3842 Commits

Author SHA1 Message Date
Hao Jia
c958ca2013 sched/fair: Make update_entity_lag() static
The function update_entity_lag() is only used inside the kernel/sched/fair.c file.
Make it static.

Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230829030325.69128-1-jiahao.os@bytedance.com
2023-08-29 21:05:28 +02:00
Linus Torvalds
97efd28334 Misc x86 cleanups.
The following commit deserves special mention:
 
    22dc02f81cddd Revert "sched/fair: Move unused stub functions to header"
 
 This is in x86/cleanups, because the revert is a re-application of a
 number of cleanups that got removed inadvertedly.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTtDkoRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jCMw//UvQGM8yxsTa57r0/ZpJHS2++P5pJxOsz
 45kBb3aBiDV6idArce4EHpthp3MvF3Pycibp9w0qg//NOtIHTKeagXv52abxsu1W
 hmS6gXJZDXZvjO1BFaUlmv97iYtzGfKnQppj32C4tMr9SaP49h3KvOHH1Z8CR3mP
 1nZaJJwYIi2qBh7msnmLGG+F0drb85O/dfHdoLX6iVJw9UP4n5nu9u8u1E0iC7J7
 2GC6AwP60A0EBRTK9EHQQEYwy9uvdS/TG5f2Qk1VP87KA9TTocs8MyapMG4DQu79
 hZKVEGuVQAlV3rYe9cJBNpDx1mTu3rmuMH0G71KEe3T6UcG5QRUiAPm8UfA9prPD
 uWjY4zm5o0W3tUio4V1MqqiLFIaBU63WmTY9RyM0QH8Ms8r8GugWKmnrTIuHfEC3
 9D+Uhyb5d8ID6qFGLTOvPm0g+v64lnH71qq83PcVJgsmZvUb2XvFA3d/A0h9JzLT
 2In/yfU10UsLUFTiNRyAgcLccjaGhliDB2oke9Kp0OyOTSQRcWmiq8kByVxCPImP
 auOWWcNXjcuOgjlnziEkMTDuRY12MgUB2If4zhELvdEFibIaaNW5sNCbY2msWaN1
 CUD7fcj0L3HZvzujUm72l5hxL2brJMuPwVNJfuOe4T8wzy569d6VJULrd1URBM1B
 vfaPs1Dz46Q=
 =kiAA
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Ingo Molnar:
 "The following commit deserves special mention:

   22dc02f81cddd Revert "sched/fair: Move unused stub functions to header"

  This is in x86/cleanups, because the revert is a re-application of a
  number of cleanups that got removed inadvertedly"

[ This also effectively undoes the amd_check_microcode() microcode
  declaration change I had done in my microcode loader merge in commit
  42a7f6e3ffe0 ("Merge tag 'x86_microcode_for_v6.6_rc1' [...]").

  I picked the declaration change by Arnd from this branch instead,
  which put it in <asm/processor.h> instead of <asm/microcode.h> like I
  had done in my merge resolution   - Linus ]

* tag 'x86-cleanups-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/platform/uv: Refactor code using deprecated strncpy() interface to use strscpy()
  x86/hpet: Refactor code using deprecated strncpy() interface to use strscpy()
  x86/platform/uv: Refactor code using deprecated strcpy()/strncpy() interfaces to use strscpy()
  x86/qspinlock-paravirt: Fix missing-prototype warning
  x86/paravirt: Silence unused native_pv_lock_init() function warning
  x86/alternative: Add a __alt_reloc_selftest() prototype
  x86/purgatory: Include header for warn() declaration
  x86/asm: Avoid unneeded __div64_32 function definition
  Revert "sched/fair: Move unused stub functions to header"
  x86/apic: Hide unused safe_smp_processor_id() on 32-bit UP
  x86/cpu: Fix amd_check_microcode() declaration
2023-08-28 17:05:58 -07:00
Linus Torvalds
3ca9a836ff Scheduler changes for v6.6:
- The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler.
 
   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only.
   It completely reworks the base scheduler: placement, preemption,
   picking -- everything.
 
   LWN.net, as usual, has a terrific writeup about EEVDF:
 
      https://lwn.net/Articles/925371/
 
   Preemption (both tick and wakeup) is driven by testing against
   a fresh pick. Because the tree is now effectively an interval
   tree, and the selection is no longer the 'leftmost' task,
   over-scheduling is less of a problem. A lot of the CFS
   heuristics are removed or replaced by more natural latency-space
   parameters & constructs.
 
   In terms of expected performance regressions: we'll and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases,
   but in some cases it won't, especially in adversarial loads that
   got lucky with the previous code, such as some variants of hackbench.
   We are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations
   of that process.
 
 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again).
 
 - Improve & fix bandwidth-scheduling on nohz systems.
 
 - Improve bandwidth-throttling.
 
 - Use lock guards to simplify and de-goto-ify control flow.
 
 - Misc improvements, cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTtDOgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iS4g//b9yewVW9OPxetKoN8zIJA0TjFYuuOVHK
 BlCJi5dbzXeCTrtENI65BRA7kPbTQ3AjwLRQ2BallAZ4dJceK0RhlZJvcrMNsm4e
 Adcpoch/FbqPKCrtAJQY04Ln1B244n/KyVifYett9220dMgTFQGJJYxrTc2G2+Kp
 F44vdUHzRczIE+KeOgBild1CwfKv5Zn5xgaXgtuoPLZtWBE0C1fSSzbK/PTINcUx
 bS4NVxK0CpOqSiNjnugV8KsYb71/0U6IgShBVjfHsrlBYigOH2NbVTH5xyjF8f83
 WxiGstlhxj+N6Kv4L6FOJIAr2BIggH82j3FaPACmv4c8pzEoBBbvlAJkfinLEgbn
 Povg3OF2t6uZ8NoHjeu3WxOjBsphbpkFz7H5nno1ibXSIR/JyUH5MdBPSx93QITB
 QoUKQpr/L8zWauWDOEzSaJjEsZbl8rkcIVq5Bk0bR3qn2xkZsIeVte+vCEu3+tBc
 b4JOZjq7AuPDqPnsBLvuyiFZ7zwsAfm+pOD5UF3/zbLjPn1N/7wTNQZ29zjc04jl
 SifpCZGgF1KlG8m8wNTlSfVvq0ksppCzJt+C6VFuejZ191IGpirQHn4Vp0sluMhC
 WRzXhb7v37Bq5JY10GMfeKb/jAiRs68kozhzqVPsBSAPS6I6jJssONgedq+LbQdC
 tFsmE9n09do=
 =XtCD
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler

   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only. It
   completely reworks the base scheduler: placement, preemption, picking
   -- everything

   LWN.net, as usual, has a terrific writeup about EEVDF:

      https://lwn.net/Articles/925371/

   Preemption (both tick and wakeup) is driven by testing against a
   fresh pick. Because the tree is now effectively an interval tree, and
   the selection is no longer the 'leftmost' task, over-scheduling is
   less of a problem. A lot of the CFS heuristics are removed or
   replaced by more natural latency-space parameters & constructs

   In terms of expected performance regressions: we will and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases, but
   in some cases it won't, especially in adversarial loads that got
   lucky with the previous code, such as some variants of hackbench. We
   are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations of
   that process

 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again)

 - Improve & fix bandwidth-scheduling on nohz systems

 - Improve bandwidth-throttling

 - Use lock guards to simplify and de-goto-ify control flow

 - Misc improvements, cleanups and fixes

* tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  sched/eevdf/doc: Modify the documented knob to base_slice_ns as well
  sched/eevdf: Curb wakeup-preemption
  sched: Simplify sched_core_cpu_{starting,deactivate}()
  sched: Simplify try_steal_cookie()
  sched: Simplify sched_tick_remote()
  sched: Simplify sched_exec()
  sched: Simplify ttwu()
  sched: Simplify wake_up_if_idle()
  sched: Simplify: migrate_swap_stop()
  sched: Simplify sysctl_sched_uclamp_handler()
  sched: Simplify get_nohz_timer_target()
  sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
  sched/rt: Fix sysctl_sched_rr_timeslice intial value
  sched/fair: Block nohz tick_stop when cfs bandwidth in use
  sched, cgroup: Restore meaning to hierarchical_quota
  MAINTAINERS: Add Peter explicitly to the psi section
  sched/psi: Select KERNFS as needed
  sched/topology: Align group flags when removing degenerate domain
  sched/fair: remove util_est boosting
  sched/fair: Propagate enqueue flags into place_entity()
  ...
2023-08-28 16:43:39 -07:00
Peter Zijlstra
63304558ba sched/eevdf: Curb wakeup-preemption
Mike and others noticed that EEVDF does like to over-schedule quite a
bit -- which does hurt performance of a number of benchmarks /
workloads.

In particular, what seems to cause over-scheduling is that when lag is
of the same order (or larger) than the request / slice then placement
will not only cause the task to be placed left of current, but also
with a smaller deadline than current, which causes immediate
preemption.

[ notably, lag bounds are relative to HZ ]

Mike suggested we stick to picking 'current' for as long as it's
eligible to run, giving it uninterrupted runtime until it reaches
parity with the pack.

Augment Mike's suggestion by only allowing it to exhaust it's initial
request.

One random data point:

echo NO_RUN_TO_PARITY > /debug/sched/features
perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000

	3,723,554        context-switches      ( +-  0.56% )
	9.5136 +- 0.0394 seconds time elapsed  ( +-  0.41% )

echo RUN_TO_PARITY > /debug/sched/features
perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000

	2,556,535        context-switches      ( +-  0.51% )
	9.2427 +- 0.0302 seconds time elapsed  ( +-  0.33% )

Suggested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230816134059.GC982867@hirez.programming.kicks-ass.net
2023-08-17 17:07:07 +02:00
Peter Zijlstra
7170509cad sched: Simplify sched_core_cpu_{starting,deactivate}()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.371787909@infradead.org
2023-08-14 17:01:27 +02:00
Peter Zijlstra
b4e1fa1e14 sched: Simplify try_steal_cookie()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.304154828@infradead.org
2023-08-14 17:01:27 +02:00
Peter Zijlstra
6dafc713e3 sched: Simplify sched_tick_remote()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.236247952@infradead.org
2023-08-14 17:01:26 +02:00
Peter Zijlstra
4bdada79f3 sched: Simplify sched_exec()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.168490417@infradead.org
2023-08-14 17:01:26 +02:00
Peter Zijlstra
857d315f12 sched: Simplify ttwu()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.101069260@infradead.org
2023-08-14 17:01:25 +02:00
Peter Zijlstra
4eb054f92b sched: Simplify wake_up_if_idle()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.032678917@infradead.org
2023-08-14 17:01:25 +02:00
Peter Zijlstra
5bb76f1ddf sched: Simplify: migrate_swap_stop()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.964370836@infradead.org
2023-08-14 17:01:25 +02:00
Peter Zijlstra
0f92cdf36f sched: Simplify sysctl_sched_uclamp_handler()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.896559109@infradead.org
2023-08-14 17:01:24 +02:00
Peter Zijlstra
7537b90c00 sched: Simplify get_nohz_timer_target()
Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.828443100@infradead.org
2023-08-14 17:01:24 +02:00
Cyril Hrubis
c1fc6484e1 sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
The sched_rr_timeslice can be reset to default by writing value that is
<= 0. However after reading from this file we always got the last value
written, which is not useful at all.

$ echo -1 > /proc/sys/kernel/sched_rr_timeslice_ms
$ cat /proc/sys/kernel/sched_rr_timeslice_ms
-1

Fix this by setting the variable that holds the sysctl file value to the
jiffies_to_msecs(RR_TIMESLICE) in case that <= 0 value was written.

Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Link: https://lore.kernel.org/r/20230802151906.25258-3-chrubis@suse.cz
2023-08-14 17:01:23 +02:00
Cyril Hrubis
c7fcb99877 sched/rt: Fix sysctl_sched_rr_timeslice intial value
There is a 10% rounding error in the intial value of the
sysctl_sched_rr_timeslice with CONFIG_HZ_300=y.

This was found with LTP test sched_rr_get_interval01:

sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90
sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90

What this test does is to compare the return value from the
sched_rr_get_interval() and the sched_rr_timeslice_ms sysctl file and
fails if they do not match.

The problem it found is the intial sysctl file value which was computed as:

static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;

which works fine as long as MSEC_PER_SEC is multiple of HZ, however it
introduces 10% rounding error for CONFIG_HZ_300:

(MSEC_PER_SEC / HZ) * (100 * HZ / 1000)

(1000 / 300) * (100 * 300 / 1000)

3 * 30 = 90

This can be easily fixed by reversing the order of the multiplication
and division. After this fix we get:

(MSEC_PER_SEC * (100 * HZ / 1000)) / HZ

(1000 * (100 * 300 / 1000)) / 300

(1000 * 30) / 300 = 100

Fixes: 975e155ed873 ("sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds")
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Link: https://lore.kernel.org/r/20230802151906.25258-2-chrubis@suse.cz
2023-08-14 17:01:23 +02:00
Ingo Molnar
b41bbb33cf Merge branch 'sched/eevdf' into sched/core
Pick up the EEVDF work into the main branch - it's looking good so far.

 Conflicts:
	kernel/sched/features.h

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-08-10 09:05:43 +02:00
Phil Auld
88c56cfeae sched/fair: Block nohz tick_stop when cfs bandwidth in use
CFS bandwidth limits and NOHZ full don't play well together.  Tasks
can easily run well past their quotas before a remote tick does
accounting.  This leads to long, multi-period stalls before such
tasks can run again. Currently, when presented with these conflicting
requirements the scheduler is favoring nohz_full and letting the tick
be stopped. However, nohz tick stopping is already best-effort, there
are a number of conditions that can prevent it, whereas cfs runtime
bandwidth is expected to be enforced.

Make the scheduler favor bandwidth over stopping the tick by setting
TICK_DEP_BIT_SCHED when the only running task is a cfs task with
runtime limit enabled. We use cfs_b->hierarchical_quota to
determine if the task requires the tick.

Add check in pick_next_task_fair() as well since that is where
we have a handle on the task that is actually going to be running.

Add check in sched_can_stop_tick() to cover some edge cases such
as nr_running going from 2->1 and the 1 remains the running task.

Reviewed-By: Ben Segall <bsegall@google.com>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
2023-08-02 16:19:26 +02:00
Phil Auld
c98c18270b sched, cgroup: Restore meaning to hierarchical_quota
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task
groups due to the previous fix simply taking the min.  It should
reflect a limit imposed at that level or by an ancestor. Even
though cgroupv2 does not require child quota to be less than or
equal to that of its ancestors the task group will still be
constrained by such a quota so this should be shown here. Cgroupv1
continues to set this correctly.

In both cases, add initialization when a new task group is created
based on the current parent's value (or RUNTIME_INF in the case of
root_task_group). Otherwise, the field is wrong until a quota is
changed after creation and __cfs_schedulable() is called.

Fixes: c53593e5cb69 ("sched, cgroup: Don't reject lower cpu.max on ancestors")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
2023-08-02 16:19:26 +02:00
Peter Zijlstra
22dc02f81c Revert "sched/fair: Move unused stub functions to header"
Revert commit 7aa55f2a5902 ("sched/fair: Move unused stub functions to
header"), for while it has the right Changelog, the actual patch
content a revert of the previous 4 patches:

  f7df852ad6db ("sched: Make task_vruntime_update() prototype visible")
  c0bdfd72fbfb ("sched/fair: Hide unused init_cfs_bandwidth() stub")
  378be384e01f ("sched: Add schedule_user() declaration")
  d55ebae3f312 ("sched: Hide unused sched_update_scaling()")

So in effect this is a revert of a revert and re-applies those
patches.

Fixes: 7aa55f2a5902 ("sched/fair: Move unused stub functions to header")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-31 11:47:08 +02:00
Chen Yu
4efcc8bc7e sched/topology: Align group flags when removing degenerate domain
The flags of the child of a given scheduling domain are used to initialize
the flags of its scheduling groups. When the child of a scheduling domain
is degenerated, the flags of its local scheduling group need to be updated
to align with the flags of its new child domain.

The flag SD_SHARE_CPUCAPACITY was aligned in
Commit bf2dc42d6beb ("sched/topology: Propagate SMT flags when removing degenerate domain").
Further generalize this alignment so other flags can be used later, such as
in cluster-based task wakeup. [1]

Reported-by: Yicong Yang <yangyicong@huawei.com>
Suggested-by: Ricardo Neri <ricardo.neri@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20230713013133.2314153-1-yu.c.chen@intel.com
2023-07-26 12:28:51 +02:00
Vincent Guittot
c2e164ac33 sched/fair: remove util_est boosting
There is no need to use runnable_avg when estimating util_est and that
even generates wrong behavior because one includes blocked tasks whereas
the other one doesn't. This can lead to accounting twice the waking task p,
once with the blocked runnable_avg and another one when adding its
util_est.

cpu's runnable_avg is already used when computing util_avg which is then
compared with util_est.

In some situation, feec will not select prev_cpu but another one on the
same performance domain because of higher max_util

Fixes: 7d0583cf9ec7 ("sched/fair, cpufreq: Introduce 'runnable boosting'")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20230706135144.324311-1-vincent.guittot@linaro.org
2023-07-26 12:28:50 +02:00
Peter Zijlstra
d07f09a1f9 sched/fair: Propagate enqueue flags into place_entity()
This allows place_entity() to consider ENQUEUE_WAKEUP and
ENQUEUE_MIGRATED.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.274010996@infradead.org
2023-07-19 09:43:59 +02:00
Peter Zijlstra
e4ec3318a1 sched/debug: Rename sysctl_sched_min_granularity to sysctl_sched_base_slice
EEVDF uses this tunable as the base request/slice -- make sure the
name reflects this.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
2023-07-19 09:43:59 +02:00
Peter Zijlstra
5e963f2bd4 sched/fair: Commit to EEVDF
EEVDF is a better defined scheduling policy, as a result it has less
heuristics/tunables. There is no compelling reason to keep CFS around.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
e8f331bcc2 sched/smp: Use lag to simplify cross-runqueue placement
Using lag is both more correct and simpler when moving between
runqueues.

Notable, min_vruntime() was invented as a cheap approximation of
avg_vruntime() for this very purpose (SMP migration). Since we now
have the real thing; use it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.068911180@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
76cae9dbe1 sched/fair: Commit to lag based placement
Removes the FAIR_SLEEPERS code in favour of the new LAG based
placement.

Specifically, the whole FAIR_SLEEPER thing was a very crude
approximation to make up for the lack of lag based placement,
specifically the 'service owed' part. This is important for things
like 'starve' and 'hackbench'.

One side effect of FAIR_SLEEPER is that it caused 'small' unfairness,
specifically, by always ignoring up-to 'thresh' sleeptime it would
have a 50%/50% time distribution for a 50% sleeper vs a 100% runner,
while strictly speaking this should (of course) result in a 33%/67%
split (as CFS will also do if the sleep period exceeds 'thresh').

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.000198861@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
147f3efaa2 sched/fair: Implement an EEVDF-like scheduling policy
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.

Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.

EEVDF has two parameters:

 - weight, or time-slope: which is mapped to nice just as before

 - request size, or slice length: which is used to compute
   the virtual deadline as: vd_i = ve_i + r_i/w_i

Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.

Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.

Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
86bfbb7ce4 sched/fair: Add lag based placement
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.

Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
e0c2ff903c sched/fair: Remove sched_feat(START_DEBIT)
With the introduction of avg_vruntime() there is no need to use worse
approximations. Take the 0-lag point as starting point for inserting
new tasks.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.722361178@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
af4cf40470 sched/fair: Add cfs_rq::avg_vruntime
In order to move to an eligibility based scheduling policy, we need
to have a better approximation of the ideal scheduler.

Specifically, for a virtual time weighted fair queueing based
scheduler the ideal scheduler will be the weighted average of the
individual virtual runtimes (math in the comment).

As such, compute the weighted average to approximate the ideal
scheduler -- note that the approximation is in the individual task
behaviour, which isn't strictly conformant.

Specifically consider adding a task with a vruntime left of center, in
this case the average will move backwards in time -- something the
ideal scheduler would of course never do.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.654144274@infradead.org
2023-07-19 09:43:58 +02:00
Ingo Molnar
752182b24b Linux 6.5-rc2
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmS0at0eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG6m8H/RZCd2DWeM94CgK5
 DIxNLxu90PrEcrOnqeHFJtQoSiUQTHeseh9E4BH0JdPDxtlU89VwYRAevseWiVkp
 JyyJPB40UR4i2DO0P1+oWBBsGEG+bo8lZ1M+uxU5k6lgC0fAi96/O48mwwmI0Mtm
 P6BkWd3IkSXc7l4AGIrKa5P+pYEnm0Z6YAZILfdMVBcLXZWv1OAwEEkZNdUuhE3d
 5DxlQ8MLzlQIbe+LasiwdL9r606acFaJG9Hewl9x5DBlsObZ3d2rX4vEt1NEVh89
 shV29xm2AjCpLh4kstJFdTDCkDw/4H7TcFB/NMxXyzEXp3Bx8YXq+mjVd2mpq1FI
 hHtCsOA=
 =KiaU
 -----END PGP SIGNATURE-----

Merge tag 'v6.5-rc2' into sched/core, to pick up fixes

Sync with upstream fixes before applying EEVDF.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-07-19 09:43:25 +02:00
Andrei Vagin
6f63904c8f sched: add a few helpers to wake up tasks on the current cpu
Add complete_on_current_cpu, wake_up_poll_on_current_cpu helpers to wake
up tasks on the current CPU.

These two helpers are useful when the task needs to make a synchronous context
switch to another task. In this context, synchronous means it wakes up the
target task and falls asleep right after that.

One example of such workloads is seccomp user notifies. This mechanism allows
the  supervisor process handles system calls on behalf of a target process.
While the supervisor is handling an intercepted system call, the target process
will be blocked in the kernel, waiting for a response to come back.

On-CPU context switches are much faster than regular ones.

Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-4-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
2023-07-17 16:08:08 -07:00
Peter Oskolkov
ab83f455f0 sched: add WF_CURRENT_CPU and externise ttwu
Add WF_CURRENT_CPU wake flag that advices the scheduler to
move the wakee to the current CPU. This is useful for fast on-CPU
context switching use cases.

In addition, make ttwu external rather than static so that
the flag could be passed to it from outside of sched/core.c.

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-3-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
2023-07-17 16:08:08 -07:00
Vincent Guittot
7ee7642c91 sched/fair: Stabilize asym cpu capacity system idle cpu selection
select_idle_capacity() not only looks for an idle cpu that fits for the
waking task but also for cpu with highest bandwidth when no cpu fits.
Start the loop with target cpu so it will be selected 1st when no cpu fits
but several cpus shared the same bandwidth. Starting with target cpu
prevents the task to migrate between cpus with same bandwidth at every
wakeup when no cpu fits.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230711081359.868862-1-vincent.guittot@linaro.org
2023-07-13 15:21:53 +02:00
Peter Zijlstra
ed74cc4995 sched/debug: Dump domains' sched group flags
There have been a case where the SD_SHARE_CPUCAPACITY sched group flag
in a parent domain were not set and propagated properly when a degenerate
domain is removed.

Add dump of domain sched group flags of a CPU to make debug easier
in the future.

Usage:
cat /debug/sched/domains/cpu0/domain1/groups_flags
to dump cpu0 domain1's sched group flags.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/ed1749262d94d95a8296c86a415999eda90bcfe3.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:53 +02:00
Ricardo Neri
b1bfeab9b0 sched/fair: Consider the idle state of the whole core for load balance
should_we_balance() traverses the group_balance_mask (AND'ed with lb_env::
cpus) starting from lower numbered CPUs looking for the first idle CPU.

In hybrid x86 systems, the siblings of SMT cores get CPU numbers, before
non-SMT cores:

	[0, 1] [2, 3] [4, 5] 6 7 8 9
         b  i   b  i   b  i  b i i i

In the figure above, CPUs in brackets are siblings of an SMT core. The
rest are non-SMT cores. 'b' indicates a busy CPU, 'i' indicates an
idle CPU.

We should let a CPU on a fully idle core get the first chance to idle
load balance as it has more CPU capacity than a CPU on an idle SMT
CPU with busy sibling.  So for the figure above, if we are running
should_we_balance() to CPU 1, we should return false to let CPU 7 on
idle core to have a chance first to idle load balance.

A partially busy (i.e., of type group_has_spare) local group with SMT 
cores will often have only one SMT sibling busy. If the destination CPU
is a non-SMT core, partially busy, lower-numbered, SMT cores should not
be considered when finding the first idle CPU. 

However, in should_we_balance(), when we encounter idle SMT first in partially
busy core, we prematurely break the search for the first idle CPU.

Higher-numbered, non-SMT cores is not given the chance to have
idle balance done on their behalf. Those CPUs will only be considered
for idle balancing by chance via CPU_NEWLY_IDLE.

Instead, consider the idle state of the whole SMT core.

Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Co-developed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/807bdd05331378ea3bf5956bda87ded1036ba769.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:52 +02:00
Tim C Chen
7ff1693236 sched/fair: Implement prefer sibling imbalance calculation between asymmetric groups
In the current prefer sibling load balancing code, there is an implicit
assumption that the busiest sched group and local sched group are
equivalent, hence the tasks to be moved is simply the difference in
number of tasks between the two groups (i.e. imbalance) divided by two.

However, we may have different number of cores between the cluster groups,
say when we take CPU offline or we have hybrid groups.  In that case,
we should balance between the two groups such that #tasks/#cores ratio
is the same between the same between both groups.  Hence the imbalance
computed will need to reflect this.

Adjust the sibling imbalance computation to take into account of the
above considerations.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/4eacbaa236e680687dae2958378a6173654113df.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:52 +02:00
Tim C Chen
d24cb0d911 sched/topology: Record number of cores in sched group
When balancing sibling domains that have different number of cores,
tasks in respective sibling domain should be proportional to the
number of cores in each domain. In preparation of implementing such a
policy, record the number of cores in a scheduling group.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/04641eeb0e95c21224352f5743ecb93dfac44654.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:51 +02:00
Tim C Chen
fee1759e4f sched/fair: Determine active load balance for SMT sched groups
On hybrid CPUs with scheduling cluster enabled, we will need to
consider balancing between SMT CPU cluster, and Atom core cluster.

Below shows such a hybrid x86 CPU with 4 big cores and 8 atom cores.
Each scheduling cluster span a L2 cache.

          --L2-- --L2-- --L2-- --L2-- ----L2---- -----L2------
          [0, 1] [2, 3] [4, 5] [5, 6] [7 8 9 10] [11 12 13 14]
          Big    Big    Big    Big    Atom       Atom
          core   core   core   core   Module     Module

If the busiest group is a big core with both SMT CPUs busy, we should
active load balance if destination group has idle CPU cores.  Such
condition is considered by asym_active_balance() in load balancing but not
considered when looking for busiest group and computing load imbalance.
Add this consideration in find_busiest_group() and calculate_imbalance().

In addition, update the logic determining the busier group when one group
is SMT and the other group is non SMT but both groups are partially busy
with idle CPU. The busier group should be the group with idle cores rather
than the group with one busy SMT CPU.  We do not want to make the SMT group
the busiest one to pull the only task off SMT CPU and causing the whole core to
go empty.

Otherwise suppose in the search for the busiest group, we first encounter
an SMT group with 1 task and set it as the busiest.  The destination
group is an atom cluster with 1 task and we next encounter an atom
cluster group with 3 tasks, we will not pick this atom cluster over the
SMT group, even though we should.  As a result, we do not load balance
the busier Atom cluster (with 3 tasks) towards the local atom cluster
(with 1 task).  And it doesn't make sense to pick the 1 task SMT group
as the busier group as we also should not pull task off the SMT towards
the 1 task atom cluster and make the SMT core completely empty.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e24f35d142308790f69be65930b82794ef6658a2.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:51 +02:00
Miaohe Lin
35cd21f629 sched/psi: make psi_cgroups_enabled static
The static key psi_cgroups_enabled is only used inside file psi.c.
Make it static.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Link: https://lore.kernel.org/r/20230525103428.49712-1-linmiaohe@huawei.com
2023-07-13 15:21:50 +02:00
Cruz Zhao
548796e2e7 sched/core: introduce sched_core_idle_cpu()
As core scheduling introduced, a new state of idle is defined as
force idle, running idle task but nr_running greater than zero.

If a cpu is in force idle state, idle_cpu() will return zero. This
result makes sense in some scenarios, e.g., load balance,
showacpu when dumping, and judge the RCU boost kthread is starving.

But this will cause error in other scenarios, e.g., tick_irq_exit():
When force idle, rq->curr == rq->idle but rq->nr_running > 0, results
that idle_cpu() returns 0. In function tick_irq_exit(), if idle_cpu()
is 0, tick_nohz_irq_exit() will not be called, and ts->idle_active will
not become 1, which became 0 in tick_nohz_irq_enter().
ts->idle_sleeptime won't update in function update_ts_time_stats(), if
ts->idle_active is 0, which should be 1. And this bug will result that
ts->idle_sleeptime is less than the actual value, and finally will
result that the idle time in /proc/stat is less than the actual value.

To solve this problem, we introduce sched_core_idle_cpu(), which
returns 1 when force idle. We audit all users of idle_cpu(), and
change idle_cpu() into sched_core_idle_cpu() in function
tick_irq_exit().

v2-->v3: Only replace idle_cpu() with sched_core_idle_cpu() in
function tick_irq_exit(). And modify the corresponding commit log.

Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/1688011324-42406-1-git-send-email-CruzZhao@linux.alibaba.com
2023-07-13 15:21:50 +02:00
Josh Don
677ea015f2 sched: add throttled time stat for throttled children
We currently export the total throttled time for cgroups that are given
a bandwidth limit. This patch extends this accounting to also account
the total time that each children cgroup has been throttled.

This is useful to understand the degree to which children have been
affected by the throttling control. Children which are not runnable
during the entire throttled period, for example, will not show any
self-throttling time during this period.

Expose this in a new interface, 'cpu.stat.local', which is similar to
how non-hierarchical events are accounted in 'memory.events.local'.

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230620183247.737942-2-joshdon@google.com
2023-07-13 15:21:49 +02:00
Josh Don
79462e8c87 sched: don't account throttle time for empty groups
It is easy for a cfs_rq to become throttled even when it has no enqueued
entities (for example, if we have just put_prev()'d the last runnable
task of the cfs_rq, and the cfs_rq is out of quota).

Avoid accounting this time towards total throttle time, since it
otherwise falsely inflates the stats.

Note that the dequeue path is special, since we normally disallow
migrations when a task is in a throttled hierarchy (see
throttled_lb_pair()).

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230620183247.737942-1-joshdon@google.com
2023-07-13 15:21:49 +02:00
Suren Baghdasaryan
aff037078e sched/psi: use kernfs polling functions for PSI trigger polling
Destroying psi trigger in cgroup_file_release causes UAF issues when
a cgroup is removed from under a polling process. This is happening
because cgroup removal causes a call to cgroup_file_release while the
actual file is still alive. Destroying the trigger at this point would
also destroy its waitqueue head and if there is still a polling process
on that file accessing the waitqueue, it will step on the freed pointer:

do_select
  vfs_poll
                           do_rmdir
                             cgroup_rmdir
                               kernfs_drain_open_files
                                 cgroup_file_release
                                   cgroup_pressure_release
                                     psi_trigger_destroy
                                       wake_up_pollfree(&t->event_wait)
// vfs_poll is unblocked
                                       synchronize_rcu
                                       kfree(t)
  poll_freewait -> UAF access to the trigger's waitqueue head

Patch [1] fixed this issue for epoll() case using wake_up_pollfree(),
however the same issue exists for synchronous poll() case.
The root cause of this issue is that the lifecycles of the psi trigger's
waitqueue and of the file associated with the trigger are different. Fix
this by using kernfs_generic_poll function when polling on cgroup-specific
psi triggers. It internally uses kernfs_open_node->poll waitqueue head
with its lifecycle tied to the file's lifecycle. This also renders the
fix in [1] obsolete, so revert it.

[1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")

Fixes: 0e94682b73bf ("psi: introduce psi monitor")
Closes: https://lore.kernel.org/all/20230613062306.101831-1-lujialin4@huawei.com/
Reported-by: Lu Jialin <lujialin4@huawei.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230630005612.1014540-1-surenb@google.com
2023-07-10 09:52:30 +02:00
Miaohe Lin
ae2ad293d6 sched/fair: Use recent_used_cpu to test p->cpus_ptr
When checking whether a recently used CPU can be a potential idle
candidate, recent_used_cpu should be used to test p->cpus_ptr as
p->recent_used_cpu is not equal to recent_used_cpu and candidate
decision is made based on recent_used_cpu here.

Fixes: 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20230620080747.359122-1-linmiaohe@huawei.com
2023-07-10 09:52:30 +02:00
Linus Torvalds
6e2332e0ab cgroup: Changes for v6.5
* Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking
   for DEADLINE tasks as they need to be accounted on the new domain. Walking
   all tasks can be expensive and there may not be any DEADLINE tasks at all.
   Task iteration is now omitted if there are no DEADLINE tasks.
 
 * Fixes DEADLINE bandwidth misaccounting after task migration failures.
 
 * When no controller is enabled, -Wstringop-overflow warning is triggered.
   The fix patch added an early exit which is too eager and got reverted for
   now. Will fix later.
 
 * Everything else are minor cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoRHw4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGZatAQCKTv8pb5HEgochph4n26laSdVZs6ce3Y+s7V1T
 rum+3QD/TyJFmCkZSMscolZGFuafpg41sjPbmc4SexeuAMYCMgY=
 =nioD
 -----END PGP SIGNATURE-----

Merge tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup

Pull cgroup updates from Tejun Heo:

 - Whenever cpuset needs to rebuild sched_domain, it walked all tasks
   looking for DEADLINE tasks as they need to be accounted on the new
   domain. Walking all tasks can be expensive and there may not be any
   DEADLINE tasks at all. Task iteration is now omitted if there are no
   DEADLINE tasks

 - Fixes DEADLINE bandwidth misaccounting after task migration failures

 - When no controller is enabled, -Wstringop-overflow warning is
   triggered. The fix patch added an early exit which is too eager and
   got reverted for now. Will fix later

 - Everything else is minor cleanups

* tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  Revert "cgroup: Avoid -Wstringop-overflow warnings"
  cgroup/misc: Expose misc.current on cgroup v2 root
  cgroup: Avoid -Wstringop-overflow warnings
  cgroup: remove obsolete comment on cgroup_on_dfl()
  cgroup: remove unused task_cgroup_path()
  cgroup/cpuset: remove unneeded header files
  cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static
  rdmacg: fix kernel-doc warnings in rdmacg
  cgroup: Replace the css_set call with cgroup_get
  cgroup: remove unused macro for_each_e_css()
  cgroup: Update out-of-date comment in cgroup_migrate()
  cgroup: Replace all non-returning strlcpy with strscpy
  cgroup/cpuset: remove unneeded header files
  cgroup/cpuset: Free DL BW in case can_attach() fails
  sched/deadline: Create DL BW alloc, free & check overflow interface
  cgroup/cpuset: Iterate only if DEADLINE tasks are present
  sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
  sched/cpuset: Bring back cpuset_mutex
  cgroup/cpuset: Rename functions dealing with DEADLINE accounting
2023-06-27 16:54:21 -07:00
Linus Torvalds
7ab044a4f4 workqueue: Changes for v6.5
* Concurrency-managed per-cpu work items that hog CPUs and delay the
   execution of other work items are now automatically detected and excluded
   from concurrency management. Reporting on such work items can also be
   enabled through a config option.
 
 * Added tools/workqueue/wq_monitor.py which improves visibility into
   workqueue usages and behaviors.
 
 * Includes Arnd's minimal fix for gcc-13 enum warning on 32bit compiles.
   This conflicts with afa4bb778e48 ("workqueue: clean up WORK_* constant
   types, clarify masking") in master. Can be resolved by picking the master
   version.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoGvw4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGZu0AP9IGK2opAzO9i3i1/Ys81b3sHi9PwrYWH3g252T
 Oe3O6QD/Wh0wYBVl0o7IdW6BGdd5iNwIEs420G53UmmPrATqsgQ=
 =TffY
 -----END PGP SIGNATURE-----

Merge tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq

Pull workqueue updates from Tejun Heo:

 - Concurrency-managed per-cpu work items that hog CPUs and delay the
   execution of other work items are now automatically detected and
   excluded from concurrency management. Reporting on such work items
   can also be enabled through a config option.

 - Added tools/workqueue/wq_monitor.py which improves visibility into
   workqueue usages and behaviors.

 - Arnd's minimal fix for gcc-13 enum warning on 32bit compiles,
   superseded by commit afa4bb778e48 in mainline.

* tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: Disable per-cpu CPU hog detection when wq_cpu_intensive_thresh_us is 0
  workqueue: Fix WARN_ON_ONCE() triggers in worker_enter_idle()
  workqueue: fix enum type for gcc-13
  workqueue: Track and monitor per-workqueue CPU time usage
  workqueue: Report work funcs that trigger automatic CPU_INTENSIVE mechanism
  workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
  workqueue: Improve locking rule description for worker fields
  workqueue: Move worker_set/clr_flags() upwards
  workqueue: Re-order struct worker fields
  workqueue: Add pwq->stats[] and a monitoring script
  Further upgrade queue_work_on() comment
2023-06-27 16:32:52 -07:00
Linus Torvalds
bc6cb4d5bc Locking changes for v6.5:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double().
 
   The cmpxchg128() family of functions is basically & functionally
   the same as cmpxchg_double(), but with a saner interface: instead
   of a 6-parameter horror that forced u128 - u64/u64-halves layout
   details on the interface and exposed users to complexity,
   fragility & bugs, use a natural 3-parameter interface with u128 types.
 
 - Restructure the generated atomic headers, and add
   kerneldoc comments for all of the generic atomic{,64,_long}_t
   operations. Generated definitions are much cleaner now,
   and come with documentation.
 
 - Implement lock_set_cmp_fn() on lockdep, for defining an ordering
   when taking multiple locks of the same type. This gets rid of
   one use of lockdep_set_novalidate_class() in the bcache code.
 
 - Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended
   variable shadowing generating garbage code on Clang on certain
   ARM builds.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSav3wRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gDyxAAjCHQjpolrre7fRpyiTDwqzIKT27H04vQ
 zrQVlVc42WBnn9pe8LthGy43/RvYvqlZvLoLONA4fMkuYriM6nSMsoZjeUmE+6Rs
 QAElQC74P5YvEBOa67VNY3/M7sj22ftDe7ODtVV8OrnPjMk1sQNRvaK025Cs3yig
 8MAI//hHGNmyVAp1dPYZMJNqxGCvluReLZ4SaUJFCMrg7YgUXgCBj/5Gi07TlKxn
 sT8BFCssoEW/B9FXkh59B1t6FBCZoSy4XSZfsZe0uVAUJ4XDEOO+zBgaWFCedNQT
 wP323ryBgMrkzUKA8j2/o5d3QnMA1GcBfHNNlvAl/fOfrxWXzDZnOEY26YcaLMa0
 YIuRF/JNbPZlt6DCUVBUEvMPpfNYi18dFN0rat1a6xL2L4w+tm55y3mFtSsg76Ka
 r7L2nWlRrAGXnuA+VEPqkqbSWRUSWOv5hT2Mcyb5BqqZRsxBETn6G8GVAzIO6j6v
 giyfUdA8Z9wmMZ7NtB6usxe3p1lXtnZ/shCE7ZHXm6xstyZrSXaHgOSgAnB9DcuJ
 7KpGIhhSODQSwC/h/J0KEpb9Pr/5jCWmXAQ2DWnZK6ndt1jUfFi8pfK58wm0AuAM
 o9t8Mx3o8wZjbMdt6up9OIM1HyFiMx2BSaZK+8f/bWemHQ0xwez5g4k5O5AwVOaC
 x9Nt+Tp0Ze4=
 =DsYj
 -----END PGP SIGNATURE-----

Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking updates from Ingo Molnar:

 - Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()

   The cmpxchg128() family of functions is basically & functionally the
   same as cmpxchg_double(), but with a saner interface.

   Instead of a 6-parameter horror that forced u128 - u64/u64-halves
   layout details on the interface and exposed users to complexity,
   fragility & bugs, use a natural 3-parameter interface with u128
   types.

 - Restructure the generated atomic headers, and add kerneldoc comments
   for all of the generic atomic{,64,_long}_t operations.

   The generated definitions are much cleaner now, and come with
   documentation.

 - Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
   taking multiple locks of the same type.

   This gets rid of one use of lockdep_set_novalidate_class() in the
   bcache code.

 - Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
   shadowing generating garbage code on Clang on certain ARM builds.

* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
  percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
  locking/atomic: treewide: delete arch_atomic_*() kerneldoc
  locking/atomic: docs: Add atomic operations to the driver basic API documentation
  locking/atomic: scripts: generate kerneldoc comments
  docs: scripts: kernel-doc: accept bitwise negation like ~@var
  locking/atomic: scripts: simplify raw_atomic*() definitions
  locking/atomic: scripts: simplify raw_atomic_long*() definitions
  locking/atomic: scripts: split pfx/name/sfx/order
  locking/atomic: scripts: restructure fallback ifdeffery
  locking/atomic: scripts: build raw_atomic_long*() directly
  locking/atomic: treewide: use raw_atomic*_<op>()
  locking/atomic: scripts: add trivial raw_atomic*_<op>()
  locking/atomic: scripts: factor out order template generation
  locking/atomic: scripts: remove leftover "${mult}"
  locking/atomic: scripts: remove bogus order parameter
  locking/atomic: xtensa: add preprocessor symbols
  locking/atomic: x86: add preprocessor symbols
  locking/atomic: sparc: add preprocessor symbols
  locking/atomic: sh: add preprocessor symbols
  ...
2023-06-27 14:14:30 -07:00
Linus Torvalds
ed3b7923a8 Scheduler changes for v6.5:
- Scheduler SMP load-balancer improvements:
 
     - Avoid unnecessary migrations within SMT domains on hybrid systems.
 
       Problem:
 
         On hybrid CPU systems, (processors with a mixture of higher-frequency
 	SMT cores and lower-frequency non-SMT cores), under the old code
 	lower-priority CPUs pulled tasks from the higher-priority cores if
 	more than one SMT sibling was busy - resulting in many unnecessary
 	task migrations.
 
       Solution:
 
         The new code improves the load balancer to recognize SMT cores with more
         than one busy sibling and allows lower-priority CPUs to pull tasks, which
         avoids superfluous migrations and lets lower-priority cores inspect all SMT
         siblings for the busiest queue.
 
     - Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
       contention in frequency, EAS max util & load-balance busiest CPU selection.
 
       This improves CPU utilization for certain workloads, while leaves other key
       workloads unchanged.
 
 - Scheduler infrastructure improvements:
 
     - Rewrite the scheduler topology setup code by consolidating it
       into the build_sched_topology() helper function and building
       it dynamically on the fly.
 
     - Resolve the local_clock() vs. noinstr complications by rewriting
       the code: provide separate sched_clock_noinstr() and
       local_clock_noinstr() functions to be used in instrumentation code,
       and make sure it is all instrumentation-safe.
 
 - Fixes:
 
     - Fix a kthread_park() race with wait_woken()
 
     - Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
        - Fix UP PREEMPT bug by unifying the SMP and UP implementations.
        - Fix task_struct::saved_state handling.
 
     - Fix various rq clock update bugs, unearthed by turning on the rq clock
       debugging code.
 
     - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
       creating enough cgroups, by removing the warnign and restricting
       window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
 
     - Propagate SMT flags in the topology when removing degenerate domain
 
     - Fix grub_reclaim() calculation bug in the deadline scheduler code
 
     - Avoid resetting the min update period when it is unnecessary, in
       psi_trigger_destroy().
 
     - Don't balance a task to its current running CPU in load_balance(),
       which was possible on certain NUMA topologies with overlapping
       groups.
 
     - Fix the sched-debug printing of rq->nr_uninterruptible
 
 - Cleanups:
 
     - Address various -Wmissing-prototype warnings, as a preparation
       to (maybe) enable this warning in the future.
 
     - Remove unused code
 
     - Mark more functions __init
 
     - Fix shadow-variable warnings
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
 qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
 egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
 o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
 9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
 u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
 vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
 AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
 wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
 4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
 VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
 PiDbtX760ic=
 =EWQA
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "Scheduler SMP load-balancer improvements:

   - Avoid unnecessary migrations within SMT domains on hybrid systems.

     Problem:

        On hybrid CPU systems, (processors with a mixture of
        higher-frequency SMT cores and lower-frequency non-SMT cores),
        under the old code lower-priority CPUs pulled tasks from the
        higher-priority cores if more than one SMT sibling was busy -
        resulting in many unnecessary task migrations.

     Solution:

        The new code improves the load balancer to recognize SMT cores
        with more than one busy sibling and allows lower-priority CPUs
        to pull tasks, which avoids superfluous migrations and lets
        lower-priority cores inspect all SMT siblings for the busiest
        queue.

   - Implement the 'runnable boosting' feature in the EAS balancer:
     consider CPU contention in frequency, EAS max util & load-balance
     busiest CPU selection.

     This improves CPU utilization for certain workloads, while leaves
     other key workloads unchanged.

  Scheduler infrastructure improvements:

   - Rewrite the scheduler topology setup code by consolidating it into
     the build_sched_topology() helper function and building it
     dynamically on the fly.

   - Resolve the local_clock() vs. noinstr complications by rewriting
     the code: provide separate sched_clock_noinstr() and
     local_clock_noinstr() functions to be used in instrumentation code,
     and make sure it is all instrumentation-safe.

  Fixes:

   - Fix a kthread_park() race with wait_woken()

   - Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
       - Fix UP PREEMPT bug by unifying the SMP and UP implementations
       - Fix task_struct::saved_state handling

   - Fix various rq clock update bugs, unearthed by turning on the rq
     clock debugging code.

   - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
     by creating enough cgroups, by removing the warnign and restricting
     window size triggers to PSI file write-permission or
     CAP_SYS_RESOURCE.

   - Propagate SMT flags in the topology when removing degenerate domain

   - Fix grub_reclaim() calculation bug in the deadline scheduler code

   - Avoid resetting the min update period when it is unnecessary, in
     psi_trigger_destroy().

   - Don't balance a task to its current running CPU in load_balance(),
     which was possible on certain NUMA topologies with overlapping
     groups.

   - Fix the sched-debug printing of rq->nr_uninterruptible

  Cleanups:

   - Address various -Wmissing-prototype warnings, as a preparation to
     (maybe) enable this warning in the future.

   - Remove unused code

   - Mark more functions __init

   - Fix shadow-variable warnings"

* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
  sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
  sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
  sched/core: Fixed missing rq clock update before calling set_rq_offline()
  sched/deadline: Update GRUB description in the documentation
  sched/deadline: Fix bandwidth reclaim equation in GRUB
  sched/wait: Fix a kthread_park race with wait_woken()
  sched/topology: Mark set_sched_topology() __init
  sched/fair: Rename variable cpu_util eff_util
  arm64/arch_timer: Fix MMIO byteswap
  sched/fair, cpufreq: Introduce 'runnable boosting'
  sched/fair: Refactor CPU utilization functions
  cpuidle: Use local_clock_noinstr()
  sched/clock: Provide local_clock_noinstr()
  x86/tsc: Provide sched_clock_noinstr()
  clocksource: hyper-v: Provide noinstr sched_clock()
  clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
  x86/vdso: Fix gettimeofday masking
  math64: Always inline u128 version of mul_u64_u64_shr()
  s390/time: Provide sched_clock_noinstr()
  loongarch: Provide noinstr sched_clock_read()
  ...
2023-06-27 14:03:21 -07:00
Hao Jia
ebb83d84e4 sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
After commit 8ad075c2eb1f ("sched: Async unthrottling for cfs
bandwidth"), we may update the rq clock multiple times in the loop of
__cfsb_csd_unthrottle().

A prior (although less common) instance of this problem exists in
unthrottle_offline_cfs_rqs().

Cure both by ensuring update_rq_clock() is called before the loop and
setting RQCF_ACT_SKIP during the loop, to supress further updates.
The alternative would be pulling update_rq_clock() out of
unthrottle_cfs_rq(), but that gives an even bigger mess.

Fixes: 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth")
Reviewed-By: Ben Segall <bsegall@google.com>
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-4-jiahao.os@bytedance.com
2023-06-16 22:08:13 +02:00