Commit Graph

319 Commits

Author SHA1 Message Date
Paolo Bonzini
1d487e9bf8 KVM: fix spectrev1 gadgets
These were found with smatch, and then generalized when applicable.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Ben Gardon
254272ce65 kvm: x86: Add memcg accounting to KVM allocations
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.

Tested:
	Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
	introduced no new failures.
	Ran a kernel memory accounting test which creates a VM to touch
	memory and then checks that the kernel memory allocated for the
	process is within certain bounds.
	With this patch we account for much more of the vmalloc and slab memory
	allocated for the VM.

There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
	vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:30 +01:00
Gustavo A. R. Silva
b2869f28e1 KVM: x86: Mark expected switch fall-throughs
In preparation to enabling -Wimplicit-fallthrough, mark switch
cases where we are expecting to fall through.

This patch fixes the following warnings:

arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=]

Warning level 3 was used: -Wimplicit-fallthrough=3

This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:29:36 +01:00
Peng Hao
eb1ff0a913 kvm: x86: remove unnecessary recalculate_apic_map
In the previous code, the variable apic_sw_disabled influences
recalculate_apic_map. But in "KVM: x86: simplify kvm_apic_map"
(commit: 3b5a5ffa92),
the access to apic_sw_disabled in recalculate_apic_map has been
deleted.

Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:50 +01:00
Yi Wang
354cb410d8 KVM: x86: fix empty-body warnings
We get the following warnings about empty statements when building
with 'W=1':

arch/x86/kvm/lapic.c:632:53: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1907:42: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1936:65: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1975:44: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]

Rework the debug helper macro to get rid of these warnings.

Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27 12:50:09 +01:00
Wanpeng Li
38ab012f10 KVM: LAPIC: Fix pv ipis use-before-initialization
Reported by syzkaller:

 BUG: unable to handle kernel NULL pointer dereference at 0000000000000014
 PGD 800000040410c067 P4D 800000040410c067 PUD 40410d067 PMD 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 3 PID: 2567 Comm: poc Tainted: G           OE     4.19.0-rc5 #16
 RIP: 0010:kvm_pv_send_ipi+0x94/0x350 [kvm]
 Call Trace:
  kvm_emulate_hypercall+0x3cc/0x700 [kvm]
  handle_vmcall+0xe/0x10 [kvm_intel]
  vmx_handle_exit+0xc1/0x11b0 [kvm_intel]
  vcpu_enter_guest+0x9fb/0x1910 [kvm]
  kvm_arch_vcpu_ioctl_run+0x35c/0x610 [kvm]
  kvm_vcpu_ioctl+0x3e9/0x6d0 [kvm]
  do_vfs_ioctl+0xa5/0x690
  ksys_ioctl+0x6d/0x80
  __x64_sys_ioctl+0x1a/0x20
  do_syscall_64+0x83/0x6e0
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

The reason is that the apic map has not yet been initialized, the testcase
triggers pv_send_ipi interface by vmcall which results in kvm->arch.apic_map
is dereferenced. This patch fixes it by checking whether or not apic map is
NULL and bailing out immediately if that is the case.

Fixes: 4180bf1b65 (KVM: X86: Implement "send IPI" hypercall)
Reported-by: Wei Wu <ww9210@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wei Wu <ww9210@gmail.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27 12:48:56 +01:00
Jordan Borgner
0e96f31ea4 x86: Clean up 'sizeof x' => 'sizeof(x)'
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.

(Also do some whitespace cleanups in a few places while at it.)

[ mingo: Rewrote the changelog. ]

Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-29 07:13:28 +01:00
Vitaly Kuznetsov
a7c42bb6da x86/kvm/lapic: preserve gfn_to_hva_cache len on cache reinit
vcpu->arch.pv_eoi is accessible through both HV_X64_MSR_VP_ASSIST_PAGE and
MSR_KVM_PV_EOI_EN so on migration userspace may try to restore them in any
order. Values match, however, kvm_lapic_enable_pv_eoi() uses different
length: for Hyper-V case it's the whole struct hv_vp_assist_page, for KVM
native case it is 8. In case we restore KVM-native MSR last cache will
be reinitialized with len=8 so trying to access VP assist page beyond
8 bytes with kvm_read_guest_cached() will fail.

Check if we re-initializing cache for the same address and preserve length
in case it was greater.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:17 +02:00
Ladi Prosek
72bbf9358c KVM: hyperv: define VP assist page helpers
The state related to the VP assist page is still managed by the LAPIC
code in the pv_eoi field.

Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:30:13 +02:00
Paolo Bonzini
0624fca951 kvm/x86: return meaningful value from KVM_SIGNAL_MSI
If kvm_apic_map_get_dest_lapic() finds a disabled LAPIC,
it will return with bitmap==0 and (*r == -1) will be returned to
userspace.

QEMU may then record "KVM: injection failed, MSI lost
(Operation not permitted)" in its log, which is quite puzzling.

Reported-by: Peng Hao <penghao122@sina.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:29:43 +02:00
Wanpeng Li
3b8a5df6c4 KVM: LAPIC: Tune lapic_timer_advance_ns automatically
In cloud environment, lapic_timer_advance_ns is needed to be tuned for every CPU
generations, and every host kernel versions(the kvm-unit-tests/tscdeadline_latency.flat
is 5700 cycles for upstream kernel and 9600 cycles for our 3.10 product kernel,
both preemption_timer=N, Skylake server).

This patch adds the capability to automatically tune lapic_timer_advance_ns
step by step, the initial value is 1000ns as 'commit d0659d946b ("KVM: x86:
add option to advance tscdeadline hrtimer expiration")' recommended, it will be
reduced when it is too early, and increased when it is too late. The guest_tsc
and tsc_deadline are hard to equal, so we assume we are done when the delta
is within a small scope e.g. 100 cycles. This patch reduces latency
(kvm-unit-tests/tscdeadline_latency, busy waits, preemption_timer enabled)
from ~2600 cyles to ~1200 cyles on our Skylake server.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 00:25:54 +02:00
Vitaly Kuznetsov
d176620277 x86/kvm/lapic: always disable MMIO interface in x2APIC mode
When VMX is used with flexpriority disabled (because of no support or
if disabled with module parameter) MMIO interface to lAPIC is still
available in x2APIC mode while it shouldn't be (kvm-unit-tests):

PASS: apic_disable: Local apic enabled in x2APIC mode
PASS: apic_disable: CPUID.1H:EDX.APIC[bit 9] is set
FAIL: apic_disable: *0xfee00030: 50014

The issue appears because we basically do nothing while switching to
x2APIC mode when APIC access page is not used. apic_mmio_{read,write}
only check if lAPIC is disabled before proceeding to actual write.

When APIC access is virtualized we correctly manipulate with VMX controls
in vmx_set_virtual_apic_mode() and we don't get vmexits from memory writes
in x2APIC mode so there's no issue.

Disabling MMIO interface seems to be easy. The question is: what do we
do with these reads and writes? If we add apic_x2apic_mode() check to
apic_mmio_in_range() and return -EOPNOTSUPP these reads and writes will
go to userspace. When lAPIC is in kernel, Qemu uses this interface to
inject MSIs only (see kvm_apic_mem_write() in hw/i386/kvm/apic.c). This
somehow works with disabled lAPIC but when we're in xAPIC mode we will
get a real injected MSI from every write to lAPIC. Not good.

The simplest solution seems to be to just ignore writes to the region
and return ~0 for all reads when we're in x2APIC mode. This is what this
patch does. However, this approach is inconsistent with what currently
happens when flexpriority is enabled: we allocate APIC access page and
create KVM memory region so in x2APIC modes all reads and writes go to
this pre-allocated page which is, btw, the same for all vCPUs.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-09-20 00:26:43 +02:00
Wanpeng Li
bdf7ffc899 KVM: LAPIC: Fix pv ipis out-of-bounds access
Dan Carpenter reported that the untrusted data returns from kvm_register_read()
results in the following static checker warning:
  arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi()
  error: buffer underflow 'map->phys_map' 's32min-s32max'

KVM guest can easily trigger this by executing the following assembly sequence
in Ring0:

mov $10, %rax
mov $0xFFFFFFFF, %rbx
mov $0xFFFFFFFF, %rdx
mov $0, %rsi
vmcall

As this will cause KVM to execute the following code-path:
vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi()
which will reach out-of-bounds access.

This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id,
ignoring destinations that are not present and delivering the rest. We also check
whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the
max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm
unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Add second "if (min > map->max_apic_id)" to complete the fix. -Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-09-07 18:38:43 +02:00
Linus Torvalds
e61cf2e3a5 Minor code cleanups for PPC.
For x86 this brings in PCID emulation and CR3 caching for shadow page
 tables, nested VMX live migration, nested VMCS shadowing, an optimized
 IPI hypercall, and some optimizations.
 
 ARM will come next week.
 
 There is a semantic conflict because tip also added an .init_platform
 callback to kvm.c.  Please keep the initializer from this branch,
 and add a call to kvmclock_init (added by tip) inside kvm_init_platform
 (added here).
 
 Also, there is a backmerge from 4.18-rc6.  This is because of a
 refactoring that conflicted with a relatively late bugfix and
 resulted in a particularly hellish conflict.  Because the conflict
 was only due to unfortunate timing of the bugfix, I backmerged and
 rebased the refactoring rather than force the resolution on you.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
 kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
 yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
 UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
 EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
 2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
 =9Mgw
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull first set of KVM updates from Paolo Bonzini:
 "PPC:
   - minor code cleanups

  x86:
   - PCID emulation and CR3 caching for shadow page tables
   - nested VMX live migration
   - nested VMCS shadowing
   - optimized IPI hypercall
   - some optimizations

  ARM will come next week"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
  kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
  KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
  KVM: X86: Implement PV IPIs in linux guest
  KVM: X86: Add kvm hypervisor init time platform setup callback
  KVM: X86: Implement "send IPI" hypercall
  KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
  KVM: x86: Skip pae_root shadow allocation if tdp enabled
  KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
  KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
  KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
  KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
  KVM: vmx: move struct host_state usage to struct loaded_vmcs
  KVM: vmx: compute need to reload FS/GS/LDT on demand
  KVM: nVMX: remove a misleading comment regarding vmcs02 fields
  KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
  KVM: vmx: add dedicated utility to access guest's kernel_gs_base
  KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
  KVM: vmx: refactor segmentation code in vmx_save_host_state()
  kvm: nVMX: Fix fault priority for VMX operations
  kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
  ...
2018-08-19 10:38:36 -07:00
Wanpeng Li
4180bf1b65 KVM: X86: Implement "send IPI" hypercall
Using hypercall to send IPIs by one vmexit instead of one by one for
xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster
mode. Intel guest can enter x2apic cluster mode when interrupt remmaping
is enabled in qemu, however, latest AMD EPYC still just supports xapic
mode which can get great improvement by Exit-less IPIs. This patchset
lets a guest send multicast IPIs, with at most 128 destinations per
hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode.

Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM
is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141):

x2apic cluster mode, vanilla

 Dry-run:                         0,            2392199 ns
 Self-IPI:                  6907514,           15027589 ns
 Normal IPI:              223910476,          251301666 ns
 Broadcast IPI:                   0,         9282161150 ns
 Broadcast lock:                  0,         8812934104 ns

x2apic cluster mode, pv-ipi

 Dry-run:                         0,            2449341 ns
 Self-IPI:                  6720360,           15028732 ns
 Normal IPI:              228643307,          255708477 ns
 Broadcast IPI:                   0,         7572293590 ns  => 22% performance boost
 Broadcast lock:                  0,         8316124651 ns

x2apic physical mode, vanilla

 Dry-run:                         0,            3135933 ns
 Self-IPI:                  8572670,           17901757 ns
 Normal IPI:              226444334,          255421709 ns
 Broadcast IPI:                   0,        19845070887 ns
 Broadcast lock:                  0,        19827383656 ns

x2apic physical mode, pv-ipi

 Dry-run:                         0,            2446381 ns
 Self-IPI:                  6788217,           15021056 ns
 Normal IPI:              219454441,          249583458 ns
 Broadcast IPI:                   0,         7806540019 ns  => 154% performance boost
 Broadcast lock:                  0,         9143618799 ns

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:20 +02:00
Peter Zijlstra
b3dae109fa sched/swait: Rename to exclusive
Since swait basically implemented exclusive waits only, make sure
the API reflects that.

  $ git grep -l -e "\<swake_up\>"
		-e "\<swait_event[^ (]*"
		-e "\<prepare_to_swait\>" | while read file;
    do
	sed -i -e 's/\<swake_up\>/&_one/g'
	       -e 's/\<swait_event[^ (]*/&_exclusive/g'
	       -e 's/\<prepare_to_swait\>/&_exclusive/g' $file;
    done

With a few manual touch-ups.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.261946548@infradead.org
2018-06-20 11:35:56 +02:00
Linus Torvalds
b357bf6023 Small update for KVM.
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
 regions for vGIC redistributor
 
 * s390: cleanups for nested, clock handling, crypto, storage keys and
 control register bits
 
 * x86: many bugfixes, implement more Hyper-V super powers,
 implement lapic_timer_advance_ns even when the LAPIC timer
 is emulated using the processor's VMX preemption timer.  Two
 security-related bugfixes at the top of the branch.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
 +5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
 VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
 3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
 ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
 JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
 =H5zI
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small update for KVM:

  ARM:
   - lazy context-switching of FPSIMD registers on arm64
   - "split" regions for vGIC redistributor

  s390:
   - cleanups for nested
   - clock handling
   - crypto
   - storage keys
   - control register bits

  x86:
   - many bugfixes
   - implement more Hyper-V super powers
   - implement lapic_timer_advance_ns even when the LAPIC timer is
     emulated using the processor's VMX preemption timer.
   - two security-related bugfixes at the top of the branch"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
  kvm: fix typo in flag name
  kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
  KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
  KVM: x86: introduce linear_{read,write}_system
  kvm: nVMX: Enforce cpl=0 for VMX instructions
  kvm: nVMX: Add support for "VMWRITE to any supported field"
  kvm: nVMX: Restrict VMX capability MSR changes
  KVM: VMX: Optimize tscdeadline timer latency
  KVM: docs: nVMX: Remove known limitations as they do not exist now
  KVM: docs: mmu: KVM support exposing SLAT to guests
  kvm: no need to check return value of debugfs_create functions
  kvm: Make VM ioctl do valloc for some archs
  kvm: Change return type to vm_fault_t
  KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
  kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
  KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
  KVM: introduce kvm_make_vcpus_request_mask() API
  KVM: x86: hyperv: do rep check for each hypercall separately
  ...
2018-06-12 11:34:04 -07:00
David Vrabel
d8f2f498d9 x86/kvm: fix LAPIC timer drift when guest uses periodic mode
Since 4.10, commit 8003c9ae20 (KVM: LAPIC: add APIC Timer
periodic/oneshot mode VMX preemption timer support), guests using
periodic LAPIC timers (such as FreeBSD 8.4) would see their timers
drift significantly over time.

Differences in the underlying clocks and numerical errors means the
periods of the two timers (hv and sw) are not the same. This
difference will accumulate with every expiry resulting in a large
error between the hv and sw timer.

This means the sw timer may be running slow when compared to the hv
timer. When the timer is switched from hv to sw, the now active sw
timer will expire late. The guest VCPU is reentered and it switches to
using the hv timer. This timer catches up, injecting multiple IRQs
into the guest (of which the guest only sees one as it does not get to
run until the hv timer has caught up) and thus the guest's timer rate
is low (and becomes increasing slower over time as the sw timer lags
further and further behind).

I believe a similar problem would occur if the hv timer is the slower
one, but I have not observed this.

Fix this by synchronizing the deadlines for both timers to the same
time source on every tick. This prevents the errors from accumulating.

Fixes: 8003c9ae20
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: David Vrabel <david.vrabel@nutanix.com>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 16:48:55 +02:00
Jim Mattson
8d860bbeed kvm: vmx: Basic APIC virtualization controls have three settings
Previously, we toggled between SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
and SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES, depending on whether or
not the EXTD bit was set in MSR_IA32_APICBASE. However, if the local
APIC is disabled, we should not set either of these APIC
virtualization control bits.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:24:24 +02:00
Anthoine Bourgeois
ecf08dad72 KVM: x86: remove APIC Timer periodic/oneshot spikes
Since the commit "8003c9ae204e: add APIC Timer periodic/oneshot mode VMX
preemption timer support", a Windows 10 guest has some erratic timer
spikes.

Here the results on a 150000 times 1ms timer without any load:
	  Before 8003c9ae20 | After 8003c9ae20
Max           1834us          |  86000us
Mean          1100us          |   1021us
Deviation       59us          |    149us
Here the results on a 150000 times 1ms timer with a cpu-z stress test:
	  Before 8003c9ae20 | After 8003c9ae20
Max          32000us          | 140000us
Mean          1006us          |   1997us
Deviation      140us          |  11095us

The root cause of the problem is starting hrtimer with an expiry time
already in the past can take more than 20 milliseconds to trigger the
timer function.  It can be solved by forward such past timers
immediately, rather than submitting them to hrtimer_start().
In case the timer is periodic, update the target expiration and call
hrtimer_start with it.

v2: Check if the tsc deadline is already expired. Thank you Mika.
v3: Execute the past timers immediately rather than submitting them to
hrtimer_start().
v4: Rearm the periodic timer with advance_periodic_target_expiration() a
simpler version of set_target_expiration(). Thank you Paolo.

Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
8003c9ae20 ("KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-05 23:09:39 +02:00
Vitaly Kuznetsov
0bcc3fb95b KVM: lapic: stop advertising DIRECTED_EOI when in-kernel IOAPIC is in use
Devices which use level-triggered interrupts under Windows 2016 with
Hyper-V role enabled don't work: Windows disables EOI broadcast in SPIV
unconditionally. Our in-kernel IOAPIC implementation emulates an old IOAPIC
version which has no EOI register so EOI never happens.

The issue was discovered and discussed a while ago:
https://www.spinics.net/lists/kvm/msg148098.html

While this is a guest OS bug (it should check that IOAPIC has the required
capabilities before disabling EOI broadcast) we can workaround it in KVM:
advertising DIRECTED_EOI with in-kernel IOAPIC makes little sense anyway.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:29 +01:00
Radim Krčmář
b7e31be385 KVM: x86: fix vcpu initialization with userspace lapic
Moving the code around broke this rare configuration.
Use this opportunity to finally call lapic reset from vcpu reset.

Reported-by: syzbot+fb7a33a4b6c35007a72b@syzkaller.appspotmail.com
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 0b2e9904c1 ("KVM: x86: move LAPIC initialization after VMCS creation")
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-01 22:32:45 +01:00
Paolo Bonzini
0b2e9904c1 KVM: x86: move LAPIC initialization after VMCS creation
The initial reset of the local APIC is performed before the VMCS has been
created, but it tries to do a vmwrite:

 vmwrite error: reg 810 value 4a00 (err 18944)
 CPU: 54 PID: 38652 Comm: qemu-kvm Tainted: G        W I      4.16.0-0.rc2.git0.1.fc28.x86_64 #1
 Hardware name: Intel Corporation S2600CW/S2600CW, BIOS SE5C610.86B.01.01.0003.090520141303 09/05/2014
 Call Trace:
  vmx_set_rvi [kvm_intel]
  vmx_hwapic_irr_update [kvm_intel]
  kvm_lapic_reset [kvm]
  kvm_create_lapic [kvm]
  kvm_arch_vcpu_init [kvm]
  kvm_vcpu_init [kvm]
  vmx_create_vcpu [kvm_intel]
  kvm_vm_ioctl [kvm]

Move it later, after the VMCS has been created.

Fixes: 4191db26b7 ("KVM: x86: Update APICv on APIC reset")
Cc: stable@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-02-24 01:43:17 +01:00
Liran Alon
e7387b0e27 KVM: x86: Change __kvm_apic_update_irr() to also return if max IRR updated
This commit doesn't change semantics.
It is done as a preparation for future commits.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon
fa59cc0038 KVM: x86: Optimization: Create SVM stubs for sync_pir_to_irr()
sync_pir_to_irr() is only called if vcpu->arch.apicv_active()==true.
In case it is false, VMX code make sure to set sync_pir_to_irr
to NULL.

Therefore, having SVM stubs allows to remove check for if
sync_pir_to_irr != NULL from all calling sites.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
[Return highest IRR in the SVM case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Dr. David Alan Gilbert
12806ba937 KVM: lapic: Fixup LDR on load in x2apic
In x2apic mode the LDR is fixed based on the ID rather
than separately loadable like it was before x2.
When kvm_apic_set_state is called, the base is set, and if
it has the X2APIC_ENABLE flag set then the LDR is calculated;
however that value gets overwritten by the memcpy a few lines
below overwriting it with the value that came from userland.

The symptom is a lack of EOI after loading the state
(e.g. after a QEMU migration) and is due to the EOI bitmap
being wrong due to the incorrect LDR.  This was seen with
a Win2016 guest under Qemu with irqchip=split whose USB mouse
didn't work after a VM migration.

This corresponds to RH bug:
  https://bugzilla.redhat.com/show_bug.cgi?id=1502591

Reported-by: Yiqian Wei <yiwei@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
[Applied fixup from Liran Alon. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:53 +01:00
Dr. David Alan Gilbert
e872fa9466 KVM: lapic: Split out x2apic ldr calculation
Split out the ldr calculation from kvm_apic_set_x2apic_id
since we're about to reuse it in the following patch.

Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:52 +01:00
Linus Torvalds
974aa5630b First batch of KVM changes for 4.15
Common:
  - Python 3 support in kvm_stat
 
  - Accounting of slabs to kmemcg
 
 ARM:
  - Optimized arch timer handling for KVM/ARM
 
  - Improvements to the VGIC ITS code and introduction of an ITS reset
    ioctl
 
  - Unification of the 32-bit fault injection logic
 
  - More exact external abort matching logic
 
 PPC:
  - Support for running hashed page table (HPT) MMU mode on a host that
    is using the radix MMU mode;  single threaded mode on POWER 9 is
    added as a pre-requisite
 
  - Resolution of merge conflicts with the last second 4.14 HPT fixes
 
  - Fixes and cleanups
 
 s390:
  - Some initial preparation patches for exitless interrupts and crypto
 
  - New capability for AIS migration
 
  - Fixes
 
 x86:
  - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
    after-reset state
 
  - Refined dependencies for VMX features
 
  - Fixes for nested SMI injection
 
  - A lot of cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
 0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
 sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
 0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
 D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
 bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
 =593n
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "First batch of KVM changes for 4.15

  Common:
   - Python 3 support in kvm_stat
   - Accounting of slabs to kmemcg

  ARM:
   - Optimized arch timer handling for KVM/ARM
   - Improvements to the VGIC ITS code and introduction of an ITS reset
     ioctl
   - Unification of the 32-bit fault injection logic
   - More exact external abort matching logic

  PPC:
   - Support for running hashed page table (HPT) MMU mode on a host that
     is using the radix MMU mode; single threaded mode on POWER 9 is
     added as a pre-requisite
   - Resolution of merge conflicts with the last second 4.14 HPT fixes
   - Fixes and cleanups

  s390:
   - Some initial preparation patches for exitless interrupts and crypto
   - New capability for AIS migration
   - Fixes

  x86:
   - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
     and after-reset state
   - Refined dependencies for VMX features
   - Fixes for nested SMI injection
   - A lot of cleanups"

* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
  KVM: s390: provide a capability for AIS state migration
  KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
  KVM: s390: abstract conversion between isc and enum irq_types
  KVM: s390: vsie: use common code functions for pinning
  KVM: s390: SIE considerations for AP Queue virtualization
  KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
  KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
  KVM: arm/arm64: fix the incompatible matching for external abort
  KVM: arm/arm64: Unify 32bit fault injection
  KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
  KVM: arm/arm64: vgic-its: New helper functions to free the caches
  KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
  arm/arm64: KVM: Load the timer state when enabling the timer
  KVM: arm/arm64: Rework kvm_timer_should_fire
  KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
  KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
  KVM: arm/arm64: Move phys_timer_emulate function
  KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
  ...
2017-11-16 13:00:24 -08:00
Jan H. Schönherr
4191db26b7 KVM: x86: Update APICv on APIC reset
In kvm_apic_set_state() we update the hardware virtualized APIC after
the full APIC state has been overwritten. Do the same, when the full
APIC state has been reset in kvm_lapic_reset().

This updates some hardware state that was previously forgotten, as
far as I can tell. Also, this allows removing some APIC-related reset
code from vmx_vcpu_reset().

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-02 18:28:13 +01:00
Radim Krčmář
4427593258 KVM: x86: thoroughly disarm LAPIC timer around TSC deadline switch
Our routines look at tscdeadline and period when deciding state of a
timer.  The timer is disarmed when switching between TSC deadline and
other modes, so we should set everything to disarmed state.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-10-12 14:01:54 +02:00
Radim Krčmář
5d74a69993 KVM: x86: really disarm lapic timer when clearing TMICT
preemption timer only looks at tscdeadline and could inject already
disarmed timer.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-10-12 14:01:54 +02:00
Radim Krčmář
86bbc1e6d7 KVM: x86: handle 0 write to TSC_DEADLINE MSR
0 should disable the timer, but start_hv_timer will recognize it as an
expired timer instead.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-10-12 14:01:53 +02:00
Wanpeng Li
c301b909e4 KVM: LAPIC: Apply change to TDCR right away to the timer
The description in the Intel SDM of how the divide configuration
register is used: "The APIC timer frequency will be the processor's bus
clock or core crystal clock frequency divided by the value specified in
the divide configuration register."

Observation of baremetal shown that when the TDCR is change, the TMCCT
does not change or make a big jump in value, but the rate at which it
count down change.

The patch update the emulation to APIC timer to so that a change to the
divide configuration would be reflected in the value of the counter and
when the next interrupt is triggered.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Fixed some whitespace and added a check for negative delta and running
 timer. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-10-12 14:01:51 +02:00
Wanpeng Li
dedf9c5e21 KVM: LAPIC: Keep timer running when switching between one-shot and periodic mode
If we take TSC-deadline mode timer out of the picture, the Intel SDM
does not say that the timer is disable when the timer mode is change,
either from one-shot to periodic or vice versa.

After this patch, the timer is no longer disarmed on change of mode, so
the counter (TMCCT) keeps counting down.

So what does a write to LVTT changes ? On baremetal, the change of mode
is probably taken into account only when the counter reach 0. When this
happen, LVTT is use to figure out if the counter should restard counting
down from TMICT (so periodic mode) or stop counting (if one-shot mode).

This patch is based on observation of the behavior of the APIC timer on
baremetal as well as check that they does not go against the description
written in the Intel SDM.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Fixed rate limiting of periodic timer.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-10-12 14:01:51 +02:00
Wanpeng Li
ccbfa1d39b KVM: LAPIC: Introduce limit_periodic_timer_frequency
Extract the logic of limit lapic periodic timer frequency to a new function,
this function will be used by later patches.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-10-12 14:01:50 +02:00
Wanpeng Li
c69518c86b KVM: LAPIC: Fix lapic timer mode transition
SDM 10.5.4.1 TSC-Deadline Mode mentioned that "Transitioning between TSC-Deadline
mode and other timer modes also disarms the timer". So the APIC Timer Initial Count
Register for one-shot/periodic mode should be reset. This patch do it.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Removed unnecessary definition of APIC_LVT_TIMER_MASK.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-10-12 14:01:50 +02:00
Davidlohr Bueso
cc1b46803a kvm,lapic: Justify use of swait_active()
A comment might serve future readers.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-09-15 16:57:11 +02:00
Ladi Prosek
72c139bacf KVM: hyperv: support HV_X64_MSR_TSC_FREQUENCY and HV_X64_MSR_APIC_FREQUENCY
It has been experimentally confirmed that supporting these two MSRs is one
of the necessary conditions for nested Hyper-V to use the TSC page. Modern
Windows guests are noticeably slower when they fall back to reading
timestamps from the HV_X64_MSR_TIME_REF_COUNT MSR instead of using the TSC
page.

The newly supported MSRs are advertised with the AccessFrequencyRegs
partition privilege flag and CPUID.40000003H:EDX[8] "Support for
determining timer frequencies is available" (both outside of the scope of
this KVM patch).

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-07 15:26:06 +02:00
Wanpeng Li
1d518c6820 KVM: LAPIC: Fix reentrancy issues with preempt notifiers
Preempt can occur in the preemption timer expiration handler:

          CPU0                    CPU1

  preemption timer vmexit
  handle_preemption_timer(vCPU0)
    kvm_lapic_expired_hv_timer
      hv_timer_is_use == true
  sched_out
                           sched_in
                           kvm_arch_vcpu_load
                             kvm_lapic_restart_hv_timer
                               restart_apic_timer
                                 start_hv_timer
                                   already-expired timer or sw timer triggerd in the window
                                 start_sw_timer
                                   cancel_hv_timer
                           /* back in kvm_lapic_expired_hv_timer */
                           cancel_hv_timer
                             WARN_ON(!apic->lapic_timer.hv_timer_in_use);  ==> Oops

This can be reproduced if CONFIG_PREEMPT is enabled.

------------[ cut here ]------------
 WARNING: CPU: 4 PID: 2972 at /home/kernel/linux/arch/x86/kvm//lapic.c:1563 kvm_lapic_expired_hv_timer+0x9e/0xb0 [kvm]
 CPU: 4 PID: 2972 Comm: qemu-system-x86 Tainted: G           OE   4.13.0-rc2+ #16
 RIP: 0010:kvm_lapic_expired_hv_timer+0x9e/0xb0 [kvm]
Call Trace:
  handle_preemption_timer+0xe/0x20 [kvm_intel]
  vmx_handle_exit+0xb8/0xd70 [kvm_intel]
  kvm_arch_vcpu_ioctl_run+0xdd1/0x1be0 [kvm]
  ? kvm_arch_vcpu_load+0x47/0x230 [kvm]
  ? kvm_arch_vcpu_load+0x62/0x230 [kvm]
  kvm_vcpu_ioctl+0x340/0x700 [kvm]
  ? kvm_vcpu_ioctl+0x340/0x700 [kvm]
  ? __fget+0xfc/0x210
  do_vfs_ioctl+0xa4/0x6a0
  ? __fget+0x11d/0x210
  SyS_ioctl+0x79/0x90
  do_syscall_64+0x81/0x220
  entry_SYSCALL64_slow_path+0x25/0x25
 ------------[ cut here ]------------
 WARNING: CPU: 4 PID: 2972 at /home/kernel/linux/arch/x86/kvm//lapic.c:1498 cancel_hv_timer.isra.40+0x4f/0x60 [kvm]
 CPU: 4 PID: 2972 Comm: qemu-system-x86 Tainted: G        W  OE   4.13.0-rc2+ #16
 RIP: 0010:cancel_hv_timer.isra.40+0x4f/0x60 [kvm]
Call Trace:
  kvm_lapic_expired_hv_timer+0x3e/0xb0 [kvm]
  handle_preemption_timer+0xe/0x20 [kvm_intel]
  vmx_handle_exit+0xb8/0xd70 [kvm_intel]
  kvm_arch_vcpu_ioctl_run+0xdd1/0x1be0 [kvm]
  ? kvm_arch_vcpu_load+0x47/0x230 [kvm]
  ? kvm_arch_vcpu_load+0x62/0x230 [kvm]
  kvm_vcpu_ioctl+0x340/0x700 [kvm]
  ? kvm_vcpu_ioctl+0x340/0x700 [kvm]
  ? __fget+0xfc/0x210
  do_vfs_ioctl+0xa4/0x6a0
  ? __fget+0x11d/0x210
  SyS_ioctl+0x79/0x90
  do_syscall_64+0x81/0x220
  entry_SYSCALL64_slow_path+0x25/0x25

This patch fixes it by making the caller of cancel_hv_timer, start_hv_timer
and start_sw_timer be in preemption-disabled regions, which trivially
avoid any reentrancy issue with preempt notifier.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Add more WARNs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-07-26 19:04:53 +02:00
Wanpeng Li
c853354429 KVM: LAPIC: Fix lapic timer injection delay
If the TSC deadline timer is programmed really close to the deadline or
even in the past, the computation in vmx_set_hv_timer will program the
absolute target tsc value to vmcs preemption timer field w/ delta == 0,
then plays a vmentry and an upcoming vmx preemption timer fire vmexit
dance, the lapic timer injection is delayed due to this duration. Actually
the lapic timer which is emulated by hrtimer can handle this correctly.

This patch fixes it by firing the lapic timer and injecting a timer interrupt
immediately during the next vmentry if the TSC deadline timer is programmed
really close to the deadline or even in the past. This saves ~300 cycles on
the tsc_deadline_timer test of apic.flat.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-29 18:21:13 +02:00
Paolo Bonzini
a749e247f7 KVM: lapic: reorganize restart_apic_timer
Move the code to cancel the hv timer into the caller, just before
it starts the hrtimer.  Check availability of the hv timer in
start_hv_timer.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-29 18:18:52 +02:00
Paolo Bonzini
35ee9e48b9 KVM: lapic: reorganize start_hv_timer
There are many cases in which the hv timer must be canceled.  Split out
a new function to avoid duplication.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-29 18:10:35 +02:00
Jan H. Schönherr
52b5419016 KVM: x86: Fix virtual wire mode
Intel SDM says, that at most one LAPIC should be configured with ExtINT
delivery. KVM configures all LAPICs this way. This causes pic_unlock()
to kick the first available vCPU from the internal KVM data structures.
If this vCPU is not the BSP, but some not-yet-booted AP, the BSP may
never realize that there is an interrupt.

Fix that by enabling ExtINT delivery only for the BSP.

This allows booting a Linux guest without a TSC in the above situation.
Otherwise the BSP gets stuck in calibrate_delay_converge().

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-26 18:01:21 +02:00
Wanpeng Li
5acc1ca4fb KVM: X86: Fix preempt the preemption timer cancel
Preemption can occur during cancel preemption timer, and there will be
inconsistent status in lapic, vmx and vmcs field.

          CPU0                    CPU1

  preemption timer vmexit
  handle_preemption_timer(vCPU0)
    kvm_lapic_expired_hv_timer
      vmx_cancel_hv_timer
        vmx->hv_deadline_tsc = -1
        vmcs_clear_bits
        /* hv_timer_in_use still true */
  sched_out
                           sched_in
                           kvm_arch_vcpu_load
                             vmx_set_hv_timer
                               write vmx->hv_deadline_tsc
                               vmcs_set_bits
                           /* back in kvm_lapic_expired_hv_timer */
                           hv_timer_in_use = false
                           ...
                           vmx_vcpu_run
                             vmx_arm_hv_run
                               write preemption timer deadline
                             spurious preemption timer vmexit
                               handle_preemption_timer(vCPU0)
                                 kvm_lapic_expired_hv_timer
                                   WARN_ON(!apic->lapic_timer.hv_timer_in_use);

This can be reproduced sporadically during boot of L2 on a
preemptible L1, causing a splat on L1.

 WARNING: CPU: 3 PID: 1952 at arch/x86/kvm/lapic.c:1529 kvm_lapic_expired_hv_timer+0xb5/0xd0 [kvm]
 CPU: 3 PID: 1952 Comm: qemu-system-x86 Not tainted 4.12.0-rc1+ #24 RIP: 0010:kvm_lapic_expired_hv_timer+0xb5/0xd0 [kvm]
  Call Trace:
  handle_preemption_timer+0xe/0x20 [kvm_intel]
  vmx_handle_exit+0xc9/0x15f0 [kvm_intel]
  ? lock_acquire+0xdb/0x250
  ? lock_acquire+0xdb/0x250
  ? kvm_arch_vcpu_ioctl_run+0xdf3/0x1ce0 [kvm]
  kvm_arch_vcpu_ioctl_run+0xe55/0x1ce0 [kvm]
  kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
  ? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
  ? __fget+0xf3/0x210
  do_vfs_ioctl+0xa4/0x700
  ? __fget+0x114/0x210
  SyS_ioctl+0x79/0x90
  do_syscall_64+0x8f/0x750
  ? trace_hardirqs_on_thunk+0x1a/0x1c
  entry_SYSCALL64_slow_path+0x25/0x25

This patch fixes it by disabling preemption while cancelling
preemption timer.  This way cancel_hv_timer is atomic with
respect to kvm_arch_vcpu_load.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-26 17:46:20 +02:00
Linus Torvalds
bf5f89463f Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - various misc things

 - procfs updates

 - lib/ updates

 - checkpatch updates

 - kdump/kexec updates

 - add kvmalloc helpers, use them

 - time helper updates for Y2038 issues. We're almost ready to remove
   current_fs_time() but that awaits a btrfs merge.

 - add tracepoints to DAX

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
  drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
  selftests/vm: add a test for virtual address range mapping
  dax: add tracepoint to dax_insert_mapping()
  dax: add tracepoint to dax_writeback_one()
  dax: add tracepoints to dax_writeback_mapping_range()
  dax: add tracepoints to dax_load_hole()
  dax: add tracepoints to dax_pfn_mkwrite()
  dax: add tracepoints to dax_iomap_pte_fault()
  mtd: nand: nandsim: convert to memalloc_noreclaim_*()
  treewide: convert PF_MEMALLOC manipulations to new helpers
  mm: introduce memalloc_noreclaim_{save,restore}
  mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
  mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
  mm/huge_memory.c: use zap_deposited_table() more
  time: delete CURRENT_TIME_SEC and CURRENT_TIME
  gfs2: replace CURRENT_TIME with current_time
  apparmorfs: replace CURRENT_TIME with current_time()
  lustre: replace CURRENT_TIME macro
  fs: ubifs: replace CURRENT_TIME_SEC with current_time
  fs: ufs: use ktime_get_real_ts64() for birthtime
  ...
2017-05-08 18:17:56 -07:00
Michal Hocko
a7c3e901a4 mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5.

There are many open coded kmalloc with vmalloc fallback instances in the
tree.  Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.

As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.

Most callers, I could find, have been converted to use the helper
instead.  This is patch 6.  There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.

[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com

This patch (of 9):

Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code.  Yet we do not have any common helper
for that and so users have invented their own helpers.  Some of them are
really creative when doing so.  Let's just add kv[mz]alloc and make sure
it is implemented properly.  This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures.  This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.

This patch also changes some existing users and removes helpers which
are specific for them.  In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL).  Those need to be
fixed separately.

While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers.  Existing ones would have to die
slowly.

[sfr@canb.auug.org.au: f2fs fixup]
  Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>	[ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Paolo Bonzini
4e335d9e7d Revert "KVM: Support vCPU-based gfn->hva cache"
This reverts commit bbd6411513.

I've been sitting on this revert for too long and it unfortunately
missed 4.11.  It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.

Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address.  This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.

Cc: stable@vger.kernel.org
Fixes: bbd6411513
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-03 16:30:26 +02:00
Cao, Lei
bbd6411513 KVM: Support vCPU-based gfn->hva cache
Provide versions of struct gfn_to_hva_cache functions that
take vcpu as a parameter instead of struct kvm.  The existing functions
are not needed anymore, so delete them.  This allows dirty pages to
be logged in the vcpu dirty ring, instead of the global dirty ring,
for ring-based dirty memory tracking.

Signed-off-by: Lei Cao <lei.cao@stratus.com>
Message-Id: <CY1PR08MB19929BD2AC47A291FD680E83F04F0@CY1PR08MB1992.namprd08.prod.outlook.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-16 18:42:46 +01:00
Paolo Bonzini
b95234c840 kvm: x86: do not use KVM_REQ_EVENT for APICv interrupt injection
Since bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU
is blocked", 2015-09-18) the posted interrupt descriptor is checked
unconditionally for PIR.ON.  Therefore we don't need KVM_REQ_EVENT to
trigger the scan and, if NMIs or SMIs are not involved, we can avoid
the complicated event injection path.

Calling kvm_vcpu_kick if PIR.ON=1 is also useless, though it has been
there since APICv was introduced.

However, without the KVM_REQ_EVENT safety net KVM needs to be much
more careful about races between vmx_deliver_posted_interrupt and
vcpu_enter_guest.  First, the IPI for posted interrupts may be issued
between setting vcpu->mode = IN_GUEST_MODE and disabling interrupts.
If that happens, kvm_trigger_posted_interrupt returns true, but
smp_kvm_posted_intr_ipi doesn't do anything about it.  The guest is
entered with PIR.ON, but the posted interrupt IPI has not been sent
and the interrupt is only delivered to the guest on the next vmentry
(if any).  To fix this, disable interrupts before setting vcpu->mode.
This ensures that the IPI is delayed until the guest enters non-root mode;
it is then trapped by the processor causing the interrupt to be injected.

Second, the IPI may be issued between kvm_x86_ops->sync_pir_to_irr(vcpu)
and vcpu->mode = IN_GUEST_MODE.  In this case, kvm_vcpu_kick is called
but it (correctly) doesn't do anything because it sees vcpu->mode ==
OUTSIDE_GUEST_MODE.  Again, the guest is entered with PIR.ON but no
posted interrupt IPI is pending; this time, the fix for this is to move
the RVI update after IN_GUEST_MODE.

Both issues were mostly masked by the liberal usage of KVM_REQ_EVENT,
though the second could actually happen with VT-d posted interrupts.
In both race scenarios KVM_REQ_EVENT would cancel guest entry, resulting
in another vmentry which would inject the interrupt.

This saves about 300 cycles on the self_ipi_* tests of vmexit.flat.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:36 +01:00
Paolo Bonzini
76dfafd536 KVM: x86: do not scan IRR twice on APICv vmentry
Calls to apic_find_highest_irr are scanning IRR twice, once
in vmx_sync_pir_from_irr and once in apic_search_irr.  Change
sync_pir_from_irr to get the new maximum IRR from kvm_apic_update_irr;
now that it does the computation, it can also do the RVI write.

In order to avoid complications in svm.c, make the callback optional.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:35 +01:00