IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
free_pcppages_bulk() has taken two passes through the pcp lists since
commit 0a5f4e5b4562 ("mm/free_pcppages_bulk: do not hold lock when
picking pages to free") due to deferring the cost of selecting PCP lists
until the zone lock is held.
As the list processing now takes place under the zone lock, it's less
clear that this will always benefit for two reasons.
1. There is a guaranteed cost to calculating the buddy which definitely
has to be calculated again. However, as the zone lock is held and
there is no deferring of buddy merging, there is no guarantee that the
prefetch will have completed when the second buddy calculation takes
place and buddies are being merged. With or without the prefetch, there
may be further stalls depending on how many pages get merged. In other
words, a stall due to merging is inevitable and at best only one stall
might be avoided at the cost of calculating the buddy location twice.
2. As the zone lock is held, prefetch_nr makes less sense as once
prefetch_nr expires, the cache lines of interest have already been
merged.
The main concern is that there is a definite cost to calculating the
buddy location early for the prefetch and it is a "maybe win" depending
on whether the CPU prefetch logic and memory is fast enough. Remove the
prefetch logic on the basis that reduced instructions in a path is
always a saving where as the prefetch might save one memory stall
depending on the CPU and memory.
In most cases, this has marginal benefit as the calculations are a small
part of the overall freeing of pages. However, it was detectable on at
least one machine.
5.17.0-rc3 5.17.0-rc3
mm-highpcplimit-v2r1 mm-noprefetch-v1r1
Min elapsed 630.00 ( 0.00%) 610.00 ( 3.17%)
Amean elapsed 639.00 ( 0.00%) 623.00 * 2.50%*
Max elapsed 660.00 ( 0.00%) 660.00 ( 0.00%)
Link: https://lkml.kernel.org/r/20220221094119.15282-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Aaron Lu <aaron.lu@intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a PCP is mostly used for frees then high-order pages can exist on
PCP lists for some time. This is problematic when the allocation
pattern is all allocations from one CPU and all frees from another
resulting in colder pages being used. When bulk freeing pages, limit
the number of high-order pages that are stored on the PCP lists.
Netperf running on localhost exhibits this pattern and while it does not
matter for some machines, it does matter for others with smaller caches
where cache misses cause problems due to reduced page reuse. Pages
freed directly to the buddy list may be reused quickly while still cache
hot where as storing on the PCP lists may be cold by the time
free_pcppages_bulk() is called.
Using perf kmem:mm_page_alloc, the 5 most used page frames were
5.17-rc3
13041 pfn=0x111a30
13081 pfn=0x5814d0
13097 pfn=0x108258
13121 pfn=0x689598
13128 pfn=0x5814d8
5.17-revert-highpcp
192009 pfn=0x54c140
195426 pfn=0x1081d0
200908 pfn=0x61c808
243515 pfn=0xa9dc20
402523 pfn=0x222bb8
5.17-full-series
142693 pfn=0x346208
162227 pfn=0x13bf08
166413 pfn=0x2711e0
166950 pfn=0x2702f8
The spread is wider as there is still time before pages freed to one PCP
get released with a tradeoff between fast reuse and reduced zone lock
acquisition.
On the machine used to gather the traces, the headline performance was
equivalent.
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1r1 mm-highpcplimit-v2
Hmean 64 839.93 ( 0.00%) 840.77 ( 0.10%) 841.02 ( 0.13%)
Hmean 128 1614.22 ( 0.00%) 1622.07 * 0.49%* 1636.41 * 1.37%*
Hmean 256 2952.00 ( 0.00%) 2953.19 ( 0.04%) 2977.76 * 0.87%*
Hmean 1024 10291.67 ( 0.00%) 10239.17 ( -0.51%) 10434.41 * 1.39%*
Hmean 2048 17335.08 ( 0.00%) 17399.97 ( 0.37%) 17134.81 * -1.16%*
Hmean 3312 22628.15 ( 0.00%) 22471.97 ( -0.69%) 22422.78 ( -0.91%)
Hmean 4096 25009.50 ( 0.00%) 24752.83 * -1.03%* 24740.41 ( -1.08%)
Hmean 8192 32745.01 ( 0.00%) 31682.63 * -3.24%* 32153.50 * -1.81%*
Hmean 16384 39759.59 ( 0.00%) 36805.78 * -7.43%* 38948.13 * -2.04%*
On a 1-socket skylake machine with a small CPU cache that suffers more if
cache misses are too high
netperf-tcp
5.17.0-rc3 5.17.0-rc3 5.17.0-rc3
vanilla mm-reverthighpcp-v1 mm-highpcplimit-v2
Hmean 64 938.95 ( 0.00%) 941.50 * 0.27%* 943.61 * 0.50%*
Hmean 128 1843.10 ( 0.00%) 1857.58 * 0.79%* 1861.09 * 0.98%*
Hmean 256 3573.07 ( 0.00%) 3667.45 * 2.64%* 3674.91 * 2.85%*
Hmean 1024 13206.52 ( 0.00%) 13487.80 * 2.13%* 13393.21 * 1.41%*
Hmean 2048 22870.23 ( 0.00%) 23337.96 * 2.05%* 23188.41 * 1.39%*
Hmean 3312 31001.99 ( 0.00%) 32206.50 * 3.89%* 31863.62 * 2.78%*
Hmean 4096 35364.59 ( 0.00%) 36490.96 * 3.19%* 36112.54 * 2.11%*
Hmean 8192 48497.71 ( 0.00%) 49954.05 * 3.00%* 49588.26 * 2.25%*
Hmean 16384 58410.86 ( 0.00%) 60839.80 * 4.16%* 62282.96 * 6.63%*
Note that this was a machine that did not benefit from caching high-order
pages and performance is almost restored with the series applied. It's
not fully restored as cache misses are still higher. This is a trade-off
between optimising for a workload that does all allocs on one CPU and
frees on another or more general workloads that need high-order pages for
SLUB and benefit from avoiding zone->lock for every SLUB refill/drain.
Link: https://lkml.kernel.org/r/20220217002227.5739-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to the series, pindex 0 (order-0 MIGRATE_UNMOVABLE) was always
skipped first and the precise reason is forgotten. A potential reason
may have been to artificially preserve MIGRATE_UNMOVABLE but there is no
reason why that would be optimal as it depends on the workload. The
more likely reason is that it was less complicated to do a pre-increment
instead of a post-increment in terms of overall code flow. As
free_pcppages_bulk() now typically receives the pindex of the PCP list
that exceeded high, always start draining that list.
Link: https://lkml.kernel.org/r/20220217002227.5739-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pcppages_bulk() selects pages to free by round-robining between
lists. Originally this was to evenly shrink pages by migratetype but
uneven freeing is inevitable due to high pages. Simplify list selection
by starting with a list that definitely has pages on it in
free_unref_page_commit() and for drain, it does not matter where
draining starts as all pages are removed.
Link: https://lkml.kernel.org/r/20220217002227.5739-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pcppages_bulk() frees pages in a round-robin fashion. Originally,
this was dealing only with migratetypes but storing high-order pages
means that there can be many more empty lists that are uselessly
checked. Track the minimum and maximum active pindex to reduce the
search space.
Link: https://lkml.kernel.org/r/20220217002227.5739-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Follow-up on high-order PCP caching", v2.
Commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored
on the per-cpu lists") was primarily aimed at reducing the cost of SLUB
cache refills of high-order pages in two ways. Firstly, zone lock
acquisitions was reduced and secondly, there were fewer buddy list
modifications. This is a follow-up series fixing some issues that
became apparant after merging.
Patch 1 is a functional fix. It's harmless but inefficient.
Patches 2-5 reduce the overhead of bulk freeing of PCP pages. While the
overhead is small, it's cumulative and noticable when truncating large
files. The changelog for patch 4 includes results of a microbench that
deletes large sparse files with data in page cache. Sparse files were
used to eliminate filesystem overhead.
Patch 6 addresses issues with high-order PCP pages being stored on PCP
lists for too long. Pages freed on a CPU potentially may not be quickly
reused and in some cases this can increase cache miss rates. Details
are included in the changelog.
This patch (of 6):
free_pcppages_bulk() prefetches buddies about to be freed but the order
must also be passed in as PCP lists store multiple orders.
Link: https://lkml.kernel.org/r/20220217002227.5739-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20220217002227.5739-2-mgorman@techsingularity.net
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZONE_MOVABLE uses the remaining memory in each node. Its starting pfn
is also aligned to MAX_ORDER_NR_PAGES. It is possible for the remaining
memory in a node to be less than MAX_ORDER_NR_PAGES, meaning there is
not enough room for ZONE_MOVABLE on that node.
Unfortunately this condition is not checked for. This leads to
zone_movable_pfn[] getting set to a pfn greater than the last pfn in a
node.
calculate_node_totalpages() then sets zone->present_pages to be greater
than zone->spanned_pages which is invalid, as spanned_pages represents
the maximum number of pages in a zone assuming no holes.
Subsequently it is possible free_area_init_core() will observe a zone of
size zero with present pages. In this case it will skip setting up the
zone, including the initialisation of free_lists[].
However populated_zone() checks zone->present_pages to see if a zone has
memory available. This is used by iterators such as
walk_zones_in_node(). pagetypeinfo_showfree() uses this to walk the
free_list of each zone in each node, which are assumed to be initialised
due to the zone not being empty.
As free_area_init_core() never initialised the free_lists[] this results
in the following kernel crash when trying to read /proc/pagetypeinfo:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
CPU: 0 PID: 456 Comm: cat Not tainted 5.16.0 #461
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
RIP: 0010:pagetypeinfo_show+0x163/0x460
Code: 9e 82 e8 80 57 0e 00 49 8b 06 b9 01 00 00 00 4c 39 f0 75 16 e9 65 02 00 00 48 83 c1 01 48 81 f9 a0 86 01 00 0f 84 48 02 00 00 <48> 8b 00 4c 39 f0 75 e7 48 c7 c2 80 a2 e2 82 48 c7 c6 79 ef e3 82
RSP: 0018:ffffc90001c4bd10 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff88801105f638 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 000000000000068b RDI: ffff8880163dc68b
RBP: ffffc90001c4bd90 R08: 0000000000000001 R09: ffff8880163dc67e
R10: 656c6261766f6d6e R11: 6c6261766f6d6e55 R12: ffff88807ffb4a00
R13: ffff88807ffb49f8 R14: ffff88807ffb4580 R15: ffff88807ffb3000
FS: 00007f9c83eff5c0(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000013c8e000 CR4: 0000000000350ef0
Call Trace:
seq_read_iter+0x128/0x460
proc_reg_read_iter+0x51/0x80
new_sync_read+0x113/0x1a0
vfs_read+0x136/0x1d0
ksys_read+0x70/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by checking that the aligned zone_movable_pfn[] does not exceed
the end of the node, and if it does skip creating a movable zone on this
node.
Link: https://lkml.kernel.org/r/20220215025831.2113067-1-apopple@nvidia.com
Fixes: 2a1e274acf0b ("Create the ZONE_MOVABLE zone")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9983a9d577db ("locking/local_lock: Make the empty local_lock_*()
function a macro.") in the -tip tree converted the local_lock_*()
functions into macros, which causes a warning with clang with
CONFIG_PREEMPT_RT=n + CONFIG_DEBUG_LOCK_ALLOC=n:
mm/page_alloc.c:131:40: error: variable 'pagesets' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration]
static DEFINE_PER_CPU(struct pagesets, pagesets) = {
^
1 error generated.
Prior to that change, clang was not able to tell that pagesets was
unused in this configuration because it does not perform cross function
analysis in the frontend. After that change, it sees that the macros
just do a typecheck on the lock member of pagesets, which is evaluated
at compile time (so the variable is technically "used"), meaning the
variable is not needed in the final assembly, as the warning states.
Mark the variable as __maybe_unused to make it clear to clang that this
is expected in this configuration so there is no more warning.
Link: https://github.com/ClangBuiltLinux/linux/issues/1593
Link: https://lkml.kernel.org/r/20220215184322.440969-1-nathan@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some places in the kernel don't really expect pageblock_order >=
MAX_ORDER, and it looks like this is only possible in corner cases:
1) CONFIG_DEFERRED_STRUCT_PAGE_INIT we'll end up freeing pageblock_order
pages via __free_pages_core(), which cannot possibly work.
2) find_zone_movable_pfns_for_nodes() will roundup the ZONE_MOVABLE
start PFN to MAX_ORDER_NR_PAGES. Consequently with a bigger
pageblock_order, we could have a single pageblock partially managed by
two zones.
3) compaction code runs into __fragmentation_index() with order
>= MAX_ORDER, when checking WARN_ON_ONCE(order >= MAX_ORDER). [1]
4) mm/page_reporting.c won't be reporting any pages with default
page_reporting_order == pageblock_order, as we'll be skipping the
reporting loop inside page_reporting_process_zone().
5) __rmqueue_fallback() will never be able to steal with
ALLOC_NOFRAGMENT.
pageblock_order >= MAX_ORDER is weird either way: it's a pure
optimization for making alloc_contig_range(), as used for allcoation of
gigantic pages, a little more reliable to succeed. However, if there is
demand for somewhat reliable allocation of gigantic pages, affected
setups should be using CMA or boottime allocations instead.
So let's make sure that pageblock_order < MAX_ORDER and simplify.
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20220214174132.219303-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: enforce pageblock_order < MAX_ORDER".
Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.
For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.
We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.
Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.
Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.
This patch (of 2):
Let's enforce pageblock_order < MAX_ORDER and simplify.
Especially patch #1 can be regarded a cleanup before:
[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
alignment. [2]
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_unref_page_commit() doesn't make use of its pfn argument, so get
rid of it.
Link: https://lkml.kernel.org/r/20220202140451.415928-1-nsaenzju@redhat.com
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove pgdat_page_nr, nid_page_nr and NODE_MEM_MAP. They are unused
now.
Link: https://lkml.kernel.org/r/20220127093210.62293-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is done in addition to MIGRATE_ISOLATE pageblock merge avoidance.
It prepares for the upcoming removal of the MAX_ORDER-1 alignment
requirement for CMA and alloc_contig_range().
MIGRATE_HIGHATOMIC should not merge with other migratetypes like
MIGRATE_ISOLATE and MIGRARTE_CMA[1], so this commit prevents that too.
Remove MIGRATE_CMA and MIGRATE_ISOLATE from fallbacks list, since they
are never used.
[1] https://lore.kernel.org/linux-mm/20211130100853.GP3366@techsingularity.net/
Link: https://lkml.kernel.org/r/20220124175957.1261961-1-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmap_area_root should be in the "busy" tree and the
free_vmap_area_root should be in the "free" tree.
Link: https://lkml.kernel.org/r/20220305011510.33596-1-libang.linuxer@gmail.com
Fixes: 688fcbfc06e4 ("mm/vmalloc: modify struct vmap_area to reduce its size")
Signed-off-by: Bang Li <libang.linuxer@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Pengfei Li <lpf.vector@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
That extra variable has been introduced just for keeping an original
passed gfp_mask because it is updated with __GFP_NOWARN on entry, thus
error handling messages were broken.
Instead we can keep an original gfp_mask without modifying it and add an
extra __GFP_NOWARN flag together with gfp_mask as a parameter to the
vm_area_alloc_pages() function. It will make it less confused.
Link: https://lkml.kernel.org/r/20220119143540.601149-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extend the find_vmap_lowest_match() function with one more parameter.
It is "adjust_search_size" boolean variable, so it is possible to
control an accuracy of search block if a specific alignment is required.
With this patch, a search size is always adjusted, to serve a request as
fast as possible because of performance reason.
But there is one exception though, it is short ranges where requested
size corresponds to passed vstart/vend restriction together with a
specific alignment request. In such scenario an adjustment wold not
lead to success allocation.
Link: https://lkml.kernel.org/r/20220119143540.601149-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A caller initiates the drain procces from its context once the
drain threshold is reached or passed. There are at least two
drawbacks of doing so:
a) a caller can be a high-prio or RT task. In that case it can
stuck in doing the actual drain of all lazily freed areas.
This is not optimal because such tasks usually are latency
sensitive where the control should be returned back as soon
as possible in order to drive such workloads in time. See
96e2db456135 ("mm/vmalloc: rework the drain logic")
b) It is not safe to call vfree() during holding a spinlock due
to the vmap_purge_lock mutex. The was a report about this from
Zeal Robot <zealci@zte.com.cn> here:
https://lore.kernel.org/all/20211222081026.484058-1-chi.minghao@zte.com.cn
Moving the drain to the separate work context addresses those
issues.
v1->v2:
- Added prefix "_work" to the drain worker function.
v2->v3:
- Remove the drain_vmap_work_in_progress. Extra queuing
is expectable under heavy load but it can be disregarded
because a work will bail out if nothing to be done.
Link: https://lkml.kernel.org/r/20220131144058.35608-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The forward declaration for lazy_max_pages() is unnecessary. Remove it.
Link: https://lkml.kernel.org/r/20220124133752.60663-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's only used in the sparse.c now. So we can make it static and further
clean up the relevant code.
Link: https://lkml.kernel.org/r/20220127093221.63524-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using vma_lookup() verifies the address is contained in the found vma.
This results in easier to read code.
Link: https://lkml.kernel.org/r/20220312083118.48284-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RLIMIT_MEMLOCK is already reimplemented on top of ucounts now. And
since commit 83c1fd763b32 ("mm,hugetlb: remove mlock ulimit for
SHM_HUGETLB"), mlock ulimit for SHM_HUGETLB is further removed.
So we should remove this obsolete comment.
Link: https://lkml.kernel.org/r/20220309090623.13036-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
_install_special_mapping() adds the VM_SPECIAL bit VM_DONTEXPAND (and
never attempts to update locked_vm), so it ought to be consistent with
mmap_region() and mlock_fixup(), making sure not to add VM_LOCKED or
VM_LOCKONFAULT. I doubt that this fixes any problem in practice: just
do it for consistency.
Link: https://lkml.kernel.org/r/a85315a9-21d1-6133-c5fc-c89863dfb25b@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro min and max to help simplify the code logic. Minor
readability improvement.
Link: https://lkml.kernel.org/r/20220224121134.35068-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper function range_in_vma() to check if address, address + size are
within the vma range. Minor readability improvement.
Link: https://lkml.kernel.org/r/20220219021441.29173-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment). This prevents:
Unknown kernel command line parameters \
"BOOT_IMAGE=/boot/bzImage-517rc5 stack_guard_gap=100", will be \
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
stack_guard_gap=100
Return 1 to indicate that the boot option has been handled.
Note that there is no warning message if someone enters:
stack_guard_gap=anything_invalid
and 'val' and stack_guard_gap are both set to 0 due to the use of
simple_strtoul(). This could be improved by using kstrtoxxx() and
checking for an error.
It appears that having stack_guard_gap == 0 is valid (if unexpected) since
using "stack_guard_gap=0" on the kernel command line does that.
Link: https://lkml.kernel.org/r/20220222005817.11087-1-rdunlap@infradead.org
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Fixes: 1be7107fbe18e ("mm: larger stack guard gap, between vmas")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean the code up by merging the device private/exclusive swap entry
handling with the rest, then we merge the pte clear operation too.
struct* page is defined in multiple places in the function, move it
upward.
free_swap_and_cache() is only useful for !non_swap_entry() case, put it
into the condition.
No functional change intended.
Link: https://lkml.kernel.org/r/20220216094810.60572-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have a zap_mapping pointer maintained in zap_details, when
it is specified we only want to zap the pages that has the same mapping
with what the caller has specified.
But what we want to do is actually simpler: we want to skip zapping
private (COW-ed) pages in some cases. We can refer to
unmap_mapping_pages() callers where we could have passed in different
even_cows values. The other user is unmap_mapping_folio() where we
always want to skip private pages.
According to Hugh, we used a mapping pointer for historical reason, as
explained here:
https://lore.kernel.org/lkml/391aa58d-ce84-9d4-d68d-d98a9c533255@google.com/
Quoting partly from Hugh:
Which raises the question again of why I did not just use a boolean flag
there originally: aah, I think I've found why. In those days there was a
horrible "optimization", for better performance on some benchmark I guess,
which when you read from /dev/zero into a private mapping, would map the zero
page there (look up read_zero_pagealigned() and zeromap_page_range() if you
dare). So there was another category of page to be skipped along with the
anon COWs, and I didn't want multiple tests in the zap loop, so checking
check_mapping against page->mapping did both. I think nowadays you could do
it by checking for PageAnon page (or genuine swap entry) instead.
This patch replaces the zap_details.zap_mapping pointer into the even_cows
boolean, then we check it against PageAnon.
Link: https://lkml.kernel.org/r/20220216094810.60572-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous name is against the natural way people think. Invert the
meaning and also the return value. No functional change intended.
Link: https://lkml.kernel.org/r/20220216094810.60572-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Rework zap ptes on swap entries", v5.
Patch 1 should fix a long standing bug for zap_pte_range() on
zap_details usage. The risk is we could have some swap entries skipped
while we should have zapped them.
Migration entries are not the major concern because file backed memory
always zap in the pattern that "first time without page lock, then
re-zap with page lock" hence the 2nd zap will always make sure all
migration entries are already recovered.
However there can be issues with real swap entries got skipped
errornoously. There's a reproducer provided in commit message of patch
1 for that.
Patch 2-4 are cleanups that are based on patch 1. After the whole
patchset applied, we should have a very clean view of zap_pte_range().
Only patch 1 needs to be backported to stable if necessary.
This patch (of 4):
The "details" pointer shouldn't be the token to decide whether we should
skip swap entries.
For example, when the callers specified details->zap_mapping==NULL, it
means the user wants to zap all the pages (including COWed pages), then
we need to look into swap entries because there can be private COWed
pages that was swapped out.
Skipping some swap entries when details is non-NULL may lead to wrongly
leaving some of the swap entries while we should have zapped them.
A reproducer of the problem:
===8<===
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
int page_size;
int shmem_fd;
char *buffer;
void main(void)
{
int ret;
char val;
page_size = getpagesize();
shmem_fd = memfd_create("test", 0);
assert(shmem_fd >= 0);
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE, shmem_fd, 0);
assert(buffer != MAP_FAILED);
/* Write private page, swap it out */
buffer[page_size] = 1;
madvise(buffer, page_size * 2, MADV_PAGEOUT);
/* This should drop private buffer[page_size] already */
ret = ftruncate(shmem_fd, page_size);
assert(ret == 0);
/* Recover the size */
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
/* Re-read the data, it should be all zero */
val = buffer[page_size];
if (val == 0)
printf("Good\n");
else
printf("BUG\n");
}
===8<===
We don't need to touch up the pmd path, because pmd never had a issue with
swap entries. For example, shmem pmd migration will always be split into
pte level, and same to swapping on anonymous.
Add another helper should_zap_cows() so that we can also check whether we
should zap private mappings when there's no page pointer specified.
This patch drops that trick, so we handle swap ptes coherently. Meanwhile
we should do the same check upon migration entry, hwpoison entry and
genuine swap entries too.
To be explicit, we should still remember to keep the private entries if
even_cows==false, and always zap them when even_cows==true.
The issue seems to exist starting from the initial commit of git.
[peterx@redhat.com: comment tweaks]
Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code by using flush_dcache_folio().
Link: https://lkml.kernel.org/r/20220210123058.79206-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls mcopy_atomic_pte() and __mcopy_atomic() which do not
do any cache flushing for the target page. Then the target page will be
mapped to the user space with a different address (user address), which
might have an alias issue with the kernel address used to copy the data
from the user to. Fix this by insert flush_dcache_page() after
copy_from_user() succeeds.
Link: https://lkml.kernel.org/r/20220210123058.79206-7-songmuchun@bytedance.com
Fixes: b6ebaedb4cb1 ("userfaultfd: avoid mmap_sem read recursion in mcopy_atomic")
Fixes: c1a4de99fada ("userfaultfd: mcopy_atomic|mfill_zeropage: UFFDIO_COPY|UFFDIO_ZEROPAGE preparation")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls shmem_mfill_atomic_pte() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to. Insert flush_dcache_page() in non-zero-page case. And replace
clear_highpage() with clear_user_highpage() which already considers the
cache maintenance.
Link: https://lkml.kernel.org/r/20220210123058.79206-6-songmuchun@bytedance.com
Fixes: 8d1039634206 ("userfaultfd: shmem: add shmem_mfill_zeropage_pte for userfaultfd support")
Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
folio_copy() will copy the data from one page to the target page, then
the target page will be mapped to the user space address, which might
have an alias issue with the kernel address used to copy the data from
the page to. There are 2 ways to fix this issue.
1) insert flush_dcache_page() after folio_copy().
2) replace folio_copy() with copy_user_huge_page() which already
considers the cache maintenance.
We chose 2) way to fix the issue since architectures can optimize this
situation. It is also make backports easier.
Link: https://lkml.kernel.org/r/20220210123058.79206-5-songmuchun@bytedance.com
Fixes: 8cc5fcbb5be8 ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd calls copy_huge_page_from_user() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to.
Fix this issue by flushing dcache in copy_huge_page_from_user().
Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com
Fixes: fa4d75c1de13 ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The D-cache maintenance inside move_to_new_page() only consider one
page, there is still D-cache maintenance issue for tail pages of
compound page (e.g. THP or HugeTLB).
THP migration is only enabled on x86_64, ARM64 and powerpc, while
powerpc and arm64 need to maintain the consistency between I-Cache and
D-Cache, which depends on flush_dcache_page() to maintain the
consistency between I-Cache and D-Cache.
But there is no issues on arm64 and powerpc since they already considers
the compound page cache flushing in their icache flush function.
HugeTLB migration is enabled on arm, arm64, mips, parisc, powerpc,
riscv, s390 and sh, while arm has handled the compound page cache flush
in flush_dcache_page(), but most others do not.
In theory, the issue exists on many architectures. Fix this by not
using flush_dcache_folio() since it is not backportable.
Link: https://lkml.kernel.org/r/20220210123058.79206-3-songmuchun@bytedance.com
Fixes: 290408d4a250 ("hugetlb: hugepage migration core")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Fix some cache flush bugs", v5.
This series focuses on fixing cache maintenance.
This patch (of 7):
The flush_cache_range() is supposed to be justified only if the page is
already placed in process page table, and that is done right after
flush_cache_range(). So using this interface is wrong. And there is no
need to invalite cache since it was non-present before in
remove_migration_pmd(). So just to remove it.
Link: https://lkml.kernel.org/r/20220210123058.79206-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220210123058.79206-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally the mmu_gathers were removed in commit 1c3951769621 ("mm: now
that all old mmu_gather code is gone, remove the storage"). However,
the openrisc and hexagon architecture were merged around the same time
and mmu_gathers was not removed.
This patch removes them from openrisc, hexagon and nds32:
Noticed while cleaning this warning:
arch/openrisc/mm/init.c:41:1: warning: symbol 'mmu_gathers' was not declared. Should it be static?
Link: https://lkml.kernel.org/r/20220205141956.3315419-1-shorne@gmail.com
Signed-off-by: Stafford Horne <shorne@gmail.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each call into pte_mkhuge() is invariably followed by
arch_make_huge_pte(). Instead arch_make_huge_pte() can accommodate
pte_mkhuge() at the beginning. This updates generic fallback stub for
arch_make_huge_pte() and available platforms definitions. This makes huge
pte creation much cleaner and easier to follow.
Link: https://lkml.kernel.org/r/1643860669-26307-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The $(CC) variable used in Makefiles could contain several arguments
such as "ccache gcc". These need to be passed as a single string to
check_cc.sh, otherwise only the first argument will be used as the
compiler command. Without quotes, the $(CC) variable is passed as
distinct arguments which causes the script to fail to build trivial
programs.
Fix this by adding quotes around $(CC) when calling check_cc.sh to pass
the whole string as a single argument to the script even if it has
several words such as "ccache gcc".
Link: https://lkml.kernel.org/r/d0d460d7be0107a69e3c52477761a6fe694c1840.1646991629.git.guillaume.tucker@collabora.com
Fixes: e9886ace222e ("selftests, x86: Rework x86 target architecture detection")
Signed-off-by: Guillaume Tucker <guillaume.tucker@collabora.com>
Tested-by: "kernelci.org bot" <bot@kernelci.org>
Reviewed-by: Guenter Roeck <groeck@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At each login the user forces the kernel to create a new terminal and
allocate up to ~1Kb memory for the tty-related structures.
By default it's allowed to create up to 4096 ptys with 1024 reserve for
initial mount namespace only and the settings are controlled by host
admin.
Though this default is not enough for hosters with thousands of
containers per node. Host admin can be forced to increase it up to
NR_UNIX98_PTY_MAX = 1<<20.
By default container is restricted by pty mount_opt.max = 1024, but
admin inside container can change it via remount. As a result, one
container can consume almost all allowed ptys and allocate up to 1Gb of
unaccounted memory.
It is not enough per-se to trigger OOM on host, however anyway, it
allows to significantly exceed the assigned memcg limit and leads to
troubles on the over-committed node.
It makes sense to account for them to restrict the host's memory
consumption from inside the memcg-limited container.
Link: https://lkml.kernel.org/r/5d4bca06-7d4f-a905-e518-12981ebca1b3@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_cache_id() introduced by commit 2633d7a02823 ("slab/slub:
consider a memcg parameter in kmem_create_cache") is used to index in the
kmem_cache->memcg_params->memcg_caches array. Since
kmem_cache->memcg_params.memcg_caches has been removed by commit
9855609bde03 ("mm: memcg/slab: use a single set of kmem_caches for all
accounted allocations"). So the name does not need to reflect cache
related. Just rename it to memcg_kmem_id. And it can reflect kmem
related.
Link: https://lkml.kernel.org/r/20220228122126.37293-17-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The name of list_lru_memcg was occupied before and became free since
last commit. Rename list_lru_per_memcg to list_lru_memcg since the name
is brief.
Link: https://lkml.kernel.org/r/20220228122126.37293-16-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The idr_alloc() does not include @max ID. So in the current
implementation, the maximum memcg ID is 65534 instead of 65535. It
seems a bug. So fix this.
Link: https://lkml.kernel.org/r/20220228122126.37293-15-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two idrs being used by memory cgroup, one is for kmem ID,
another is for memory cgroup ID. The maximum ID of both is 64Ki. Both
of them can limit the total number of memory cgroups. Actually, we can
reuse memory cgroup ID for kmem ID to simplify the code.
Link: https://lkml.kernel.org/r/20220228122126.37293-14-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we run 10k containers in the system, the size of the
list_lru_memcg->lrus can be ~96KB per list_lru. When we decrease the
number containers, the size of the array will not be shrinked. It is
not scalable. The xarray is a good choice for this case. We can save a
lot of memory when there are tens of thousands continers in the system.
If we use xarray, we also can remove the logic code of resizing array,
which can simplify the code.
[akpm@linux-foundation.org: remove unused local]
Link: https://lkml.kernel.org/r/20220228122126.37293-13-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purpose of the memcg_drain_all_list_lrus() is list_lrus reparenting.
It is very similar to memcg_reparent_objcgs(). Rename it to
memcg_reparent_list_lrus() so that the name can more consistent with
memcg_reparent_objcgs().
Link: https://lkml.kernel.org/r/20220228122126.37293-12-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In our server, we found a suspected memory leak problem. The kmalloc-32
consumes more than 6GB of memory. Other kmem_caches consume less than
2GB memory.
After our in-depth analysis, the memory consumption of kmalloc-32 slab
cache is the cause of list_lru_one allocation.
crash> p memcg_nr_cache_ids
memcg_nr_cache_ids = $2 = 24574
memcg_nr_cache_ids is very large and memory consumption of each list_lru
can be calculated with the following formula.
num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32)
There are 4 numa nodes in our system, so each list_lru consumes ~3MB.
crash> list super_blocks | wc -l
952
Every mount will register 2 list lrus, one is for inode, another is for
dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3
MB (~5.6GB). But the number of memory cgroup is less than 500. So I
guess more than 12286 containers have been deployed on this machine (I do
not know why there are so many containers, it may be a user's bug or the
user really want to do that). And memcg_nr_cache_ids has not been reduced
to a suitable value. This can waste a lot of memory.
Now the infrastructure for dynamic list_lru_one allocation is ready, so
remove statically allocated memory code to save memory.
Link: https://lkml.kernel.org/r/20220228122126.37293-11-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>