IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Make the flag match the mount option and usage.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rework xfs_parseargs to fill out the default value and then parse the
option directly into the mount structure, similar to what we do for
other updates, and open code the now trivial updates based on on the
on-disk superblock directly into xfs_mountfs.
Note that this change rejects the allocsize=0 mount option that has been
documented as invalid for a long time instead of just ignoring it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the allocsize name to match the mount option and usage instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
m_readio_blocks is entirely unused, and m_readio_blocks is only used in
xfs_stat_blksize in a max statements that is a no-op as it always has
the same value as m_writeio_log.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The -o wsync allocsize overwrite overwrite was part of a special hack
for NFSv2 servers in IRIX and has no real purpose in modern Linux, so
remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move xfs_preferred_iosize to xfs_iops.c, unobsfucate it and also handle
the realtime special case in the helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is no real need for the local variables here - either they
are applied to the mount structure, or if the noalign mount option
is set the mount will fail entirely if either is set. Removing
them helps cleaning up the mount API conversion.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It appears the biosize mount option hasn't been documented as a valid
option since 2005, remove it.
Signed-off-by: Ian Kent <raven@themaw.net>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop using the deprecated bio_set_op_attrs helper, and use a single
argument to xfs_buf_ioapply_map for the operation and flags.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iread_extents open-codes everything in xfs_btree_visit_blocks, so
refactor the btree helper to be able to iterate only the records on
level 0, then port iread_extents to use it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently, this function open-codes walking a bmbt to count the extents
and blocks in use by a particular inode fork. Since we now have a
function to tally extent records from the incore extent tree and a btree
helper to count every block in a btree, replace all that with calls to
the helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are a few places where we return -EIO instead of -EFSCORRUPTED
when we find corrupt metadata. Fix those places.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Actually call namecheck on directory entry names before we hand them
over to userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Actually call namecheck on attribute names before we hand them over to
userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add missing structure checks in the attribute leaf verifier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Remove xfs_zero_file_space and reorganize xfs_file_fallocate so that a
single call to xfs_alloc_file_space covers all modes that preallocate
blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If we always have to write out of place preallocating blocks is
pointless. We already check for this in the normal falloc path, but
the check was missig in the legacy ALLOCSP path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
These use the same scheme as the pre-existing mapping of the XFS
RESVP ioctls to ->falloc, so just extend it and remove the XFS
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[darrick: fix compile error on s390]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
These ioctls are implemented by the VFS and mapped to ->fallocate now,
so this code won't ever be reached.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new xfs_inode_buftarg helper that gets the data I/O buftarg for a
given inode. Replace the existing xfs_find_bdev_for_inode and
xfs_find_daxdev_for_inode helpers with this new general one and cleanup
some of the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Flags passed to Q_XQUOTARM were not sanity checked for invalid values.
Fix that.
Fixes: 9da93f9b7c ("xfs: fix Q_XQUOTARM ioctl")
Reported-by: Yang Xu <xuyang2018.jy@cn.fujitsu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_pnfs.c file is missing an include of xfs_pnfs.h to
add the prototypes of the functions it exports. Include this
file to fix the following sparse warnings:
fs/xfs/xfs_pnfs.c:27:1: warning: symbol 'xfs_break_leased_layouts' was not declared. Should it be static?
fs/xfs/xfs_pnfs.c:52:1: warning: symbol 'xfs_fs_get_uuid' was not declared. Should it be static?
fs/xfs/xfs_pnfs.c:77:1: warning: symbol 'xfs_fs_map_blocks' was not declared. Should it be static?
fs/xfs/xfs_pnfs.c:226:1: warning: symbol 'xfs_fs_commit_blocks' was not declared. Should it be static?
Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_bmapi_write() takes a total block requirement parameter that is
passed down to the block allocation code and is used to specify the
total block requirement of the associated transaction. This is used
to try and select an AG that can not only satisfy the requested
extent allocation, but can also accommodate subsequent allocations
that might be required to complete the transaction. For example,
additional bmbt block allocations may be required on insertion of
the resulting extent to an inode data fork.
While it's important for callers to calculate and reserve such extra
blocks in the transaction, it is not necessary to pass the total
value to xfs_bmapi_write() in all cases. The latter automatically
sets minleft to ensure that sufficient free blocks remain after the
allocation attempt to expand the format of the associated inode
(i.e., such as extent to btree conversion, btree splits, etc).
Therefore, any callers that pass a total block requirement of the
bmap mapping length plus worst case bmbt expansion essentially
specify the additional reservation requirement twice. These callers
can pass a total of zero to rely on the bmapi minleft policy.
Beyond being superfluous, the primary motivation for this change is
that the total reservation logic in the bmbt code is dubious in
scenarios where minlen < maxlen and a maxlen extent cannot be
allocated (which is more common for data extent allocations where
contiguity is not required). The total value is based on maxlen in
the xfs_bmapi_write() caller. If the bmbt code falls back to an
allocation between minlen and maxlen, that allocation will not
succeed until total is reset to minlen, which essentially throws
away any additional reservation included in total by the caller. In
addition, the total value is not reset until after alignment is
dropped, which means that such callers drop alignment far too
aggressively than necessary.
Update all callers of xfs_bmapi_write() that pass a total block
value of the mapping length plus bmbt reservation to instead pass
zero and rely on xfs_bmapi_minleft() to enforce the bmbt reservation
requirement. This trades off slightly less conservative AG selection
for the ability to preserve alignment in more scenarios.
xfs_bmapi_write() callers that incorporate unrelated or additional
reservations in total beyond what is already included in minleft
must continue to use the former.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cap longest extent to the largest we can allocate based on limits
calculated at mount time. Dynamic state (such as finobt blocks)
can result in the longest free extent exceeding the size we can
allocate, and that results in failure to align full AG allocations
when the AG is empty.
Result:
xfs_io-4413 [003] 426.412459: xfs_alloc_vextent_loopfailed: dev 8:96 agno 0 agbno 32 minlen 243968 maxlen 244000 mod 0 prod 1 minleft 1 total 262148 alignment 32 minalignslop 0 len 0 type NEAR_BNO otype START_BNO wasdel 0 wasfromfl 0 resv 0 datatype 0x5 firstblock 0xffffffffffffffff
minlen and maxlen are now separated by the alignment size, and
allocation fails because args.total > free space in the AG.
[bfoster: Added xfs_bmap_btalloc() changes.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_bumplink() call has set the inode log fieldmask XFS_ILOG_CORE,
so the next xfs_trans_log_inode() call is not necessary.
Signed-off-by: kaixuxia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Only bail out once we know that a COW allocation is actually required,
similar to how we handle normal data fork allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move more checks into the helpers that determine if we need a COW
operation or allocation and split the return path for when an existing
data for allocation has been found versus a new allocation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Renaming whichfork to allocfork in xfs_buffered_write_iomap_begin makes
the usage of this variable a little more clear.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of lots of magic conditionals in the main write_begin
handler this make the intent very clear. Thing will become even
better once we support delayed allocations for extent size hints
and realtime allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move xfs_file_iomap_begin_delay near the end of the file next to the
other iomap functions to prepare for additional refactoring.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Start untangling xfs_file_iomap_begin by splitting out the read-only
case into its own set of iomap_ops with a very simply iomap_begin
helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We have lots of places that want to calculate the final fsb for
a offset + count in bytes and check that the result fits into
s_maxbytes. Factor out a helper for that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace our local hacks to report the source block in the main iomap
with the proper scrmap reporting.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rejuggle the return path to prepare for filling out a source iomap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_reflink_allocate_cow consumes the source data fork imap, and
potentially returns the COW fork imap. Split the arguments in two
to clear up the calling conventions and to prepare for returning
a source iomap from ->iomap_begin.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that xfs_file_unshare is not completely dumb we can just call it
directly without iterating the extent and reflink btrees ourselves.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is no reason not to punch out stale delalloc blocks for zeroing
operations, as they otherwise behave exactly like normal writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[commit message is verbose for discussion purposes - will trim it
down later. Some questions about implementation details at the end.]
Zorro Lang recently ran a new test to stress single inode extent
counts now that they are no longer limited by memory allocation.
The test was simply:
# xfs_io -f -c "falloc 0 40t" /mnt/scratch/big-file
# ~/src/xfstests-dev/punch-alternating /mnt/scratch/big-file
This test uncovered a problem where the hole punching operation
appeared to finish with no error, but apparently only created 268M
extents instead of the 10 billion it was supposed to.
Further, trying to punch out extents that should have been present
resulted in success, but no change in the extent count. It looked
like a silent failure.
While running the test and observing the behaviour in real time,
I observed the extent coutn growing at ~2M extents/minute, and saw
this after about an hour:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next ; \
> sleep 60 ; \
> xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 127657993
fsxattr.nextents = 129683339
#
And a few minutes later this:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4177861124
#
Ah, what? Where did that 4 billion extra extents suddenly come from?
Stop the workload, unmount, mount:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 166044375
#
And it's back at the expected number. i.e. the extent count is
correct on disk, but it's screwed up in memory. I loaded up the
extent list, and immediately:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4192576215
#
It's bad again. So, where does that number come from?
xfs_fill_fsxattr():
if (ip->i_df.if_flags & XFS_IFEXTENTS)
fa->fsx_nextents = xfs_iext_count(&ip->i_df);
else
fa->fsx_nextents = ip->i_d.di_nextents;
And that's the behaviour I just saw in a nutshell. The on disk count
is correct, but once the tree is loaded into memory, it goes whacky.
Clearly there's something wrong with xfs_iext_count():
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
Simple enough, but 134M extents is 2**27, and that's right about
where things went wrong. A struct xfs_iext_rec is 16 bytes in size,
which means 2**27 * 2**4 = 2**31 and we're right on target for an
integer overflow. And, sure enough:
struct xfs_ifork {
int if_bytes; /* bytes in if_u1 */
....
Once we get 2**27 extents in a file, we overflow if_bytes and the
in-core extent count goes wrong. And when we reach 2**28 extents,
if_bytes wraps back to zero and things really start to go wrong
there. This is where the silent failure comes from - only the first
2**28 extents can be looked up directly due to the overflow, all the
extents above this index wrap back to somewhere in the first 2**28
extents. Hence with a regular pattern, trying to punch a hole in the
range that didn't have holes mapped to a hole in the first 2**28
extents and so "succeeded" without changing anything. Hence "silent
failure"...
Fix this by converting if_bytes to a int64_t and converting all the
index variables and size calculations to use int64_t types to avoid
overflows in future. Signed integers are still used to enable easy
detection of extent count underflows. This enables scalability of
extent counts to the limits of the on-disk format - MAXEXTNUM
(2**31) extents.
Current testing is at over 500M extents and still going:
fsxattr.nextents = 517310478
Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XLOG_STATE_DO_CALLBACK is only entered through XLOG_STATE_DONE_SYNC
and just used in a single debug check. Remove the flag and thus
simplify the calling conventions for xlog_state_do_callback and
xlog_state_iodone_process_iclog.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
ic_state really is a set of different states, even if the values are
encoded as non-conflicting bits and we sometimes use logical and
operations to check for them. Switch all comparisms to check for
exact values (and use switch statements in a few places to make it
more clear) and turn the values into an implicitly enumerated enum
type.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
XFSERRORDEBUG is never set and the code isn't all that useful, so remove
it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
All but one caller of xlog_state_release_iclog hold l_icloglock and need
to drop and reacquire it to call xlog_state_release_iclog. Switch the
xlog_state_release_iclog calling conventions to expect the lock to be
held, and open code the logic (using a shared helper) in the only
remaining caller that does not have the lock (and where not holding it
is a nice performance optimization). Also move the refactored code to
require the least amount of forward declarations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: minor whitespace cleanup]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This will allow optimizing various locking cycles in the following
patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
ic_io_size is only used inside xlog_write_iclog, where we can just use
the count parameter intead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
xlog_write_iclog expects a bool for the second argument. While any
non-0 value happens to work fine this makes all calls consistent.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The near mode fallback algorithm consists of a left/right scan of
the bnobt. This algorithm has very poor breakdown characteristics
under worst case free space fragmentation conditions. If a suitable
extent is far enough from the locality hint, each allocation may
scan most or all of the bnobt before it completes. This causes
pathological behavior and extremely high allocation latencies.
While locality is important to near mode allocations, it is not so
important as to incur pathological allocation latency to provide the
asolute best available locality for every allocation. If the
allocation is large enough or far enough away, there is a point of
diminishing returns. As such, we can bound the overall operation by
including an iterative cntbt lookup in the broader search. The cntbt
lookup is optimized to immediately find the extent with best
locality for the given size on each iteration. Since the cntbt is
indexed by extent size, the lookup repeats with a variably
aggressive increasing search key size until it runs off the edge of
the tree.
This approach provides a natural balance between the two algorithms
for various situations. For example, the bnobt scan is able to
satisfy smaller allocations such as for inode chunks or btree blocks
more quickly where the cntbt search may have to search through a
large set of extent sizes when the search key starts off small
relative to the largest extent in the tree. On the other hand, the
cntbt search more deterministically covers the set of suitable
extents for larger data extent allocation requests that the bnobt
scan may have to search the entire tree to locate.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>