IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Returning from an interrupt or syscall to a signal handler currently
begins execution directly at the handler's entry point, with LR set to
the address of the sigreturn trampoline. When the signal handler
function returns, it runs the trampoline. It looks like this:
# interrupt at user address xyz
# kernel stuff... signal is raised
rfid
# void handler(int sig)
addis 2,12,.TOC.-.LCF0@ha
addi 2,2,.TOC.-.LCF0@l
mflr 0
std 0,16(1)
stdu 1,-96(1)
# handler stuff
ld 0,16(1)
mtlr 0
blr
# __kernel_sigtramp_rt64
addi r1,r1,__SIGNAL_FRAMESIZE
li r0,__NR_rt_sigreturn
sc
# kernel executes rt_sigreturn
rfid
# back to user address xyz
Note the blr with no matching bl. This can corrupt the return
predictor.
Solve this by instead resuming execution at the signal trampoline
which then calls the signal handler. qtrace-tools link_stack checker
confirms the entire user/kernel/vdso cycle is balanced after this
patch, whereas it's not upstream.
Alan confirms the dwarf unwind info still looks good. gdb still
recognises the signal frame and can step into parent frames if it
break inside a signal handler.
Performance is pretty noisy, not a very significant change on a POWER9
here, but branch misses are consistently a lot lower on a
microbenchmark:
Performance counter stats for './signal':
13,085.72 msec task-clock # 1.000 CPUs utilized
45,024,760,101 cycles # 3.441 GHz
65,102,895,542 instructions # 1.45 insn per cycle
11,271,673,787 branches # 861.372 M/sec
59,468,979 branch-misses # 0.53% of all branches
12,989.09 msec task-clock # 1.000 CPUs utilized
44,692,719,559 cycles # 3.441 GHz
65,109,984,964 instructions # 1.46 insn per cycle
11,282,136,057 branches # 868.585 M/sec
39,786,942 branch-misses # 0.35% of all branches
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200511101952.1463138-1-npiggin@gmail.com
clock_getres in the vDSO library has to preserve the same behaviour
of posix_get_hrtimer_res().
In particular, posix_get_hrtimer_res() does:
sec = 0;
ns = hrtimer_resolution;
and hrtimer_resolution depends on the enablement of the high
resolution timers that can happen either at compile or at run time.
Fix the powerpc vdso implementation of clock_getres keeping a copy of
hrtimer_resolution in vdso data and using that directly.
Fixes: a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel")
Cc: stable@vger.kernel.org
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>
[chleroy: changed CLOCK_REALTIME_RES to CLOCK_HRTIMER_RES]
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a55eca3a5e85233838c2349783bcb5164dae1d09.1575273217.git.christophe.leroy@c-s.fr
This is a series of cleanups for the y2038 work, mostly intended
for namespace cleaning: the kernel defines the traditional
time_t, timeval and timespec types that often lead to y2038-unsafe
code. Even though the unsafe usage is mostly gone from the kernel,
having the types and associated functions around means that we
can still grow new users, and that we may be missing conversions
to safe types that actually matter.
There are still a number of driver specific patches needed to
get the last users of these types removed, those have been
submitted to the respective maintainers.
Link: https://lore.kernel.org/lkml/20191108210236.1296047-1-arnd@arndb.de/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJd3D+wAAoJEJpsee/mABjZfdcQAJvl6e+4ddKoDMIVJqVCE25N
meFRgA7S8jy6BefEVeUgI8TxK+amGO36szMBUEnZxSSxq9u+gd13m5bEK6Xq/ov7
4KTAiA3Irm/W5FBTktu1zc5ROIra1Xj7jLdubf8wEC3viSXIXB3+68Y28iBN7D2O
k9kSpwINC5lWeC8guZy2I+2yc4ywUEXao9nVh8C/J+FQtU02TcdLtZop9OhpAa8u
U19VVH3WHkQI7ZfLvBTUiYK6tlYTiYCnpr8l6sm850CnVv1fzBW+DzmVhPJ6FdFd
4m5staC0sQ6gVqtjVMBOtT5CdzREse6hpwbKo2GRWFroO5W9tljMOJJXHvv/f6kz
DxrpUmj37JuRbqAbr8KDmQqPo6M2CRkxFxjol1yh5ER63u1xMwLm/PQITZIMDvPO
jrFc2C2SdM2E9bKP/RMCVoKSoRwxCJ5IwJ2AF237rrU0sx/zB2xsrOGssx5CWEgc
3bbk6tDQujJJubnCfgRy1tTxpLZOHEEKw8YhFLLbR2LCtA9pA/0rfLLad16cjA5e
5jIHxfsFc23zgpzrJeB7kAF/9xgu1tlA5BotOs3VBE89LtWOA9nK5dbPXng6qlUe
er3xLCfS38ovhUw6DusQpaYLuaYuLM7DKO4iav9kuTMcY9GkbPk7vDD3KPGh2goy
hY5cSM8+kT1q/THLnUBH
=Bdbv
-----END PGP SIGNATURE-----
Merge tag 'y2038-cleanups-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground
Pull y2038 cleanups from Arnd Bergmann:
"y2038 syscall implementation cleanups
This is a series of cleanups for the y2038 work, mostly intended for
namespace cleaning: the kernel defines the traditional time_t, timeval
and timespec types that often lead to y2038-unsafe code. Even though
the unsafe usage is mostly gone from the kernel, having the types and
associated functions around means that we can still grow new users,
and that we may be missing conversions to safe types that actually
matter.
There are still a number of driver specific patches needed to get the
last users of these types removed, those have been submitted to the
respective maintainers"
Link: https://lore.kernel.org/lkml/20191108210236.1296047-1-arnd@arndb.de/
* tag 'y2038-cleanups-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground: (26 commits)
y2038: alarm: fix half-second cut-off
y2038: ipc: fix x32 ABI breakage
y2038: fix typo in powerpc vdso "LOPART"
y2038: allow disabling time32 system calls
y2038: itimer: change implementation to timespec64
y2038: move itimer reset into itimer.c
y2038: use compat_{get,set}_itimer on alpha
y2038: itimer: compat handling to itimer.c
y2038: time: avoid timespec usage in settimeofday()
y2038: timerfd: Use timespec64 internally
y2038: elfcore: Use __kernel_old_timeval for process times
y2038: make ns_to_compat_timeval use __kernel_old_timeval
y2038: socket: use __kernel_old_timespec instead of timespec
y2038: socket: remove timespec reference in timestamping
y2038: syscalls: change remaining timeval to __kernel_old_timeval
y2038: rusage: use __kernel_old_timeval
y2038: uapi: change __kernel_time_t to __kernel_old_time_t
y2038: stat: avoid 'time_t' in 'struct stat'
y2038: ipc: remove __kernel_time_t reference from headers
y2038: vdso: powerpc: avoid timespec references
...
As a preparation to stop using 'struct timespec' in the kernel,
change the powerpc vdso implementation:
- split up the vdso data definition to have equivalent members
for seconds and nanoseconds instead of an xtime structure
- use timespec64 as an intermediate for the xtime update
- change the asm-offsets definition to be based the appropriate
fixed-length types
This is only a temporary fix for changing the types, in order
to actually support a 64-bit safe vdso32 version of clock_gettime(),
the entire powerpc vdso should be replaced with the generic
lib/vdso/ implementation. If that happens first, this patch
becomes obsolete.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
When calling __kernel_sync_dicache with a size >4GB, we were masking
off the upper 32 bits, so we would incorrectly flush a range smaller
than intended.
This patch replaces the 32 bit shifts with 64 bit ones, so that
the full size is accounted for.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Cc: stable@vger.kernel.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191104023305.9581-3-alastair@au1.ibm.com
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 02111 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1334 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Towards the goal of removing cc-ldoption, it seems that --hash-style=
was added to binutils 2.17.50.0.2 in 2006. The minimal required
version of binutils for the kernel according to
Documentation/process/changes.rst is 2.20.
Suggested-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Jakub Drnec reported:
Setting the realtime clock can sometimes make the monotonic clock go
back by over a hundred years. Decreasing the realtime clock across
the y2k38 threshold is one reliable way to reproduce. Allegedly this
can also happen just by running ntpd, I have not managed to
reproduce that other than booting with rtc at >2038 and then running
ntp. When this happens, anything with timers (e.g. openjdk) breaks
rather badly.
And included a test case (slightly edited for brevity):
#define _POSIX_C_SOURCE 199309L
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <unistd.h>
long get_time(void) {
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return tp.tv_sec + tp.tv_nsec / 1000000000;
}
int main(void) {
long last = get_time();
while(1) {
long now = get_time();
if (now < last) {
printf("clock went backwards by %ld seconds!\n", last - now);
}
last = now;
sleep(1);
}
return 0;
}
Which when run concurrently with:
# date -s 2040-1-1
# date -s 2037-1-1
Will detect the clock going backward.
The root cause is that wtom_clock_sec in struct vdso_data is only a
32-bit signed value, even though we set its value to be equal to
tk->wall_to_monotonic.tv_sec which is 64-bits.
Because the monotonic clock starts at zero when the system boots the
wall_to_montonic.tv_sec offset is negative for current and future
dates. Currently on a freshly booted system the offset will be in the
vicinity of negative 1.5 billion seconds.
However if the wall clock is set past the Y2038 boundary, the offset
from wall to monotonic becomes less than negative 2^31, and no longer
fits in 32-bits. When that value is assigned to wtom_clock_sec it is
truncated and becomes positive, causing the VDSO assembly code to
calculate CLOCK_MONOTONIC incorrectly.
That causes CLOCK_MONOTONIC to jump ahead by ~4 billion seconds which
it is not meant to do. Worse, if the time is then set back before the
Y2038 boundary CLOCK_MONOTONIC will jump backward.
We can fix it simply by storing the full 64-bit offset in the
vdso_data, and using that in the VDSO assembly code. We also shuffle
some of the fields in vdso_data to avoid creating a hole.
The original commit that added the CLOCK_MONOTONIC support to the VDSO
did actually use a 64-bit value for wtom_clock_sec, see commit
a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to
32 bits kernel") (Nov 2005). However just 3 days later it was
converted to 32-bits in commit 0c37ec2aa88b ("[PATCH] powerpc: vdso
fixes (take #2)"), and the bug has existed since then AFAICS.
Fixes: 0c37ec2aa88b ("[PATCH] powerpc: vdso fixes (take #2)")
Cc: stable@vger.kernel.org # v2.6.15+
Link: http://lkml.kernel.org/r/HaC.ZfES.62bwlnvAvMP.1STMMj@seznam.cz
Reported-by: Jakub Drnec <jaydee@email.cz>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
kcov provides kernel coverage data that's useful for fuzzing tools like
syzkaller.
Wire up kcov support on powerpc. Disable kcov instrumentation on the same
files where we currently disable gcov and UBSan instrumentation, plus some
additional exclusions which appear necessary to boot on book3e machines.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Daniel Axtens <dja@axtens.net> # e6500
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Call Frame Information is used by gdb for back-traces and inserting
breakpoints on function return for the "finish" command. This failed
when inside __kernel_clock_gettime. More concerning than difficulty
debugging is that CFI is also used by stack frame unwinding code to
implement exceptions. If you have an app that needs to handle
asynchronous exceptions for some reason, and you are unlucky enough to
get one inside the VDSO time functions, your app will crash.
What's wrong: There is control flow in __kernel_clock_gettime that
reaches label 99 without saving lr in r12. CFI info however is
interpreted by the unwinder without reference to control flow: It's a
simple matter of "Execute all the CFI opcodes up to the current
address". That means the unwinder thinks r12 contains the return
address at label 99. Disabuse it of that notion by resetting CFI for
the return address at label 99.
Note that the ".cfi_restore lr" could have gone anywhere from the
"mtlr r12" a few instructions earlier to the instruction at label 99.
I put the CFI as late as possible, because in general that's best
practice (and if possible grouped with other CFI in order to reduce
the number of CFI opcodes executed when unwinding). Using r12 as the
return address is perfectly fine after the "mtlr r12" since r12 on
that code path still contains the return address.
__get_datapage also has a CFI error. That function temporarily saves
lr in r0, and reflects that fact with ".cfi_register lr,r0". A later
use of r0 means the CFI at that point isn't correct, as r0 no longer
contains the return address. Fix that too.
Signed-off-by: Alan Modra <amodra@gmail.com>
Tested-by: Reza Arbab <arbab@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Current vDSO64 implementation does not have support for coarse clocks
(CLOCK_MONOTONIC_COARSE, CLOCK_REALTIME_COARSE), for which it falls back
to system call, increasing the response time, vDSO implementation reduces
the cycle time. Below is a benchmark of the difference in execution times.
(Non-coarse clocks are also included just for completion)
clock-gettime-realtime: syscall: 172 nsec/call
clock-gettime-realtime: libc: 28 nsec/call
clock-gettime-realtime: vdso: 22 nsec/call
clock-gettime-monotonic: syscall: 171 nsec/call
clock-gettime-monotonic: libc: 30 nsec/call
clock-gettime-monotonic: vdso: 25 nsec/call
clock-gettime-realtime-coarse: syscall: 153 nsec/call
clock-gettime-realtime-coarse: libc: 16 nsec/call
clock-gettime-realtime-coarse: vdso: 10 nsec/call
clock-gettime-monotonic-coarse: syscall: 167 nsec/call
clock-gettime-monotonic-coarse: libc: 17 nsec/call
clock-gettime-monotonic-coarse: vdso: 11 nsec/call
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
__kernel_get_syscall_map() and __kernel_clock_getres() use cmpli to
check if the passed in pointer is non zero. cmpli maps to a 32 bit
compare on binutils, so we ignore the top 32 bits.
A simple test case can be created by passing in a bogus pointer with
the bottom 32 bits clear. Using a clk_id that is handled by the VDSO,
then one that is handled by the kernel shows the problem:
printf("%d\n", clock_getres(CLOCK_REALTIME, (void *)0x100000000));
printf("%d\n", clock_getres(CLOCK_BOOTTIME, (void *)0x100000000));
And we get:
0
-1
The bigger issue is if we pass a valid pointer with the bottom 32 bits
clear, in this case we will return success but won't write any data
to the pointer.
I stumbled across this issue because the LLVM integrated assembler
doesn't accept cmpli with 3 arguments. Fix this by converting them to
cmpldi.
Fixes: a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel")
Cc: stable@vger.kernel.org # v2.6.15+
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When using if_changed, we need to add FORCE as a dependency (see
Documentation/kbuild/makefiles.txt) otherwise we don't get command line
change checking amongst other things. This has resulted in vdsos not
being rebuilt when switching between big and little endian.
The vdso64/32ld commands have to be changed around to avoid pulling
FORCE into the linker command line (code copied from x86).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This hooks up UBSAN support for PowerPC.
So far it's found some interesting cases where we don't properly sanitise
input to shifts, including one in our futex handling. Nothing critical,
but interesting and worth fixing.
[valentinrothberg@gmail.com: arch/powerpc/Kconfig: fix typo in select statement]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most architectures use NR_syscalls as the #define for the number of syscalls.
We use __NR_syscalls, and then define NR_syscalls as __NR_syscalls.
__NR_syscalls is not used outside arch code, whereas NR_syscalls is. So as
NR_syscalls must be defined and __NR_syscalls does not, replace __NR_syscalls
with NR_syscalls.
Signed-off-by: Rashmica Gupta <rashmicy@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
powerpc has a link register (lr) used for calling functions. We "bl
<func>" to call a function, and "blr" to return back to the call site.
The lr is only a single register, so if we call another function from
inside this function (ie. nested calls), software must save away the
lr on the software stack before calling the new function. Before
returning (ie. before the "blr"), the lr is restored by software from
the software stack.
This makes branch prediction quite difficult for the processor as it
will only know the branch target just before the "blr".
To help with this, modern powerpc processors keep a (non-architected)
hardware stack of lr called a "link stack". When a "bl <func>" is
run, the lr is pushed onto this stack. When a "blr" is called, the
branch predictor pops the lr value from the top of the link stack, and
uses it to predict the branch target. Hence the processor pipeline
knows a lot earlier the branch target.
This works great but there are some cases where you call "bl" but
without a matching "blr". Once such case is when trying to determine
the program counter (which can't be read directly). Here you "bl+4;
mflr" to get the program counter. If you do this, the link stack will
get out of sync with reality, causing the branch predictor to
mis-predict subsequent function returns.
To avoid this, modern micro-architectures have a special case of bl.
Using the form "bcl 20,31,+4", ensures the processor doesn't push to
the link stack.
The 32 and 64 bit variants of __get_datapage() use a "bl; mflr" to
determine the loaded address of the VDSO. The current versions of
these attempt to use this special bl variant.
Unfortunately they use +8 rather than the required +4. Hence the
current code results in the link stack getting out of sync with
reality and hence the resulting performance degradation.
This patch moves it to bcl+4 by moving __kernel_datapage_offset out of
__get_datapage().
With this patch, running a gettimeofday() (which uses
__get_datapage()) microbenchmark we get a decent bump in performance
on POWER7/8.
For the benchmark in tools/testing/selftests/powerpc/benchmarks/gettimeofday.c
POWER8:
64bit gets ~4% improvement
32bit gets ~9% improvement
POWER7:
64bit gets ~7% improvement
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reported-by: Aaron Sawdey <sawdey@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Andy Lutomirski says:
Some dynamic loaders may be slightly faster if a GNU hash is
available.
This is unlikely to have any measurable effect on the time it takes
to resolve vdso symbols (since there are so few of them). In some
contexts, it can be a win for a different reason: if every DSO has a
GNU hash section, then libc can avoid calculating SysV hashes at
all. Both musl and glibc appear to have this optimization.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Previously SPRG3 was marked for use by both VDSO and critical
interrupts (though critical interrupts were not fully implemented).
In commit 8b64a9dfb091f1eca8b7e58da82f1e7d1d5fe0ad ("powerpc/booke64:
Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman
made an attempt to resolve this conflict by restoring the VDSO value
early in the critical interrupt, but this has some issues:
- It's incompatible with EXCEPTION_COMMON which restores r13 from the
by-then-overwritten scratch (this cost me some debugging time).
- It forces critical exceptions to be a special case handled
differently from even machine check and debug level exceptions.
- It didn't occur to me that it was possible to make this work at all
(by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after
I made (most of) this patch. :-)
It might be worth investigating using a load rather than SPRG on return
from all exceptions (except TLB misses where the scratch never leaves
the SPRG) -- it could save a few cycles. Until then, let's stick with
SPRG for all exceptions.
Since we cannot use SPRG4-7 for scratch without corrupting the state of
a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor
critical interrupts exist on book3s, SPRG3 is still used for VDSO
there.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: kvm-ppc@vger.kernel.org
We are seeing a lot of hits in the VDSO that are not resolved by perf.
A while(1) gettimeofday() loop shows the issue:
27.64% [vdso] [.] 0x000000000000060c
22.57% [vdso] [.] 0x0000000000000628
16.88% [vdso] [.] 0x0000000000000610
12.39% [vdso] [.] __kernel_gettimeofday
6.09% [vdso] [.] 0x00000000000005f8
3.58% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
2.94% [vdso] [.] __kernel_datapage_offset
2.90% test [.] main
We are using a stripped VDSO image which means only symbols with
relocation info can be resolved. There isn't a lot of point to
stripping the VDSO, the debug info is only about 1kB:
4680 arch/powerpc/kernel/vdso64/vdso64.so
5815 arch/powerpc/kernel/vdso64/vdso64.so.dbg
By using the unstripped image, we can resolve all the symbols in the
VDSO and the perf profile data looks much better:
76.53% [vdso] [.] __do_get_tspec
12.20% [vdso] [.] __kernel_gettimeofday
5.05% [vdso] [.] __get_datapage
3.20% test [.] main
2.92% test [.] 00000037.plt_call.gettimeofday@@GLIBC_2.18
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
The one instance where we add an include for init.h covers off
a case where that file was implicitly getting it from another
header which itself didn't need it.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
I've finally tracked down why my CR signal-unwind test case still
fails on little-endian. The problem turned to be that the kernel
installs a signal trampoline in the vDSO, and provides a DWARF CFI
record for that trampoline. This CFI describes the save location
for CR:
rsave (70, 38*RSIZE + (RSIZE - CRSIZE))
which is correct for big-endian, but points to the wrong word on
little-endian. This is wrong no matter which ABI.
In addition, for the ELFv2 ABI, we should not only provide a CFI
record for register 70 (cr2), but for all CR fields separately.
Strictly speaking, I guess this would mean providing two separate
vDSO images, one for ELFv1 processes and one for ELFv2 processes (or
maybe playing some tricks with conditional DWARF expressions).
However, having CFI records for the other CR fields in ELFv1 is not
actually wrong, they just will be ignored. So it seems the simplest
fix would be just to always provide CFI for all the fields.
Signed-off-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch allows the kbuild system to successfully compile a kernel
for the little endian PowerPC64 architecture. A subsequent patch
will add the CONFIG_CPU_LITTLE_ENDIAN kernel config option which
must be set to build such a kernel.
If cross compiling, CROSS_COMPILE must point to a suitable toolchain
(compiled for the powerpc64le-linux and powerpcle-linux targets).
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On 04/18/2013 07:38 PM, Anton Blanchard wrote:
> Since you are only reading one long you shouldn't need to check the
> update count and loop, you will always see a consistent value. The
> system call version of time() just does an unprotected load for example.
Fixed.
> With the above change and with Michael's comments covered (decent
> changelog entry and Signed-off-by):
>
> Acked-by: Anton Blanchard <anton@samba.org>
Thanks for the review, below the updated patch:
From: Adhemerval Zanella <azanella@linux.vnet.ibm.com>
This patch implement the time syscall as vDSO. The performance speedups
are:
Baseline PPC32: 380 nsec
Baseline PPC64: 350 nsec
vdso PPC32: 20 nsec
vsdo PPC64: 20 nsec
Tested on 64 bit build with both 32 bit and 64 bit userland.
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Adhemerval Zanella <azanella@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have a request for a fast method of getting CPU and NUMA node IDs
from userspace. This patch implements a getcpu VDSO function,
similar to x86.
Ben suggested we use SPRG3 which is userspace readable. SPRG3 can be
modified by a KVM guest, so we save the SPRG3 value in the paca and
restore it when transitioning from the guest to the host.
I have a glibc patch that implements sched_getcpu on top of this.
Testing on a POWER7:
baseline: 538 cycles
vdso: 30 cycles
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Replace EXTRA_CFLAGS with ccflags-y and EXTRA_AFLAGS with asflags-y.
Signed-off-by: matt mooney <mfm@muteddisk.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch changes the remaining direct references to
.data.page_aligned in C and assembly code to use the macros in
include/linux/linkage.h.
Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
ld-option is misnamed as it test options to gcc, not to ld.
Renamed it to reflect this.
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Make it possible to enable GCOV code coverage measurement on powerpc.
Lightly tested on 64-bit, seems to work as expected.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We're soon running out of CPU features and I need to add some new
ones for various MMU related bits, so this patch separates the MMU
features from the CPU features. I moved over the 32-bit MMU related
ones, added base features for MMU type families, but didn't move
over any 64-bit only feature yet.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently the clock_gettime implementation in the VDSO produces a
result with microsecond resolution for the cases that are handled
without a system call, i.e. CLOCK_REALTIME and CLOCK_MONOTONIC. The
nanoseconds field of the result is obtained by computing a
microseconds value and multiplying by 1000.
This changes the code in the VDSO to do the computation for
clock_gettime with nanosecond resolution. That means that the
resolution of the result will ultimately depend on the timebase
frequency.
Because the timestamp in the VDSO datapage (stamp_xsec, the real time
corresponding to the timebase count in tb_orig_stamp) is in units of
2^-20 seconds, it doesn't have sufficient resolution for computing a
result with nanosecond resolution. Therefore this adds a copy of
xtime to the VDSO datapage and updates it in update_gtod() along with
the other time-related fields.
Signed-off-by: Paul Mackerras <paulus@samba.org>
To allow for a single kernel image on e500 v1/v2/mc we need to fixup lwsync
at runtime. On e500v1/v2 lwsync causes an illop so we need to patch up
the code. We default to 'sync' since that is always safe and if the cpu
is capable we will replace 'sync' with 'lwsync'.
We introduce CPU_FTR_LWSYNC as a way to determine at runtime if this is
needed. This flag could be moved elsewhere since we dont really use it
for the normal CPU_FTR purpose.
Finally we only store the relative offset in the fixup section to keep it
as small as possible rather than using a full fixup_entry.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The current feature section logic only supports nop'ing out code, this means
if you want to choose at runtime between instruction sequences, one or both
cases will have to execute the nop'ed out contents of the other section, eg:
BEGIN_FTR_SECTION
or 1,1,1
END_FTR_SECTION_IFSET(FOO)
BEGIN_FTR_SECTION
or 2,2,2
END_FTR_SECTION_IFCLR(FOO)
and the resulting code will be either,
or 1,1,1
nop
or,
nop
or 2,2,2
For small code segments this is fine, but for larger code blocks and in
performance criticial code segments, it would be nice to avoid the nops.
This commit starts to implement logic to allow the following:
BEGIN_FTR_SECTION
or 1,1,1
FTR_SECTION_ELSE
or 2,2,2
ALT_FTR_SECTION_END_IFSET(FOO)
and the resulting code will be:
or 1,1,1
or,
or 2,2,2
We achieve this by extending the existing FTR macros. The current feature
section semantic just becomes a special case, ie. if the else case is empty
we nop out the default case.
The key limitation is that the size of the else case must be less than or
equal to the size of the default case. If the else case is smaller the
remainder of the section is nop'ed.
We let the linker put the else case code in with the rest of the text,
so that relative branches from the else case are more likley to link,
this has the disadvantage that we can't free the unused else cases.
This commit introduces the required macro and linker script changes, but
does not enable the patching of the alternative sections.
We also need to update two hand-made section entries in reg.h and timex.h
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This works around bugs in older binutils' objcopy.
The placement of these sections does not really matter,
but it confused the buggy old BFD libraries.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The current VDSO implementation is hardcoded to 128 byte cache blocks,
which are only used on IBM's 64-bit processors.
Convert it to get the cache block sizes out of vdso_data instead,
similar to how the ppc64 in-kernel cache flush does it.
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The current DWARF info for CR are incorrect, causing the gcc unwinder to
go to lunch if we take a segfault in the vdso. This fixes it.
Problem identified by Andrew Haley, and fix provided by Jakub Jelinek
(thanks !).
Unfortunately, a bug in gcc cause it to not quite work either, but that
is being fixed separately with something around the lines of:
linux-unwind.h:
fs->regs.reg[R_CR2].loc.offset = (long) ®s->ccr - new_cfa;
+ /* CR? regs are just 32-bit and PPC is big-endian. */
+ fs->regs.reg[R_CR2].loc.offset += sizeof (long) - 4;
(According to Jakub)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This cleans up the formatting in the vDSO linker script, mostly just the
use of whitespace. It's intended to approximate the kernel standard
conventions for indenting C, treating elements of the linker script about
like initialized variable definitions.
Signed-off-by: Roland McGrath <roland@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This keeps an unstripped copy of the vDSO images built before they are
stripped and embedded in the kernel. The unstripped copies get installed in
$(MODLIB)/vdso/ by "make install". These files can be useful when they
contain source-level debugging information.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The vdso64 portion of patch 74609f4536f2b8fd6a48381bbbe3cd37da20a527 for
fixing problems with NULL gettimeofday input mistakenly checks for a
null tz field twice, when it should be checking for null tz once, and
null tv once; by way of a r10/r11 typo.
Any application calling gettimeofday(&tv,NULL) will "fail".
This corrects that typo, and makes my G5 happy.
Tested on G5.
Signed-off-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Tony Breeds <tony@bakeyournoodle.com>
Forwarded-by: Ben Herrenschmidt <benh@kernel.crashing.org>
[ Ben says: "I checked the 32 bits part of the change is correct. You
can probably blame me for originally writing the 2 versions with
inversed usage of r10 and r11, thus confusing Tony :-)"
Ben duly blamed. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consider the prototype for gettimeofday():
int gettimofday(struct timeval *tv, struct timezone *tz);
Although it is valid to call with /either/ tv or tz being NULL, and
the C version of sys_gettimeofday() supports this, the current version
of gettimeofday() in the VDSO will SEGV if called with a NULL tv.
This adds a check for tv being NULL so that it doesn't SEGV.
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The Cell CPU timebase has an erratum. When reading the entire 64 bits
of the timebase with one mftb instruction, there is a handful of cycles
window during which one might read a value with the low order 32 bits
already reset to 0x00000000 but the high order bits not yet incremeted
by one. This fixes it by reading the timebase again until the low order
32 bits is no longer 0. That might introduce occasional latencies if
hitting mftb just at the wrong time, but no more than 70ns on a cell
blade, and that was considered acceptable.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch reworks the feature fixup mecanism so vdso's can be fixed up.
The main issue was that the construct:
.long label (or .llong on 64 bits)
will not work in the case of a shared library like the vdso. It will
generate an empty placeholder in the fixup table along with a reloc,
which is not something we can deal with in the vdso.
The idea here (thanks Alan Modra !) is to instead use something like:
1:
.long label - 1b
That is, the feature fixup tables no longer contain addresses of bits of
code to patch, but offsets of such code from the fixup table entry
itself. That is properly resolved by ld when building the .so's. I've
modified the fixup mecanism generically to use that method for the rest
of the kernel as well.
Another trick is that the 32 bits vDSO included in the 64 bits kernel
need to have a table in the 64 bits format. However, gas does not
support 32 bits code with a statement of the form:
.llong label - 1b (Or even just .llong label)
That is, it cannot emit the right fixup/relocation for the linker to use
to assign a 32 bits address to an .llong field. Thus, in the specific
case of the 32 bits vdso built as part of the 64 bits kernel, we are
using a modified macro that generates:
.long 0xffffffff
.llong label - 1b
Note that is assumes that the value is negative which is enforced by
the .lds (those offsets are always negative as the .text is always
before the fixup table and gas doesn't support emiting the reloc the
other way around).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The latest toolchains can produce a new ELF section in DSOs and
dynamically-linked executables. The new section ".gnu.hash" replaces
".hash", and allows for more efficient runtime symbol lookups by the
dynamic linker. The new ld option --hash-style={sysv|gnu|both} controls
whether to produce the old ".hash", the new ".gnu.hash", or both. In some
new systems such as Fedora Core 6, gcc by default passes --hash-style=gnu
to the linker, so that a standard invocation of "gcc -shared" results in
producing a DSO with only ".gnu.hash". The new ".gnu.hash" sections need
to be dealt with the same way as ".hash" sections in all respects; only the
dynamic linker cares about their contents. To work with older dynamic
linkers (i.e. preexisting releases of glibc), a binary must have the old
".hash" section. The --hash-style=both option produces binaries that a new
dynamic linker can use more efficiently, but an old dynamic linker can
still handle.
The new section runs afoul of the custom linker scripts used to build vDSO
images for the kernel. On ia64, the failure mode for this is a boot-time
panic because the vDSO's PT_IA_64_UNWIND segment winds up ill-formed.
This patch addresses the problem in two ways.
First, it mentions ".gnu.hash" in all the linker scripts alongside ".hash".
This produces correct vDSO images with --hash-style=sysv (or old tools),
with --hash-style=gnu, or with --hash-style=both.
Second, it passes the --hash-style=sysv option when building the vDSO
images, so that ".gnu.hash" is not actually produced. This is the most
conservative choice for compatibility with any old userland. There is some
concern that some ancient glibc builds (though not any known old production
system) might choke on --hash-style=both binaries. The optimizations
provided by the new style of hash section do not really matter for a DSO
with a tiny number of symbols, as the vDSO has. If someone wants to use
=gnu or =both for their vDSO builds and worry less about that
compatibility, just change the option and the linker script changes will
make any choice work fine.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>