the exit qualification for #DB exceptions under VMX.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When exception payloads are enabled by userspace (which is not yet
possible) and a #PF is raised in L2, defer the setting of CR2 until
the #PF is delivered. This allows the L1 hypervisor to intercept the
fault before CR2 is modified.
For backwards compatibility, when exception payloads are not enabled
by userspace, kvm_multiple_exception modifies CR2 when the #PF
exception is raised.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_multiple_exception now takes two additional operands: has_payload
and payload, so that updates to CR2 (and DR6 under VMX) can be delayed
until the exception is delivered. This is necessary to properly
emulate VMX or SVM hardware behavior for nested virtualization.
The new behavior is triggered by
vcpu->kvm->arch.exception_payload_enabled, which will (later) be set
by a new per-VM capability, KVM_CAP_EXCEPTION_PAYLOAD.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The per-VM capability KVM_CAP_EXCEPTION_PAYLOAD (to be introduced in a
later commit) adds the following fields to struct kvm_vcpu_events:
exception_has_payload, exception_payload, and exception.pending.
With this capability set, all of the details of vcpu->arch.exception,
including the payload for a pending exception, are reported to
userspace in response to KVM_GET_VCPU_EVENTS.
With this capability clear, the original ABI is preserved, and the
exception.injected field is set for either pending or injected
exceptions.
When userspace calls KVM_SET_VCPU_EVENTS with
KVM_CAP_EXCEPTION_PAYLOAD clear, exception.injected is no longer
translated to exception.pending. KVM_SET_VCPU_EVENTS can now only
establish a pending exception when KVM_CAP_EXCEPTION_PAYLOAD is set.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The payload associated with a #PF exception is the linear address of
the fault to be loaded into CR2 when the fault is delivered. The
payload associated with a #DB exception is a mask of the DR6 bits to
be set (or in the case of DR6.RTM, cleared) when the fault is
delivered. Add fields has_payload and payload to kvm_queued_exception
to track payloads for pending exceptions.
The new fields are introduced here, but for now, they are just cleared.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The header file indicates that there are 36 reserved bytes at the end
of this structure. Adjust the documentation to agree with the header
file.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modify test library and add eVMCS test. This includes nVMX save/restore
testing.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for get/set of nested state when Enlightened VMCS is in use.
A new KVM_STATE_NESTED_EVMCS flag to indicate eVMCS on the vCPU was enabled
is added.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split prepare_for_vmx_operation() into prepare_for_vmx_operation() and
load_vmcs() so we can inject GUEST_SYNC() in between.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is perfectly valid for a guest to do VMXON and not do VMPTRLD. This
state needs to be preserved on migration.
Cc: stable@vger.kernel.org
Fixes: 8fcc4b5923
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vcpu->arch.pv_eoi is accessible through both HV_X64_MSR_VP_ASSIST_PAGE and
MSR_KVM_PV_EOI_EN so on migration userspace may try to restore them in any
order. Values match, however, kvm_lapic_enable_pv_eoi() uses different
length: for Hyper-V case it's the whole struct hv_vp_assist_page, for KVM
native case it is 8. In case we restore KVM-native MSR last cache will
be reinitialized with len=8 so trying to access VP assist page beyond
8 bytes with kvm_read_guest_cached() will fail.
Check if we re-initializing cache for the same address and preserve length
in case it was greater.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VP assist pages may hold valuable data which needs to be preserved across
migration. Clean PV EOI portion of the data on init, the guest is
responsible for making sure there's no garbage in the rest.
This will be used for nVMX migration, eVMCS address needs to be preserved.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When Enlightened VMCS is in use by L1 hypervisor we can avoid vmwriting
VMCS fields which did not change.
Our first goal is to achieve minimal impact on traditional VMCS case so
we're not wrapping each vmwrite() with an if-changed checker. We also can't
utilize static keys as Enlightened VMCS usage is per-guest.
This patch implements the simpliest solution: checking fields in groups.
We skip single vmwrite() statements as doing the check will cost us
something even in non-evmcs case and the win is tiny. Unfortunately, this
makes prepare_vmcs02_full{,_full}() code Enlightened VMCS-dependent (and
a bit ugly).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Hyper-V TLFS 5.0b:
"The L1 hypervisor may choose to use enlightened VMCSs by writing 1 to
the corresponding field in the VP assist page (see section 7.8.7).
Another field in the VP assist page controls the currently active
enlightened VMCS. Each enlightened VMCS is exactly one page (4 KB) in
size and must be initially zeroed. No VMPTRLD instruction must be
executed to make an enlightened VMCS active or current.
After the L1 hypervisor performs a VM entry with an enlightened VMCS,
the VMCS is considered active on the processor. An enlightened VMCS
can only be active on a single processor at the same time. The L1
hypervisor can execute a VMCLEAR instruction to transition an
enlightened VMCS from the active to the non-active state. Any VMREAD
or VMWRITE instructions while an enlightened VMCS is active is
unsupported and can result in unexpected behavior."
Keep Enlightened VMCS structure for the current L2 guest permanently mapped
from struct nested_vmx instead of mapping it every time.
Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds hv_evmcs pointer and implement copy_enlightened_to_vmcs12() and
copy_enlightened_to_vmcs12().
prepare_vmcs02()/prepare_vmcs02_full() separation is not valid for
Enlightened VMCS, do full sync for now.
Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enlightened VMCS is opt-in. The current version does not contain all
fields supported by nested VMX so we must not advertise the
corresponding VMX features if enlightened VMCS is enabled.
Userspace is given the enlightened VMCS version supported by KVM as
part of enabling KVM_CAP_HYPERV_ENLIGHTENED_VMCS. The version is to
be advertised to the nested hypervisor, currently done via a cpuid
leaf for Hyper-V.
Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split off EVMCS1_UNSUPPORTED_* macros so we can re-use them when
enabling Enlightened VMCS for Hyper-V on KVM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The state related to the VP assist page is still managed by the LAPIC
code in the pv_eoi field.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original comment is little hard to understand.
No functional change, just amend the comment a little.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rmap_remove() removes the sptep after locating the correct rmap_head but,
in several cases, the caller has already known the correct rmap_head.
This patch introduces a new pte_list_remove(); because it is known that
the spte is present (or it would not have an rmap_head), it is safe
to remove the tracking bits without any previous check.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Coalesced pio is based on coalesced mmio and can be used for some port
like rtc port, pci-host config port and so on.
Specially in case of rtc as coalesced pio, some versions of windows guest
access rtc frequently because of rtc as system tick. guest access rtc like
this: write register index to 0x70, then write or read data from 0x71.
writing 0x70 port is just as index and do nothing else. So we can use
coalesced pio to handle this scene to reduce VM-EXIT time.
When starting and closing a virtual machine, it will access pci-host config
port frequently. So setting these port as coalesced pio can reduce startup
and shutdown time.
without my patch, get the vm-exit time of accessing rtc 0x70 and piix 0xcf8
using perf tools: (guest OS : windows 7 64bit)
IO Port Access Samples Samples% Time% Min Time Max Time Avg time
0x70:POUT 86 30.99% 74.59% 9us 29us 10.75us (+- 3.41%)
0xcf8:POUT 1119 2.60% 2.12% 2.79us 56.83us 3.41us (+- 2.23%)
with my patch
IO Port Access Samples Samples% Time% Min Time Max Time Avg time
0x70:POUT 106 32.02% 29.47% 0us 10us 1.57us (+- 7.38%)
0xcf8:POUT 1065 1.67% 0.28% 0.41us 65.44us 0.66us (+- 10.55%)
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If ept table pointers are mismatched, flushing tlb for each vcpus via
hv flush interface still helps to reduce vmexits which are triggered
by IPI and INEPT emulation.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86_64 zero-extends 32bit xor to a full 64bit register. Use %k asm
operand modifier to force 32bit register and save 268 bytes in kvm.o
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recently the minimum required version of binutils was changed to 2.20,
which supports all VMX instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.
The compiler is now able to pass memory operand to the instruction,
so there is no need for memory clobber anymore. Also, the compiler
adds CC register clobber automatically to all extended asm clauses,
so the patch also removes explicit CC clobber.
The immediate benefit of the patch is removal of many unnecesary
register moves, resulting in 1434 saved bytes in vmx.o:
text data bss dec hex filename
151257 18246 8500 178003 2b753 vmx.o
152691 18246 8500 179437 2bced vmx-old.o
Some examples of improvement include removal of unneeded moves
of %rsp to %rax in front of invept and invvpid instructions:
a57e: b9 01 00 00 00 mov $0x1,%ecx
a583: 48 89 04 24 mov %rax,(%rsp)
a587: 48 89 e0 mov %rsp,%rax
a58a: 48 c7 44 24 08 00 00 movq $0x0,0x8(%rsp)
a591: 00 00
a593: 66 0f 38 80 08 invept (%rax),%rcx
to:
a45c: 48 89 04 24 mov %rax,(%rsp)
a460: b8 01 00 00 00 mov $0x1,%eax
a465: 48 c7 44 24 08 00 00 movq $0x0,0x8(%rsp)
a46c: 00 00
a46e: 66 0f 38 80 04 24 invept (%rsp),%rax
and the ability to use more optimal registers and memory operands
in the instruction:
8faa: 48 8b 44 24 28 mov 0x28(%rsp),%rax
8faf: 4c 89 c2 mov %r8,%rdx
8fb2: 0f 79 d0 vmwrite %rax,%rdx
to:
8e7c: 44 0f 79 44 24 28 vmwrite 0x28(%rsp),%r8
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Register operand size of invvpid and invept instruction in 64-bit mode
has always 64 bits. Adjust inline function argument type to reflect
correct size.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We don't use root page role for nested_mmu, however, optimizing out
re-initialization in case nothing changed is still valuable as this
is done for every nested vmentry.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMU reconfiguration in init_kvm_tdp_mmu()/kvm_init_shadow_mmu() can be
avoided if the source data used to configure it didn't change; enhance
MMU extended role with the required fields and consolidate common code in
kvm_calc_mmu_role_common().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMU re-initialization is expensive, in particular,
update_permission_bitmask() and update_pkru_bitmask() are.
Cache the data used to setup shadow EPT MMU and avoid full re-init when
it is unchanged.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to MMU reconfiguration avoidance we need a space to
cache source data. As this partially intersects with kvm_mmu_page_role,
create 64bit sized union kvm_mmu_role holding both base and extended data.
No functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just inline the contents into the sole caller, kvm_init_mmu is now
public.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
When EPT is used for nested guest we need to re-init MMU as shadow
EPT MMU (nested_ept_init_mmu_context() does that). When we return back
from L2 to L1 kvm_mmu_reset_context() in nested_vmx_load_cr3() resets
MMU back to normal TDP mode. Add a special 'guest_mmu' so we can use
separate root caches; the improved hit rate is not very important for
single vCPU performance, but it avoids contention on the mmu_lock for
many vCPUs.
On the nested CPUID benchmark, with 16 vCPUs, an L2->L1->L2 vmexit
goes from 42k to 26k cycles.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an option to specify which MMU root we want to free. This will
be used when nested and non-nested MMUs for L1 are split.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
kvm_init_shadow_ept_mmu() doesn't set get_pdptr() hook and is this
not a problem just because MMU context is already initialized and this
hook points to kvm_pdptr_read(). As we're intended to use a dedicated
MMU for shadow EPT MMU set this hook explicitly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
As a preparation to full MMU split between L1 and L2 make vcpu->arch.mmu
a pointer to the currently used mmu. For now, this is always
vcpu->arch.root_mmu. No functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
The quote from the comment almost says it all: we are currently zeroing
the guest dr6 in kvm_arch_vcpu_put, because do_debug expects it. However,
the host %dr6 is either:
- zero because the guest hasn't run after kvm_arch_vcpu_load
- written from vcpu->arch.dr6 by vcpu_enter_guest
- written by the guest and copied to vcpu->arch.dr6 by ->sync_dirty_debug_regs().
Therefore, we can skip the write if vcpu->arch.dr6 is already zero. We
may do extra useless writes if vcpu->arch.dr6 is nonzero but the guest
hasn't run; however that is less important for performance.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rewrite kvm_hv_flush_tlb()/send_ipi_vcpus_mask() making them cleaner and
somewhat more optimal.
hv_vcpu_in_sparse_set() is converted to sparse_set_to_vcpu_mask()
which copies sparse banks u64-at-a-time and then, depending on the
num_mismatched_vp_indexes value, returns immediately or does
vp index to vcpu index conversion by walking all vCPUs.
To support the change and make kvm_hv_send_ipi() look similar to
kvm_hv_flush_tlb() send_ipi_vcpus_mask() is introduced.
Suggested-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Regardless of whether your TLB is lush or not it still needs flushing.
Reported-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When early consistency checks are enabled, all VMFail conditions
should be caught by nested_vmx_check_vmentry_hw().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM defers many VMX consistency checks to the CPU, ostensibly for
performance reasons[1], including checks that result in VMFail (as
opposed to VMExit). This behavior may be undesirable for some users
since this means KVM detects certain classes of VMFail only after it
has processed guest state, e.g. emulated MSR load-on-entry. Because
there is a strict ordering between checks that cause VMFail and those
that cause VMExit, i.e. all VMFail checks are performed before any
checks that cause VMExit, we can detect (almost) all VMFail conditions
via a dry run of sorts. The almost qualifier exists because some
state in vmcs02 comes from L0, e.g. VPID, which means that hardware
will never detect an invalid VPID in vmcs12 because it never sees
said value. Software must (continue to) explicitly check such fields.
After preparing vmcs02 with all state needed to pass the VMFail
consistency checks, optionally do a "test" VMEnter with an invalid
GUEST_RFLAGS. If the VMEnter results in a VMExit (due to bad guest
state), then we can safely say that the nested VMEnter should not
VMFail, i.e. any VMFail encountered in nested_vmx_vmexit() must
be due to an L0 bug. GUEST_RFLAGS is used to induce VMExit as it
is unconditionally loaded on all implementations of VMX, has an
invalid value that is writable on a 32-bit system and its consistency
check is performed relatively early in all implementations (the exact
order of consistency checks is micro-architectural).
Unfortunately, since the "passing" case causes a VMExit, KVM must
be extra diligent to ensure that host state is restored, e.g. DR7
and RFLAGS are reset on VMExit. Failure to restore RFLAGS.IF is
particularly fatal.
And of course the extra VMEnter and VMExit impacts performance.
The raw overhead of the early consistency checks is ~6% on modern
hardware (though this could easily vary based on configuration),
while the added latency observed from the L1 VMM is ~10%. The
early consistency checks do not occur in a vacuum, e.g. spending
more time in L0 can lead to more interrupts being serviced while
emulating VMEnter, thereby increasing the latency observed by L1.
Add a module param, early_consistency_checks, to provide control
over whether or not VMX performs the early consistency checks.
In addition to standard on/off behavior, the param accepts a value
of -1, which is essentialy an "auto" setting whereby KVM does
the early checks only when it thinks it's running on bare metal.
When running nested, doing early checks is of dubious value since
the resulting behavior is heavily dependent on L0. In the future,
the "auto" setting could also be used to default to skipping the
early hardware checks for certain configurations/platforms if KVM
reaches a state where it has 100% coverage of VMFail conditions.
[1] To my knowledge no one has implemented and tested full software
emulation of the VMFail consistency checks. Until that happens,
one can only speculate about the actual performance overhead of
doing all VMFail consistency checks in software. Obviously any
code is slower than no code, but in the grand scheme of nested
virtualization it's entirely possible the overhead is negligible.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFER is constant in the host and writing it once during setup means
we can skip writing the host value in add_atomic_switch_msr_special().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... as every invocation of nested_vmx_{fail,succeed} is immediately
followed by a call to kvm_skip_emulated_instruction(). This saves
a bit of code and eliminates some silly paths, e.g. nested_vmx_run()
ended up with a goto label purely used to call and return
kvm_skip_emulated_instruction().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFLAGS is set to a fixed value on VMExit, calling nested_vmx_succeed()
is unnecessary and wrong.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A successful VMEnter is essentially a fancy indirect branch that
pulls the target RIP from the VMCS. Skipping the instruction is
unnecessary (RIP will get overwritten by the VMExit handler) and
is problematic because it can incorrectly suppress a #DB due to
EFLAGS.TF when a VMFail is detected by hardware (happens after we
skip the instruction).
Now that vmx_nested_run() is not prematurely skipping the instr,
use the full kvm_skip_emulated_instruction() in the VMFail path
of nested_vmx_vmexit(). We also need to explicitly update the
GUEST_INTERRUPTIBILITY_INFO when loading vmcs12 host state.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>