IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
handle_invept(), handle_invvpid(), handle_invpcid() read the same reg2
field in vmcs.VMX_INSTRUCTION_INFO to get the index of the GPR that
holds the invalidation type. Add a helper to retrieve reg2 from VMX
instruction info to consolidate and document the shift+mask magic.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-2-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up the x2APIC MSR bitmap intereption code for L2, which is the last
holdout of open coded bitmap manipulations. Freshen up the SDM/PRM
comment, rename the function to make it abundantly clear the funky
behavior is x2APIC specific, and explain _why_ vmcs01's bitmap is ignored
(the previous comment was flat out wrong for x2APIC behavior).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add builder macros to generate the MSR bitmap helpers to reduce the
amount of copy-paste code, especially with respect to all the magic
numbers needed to calc the correct bit location.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Always check vmcs01's MSR bitmap when merging L0 and L1 bitmaps for L2,
and always update the relevant bits in vmcs02. This fixes two distinct,
but intertwined bugs related to dynamic MSR bitmap modifications.
The first issue is that KVM fails to enable MSR interception in vmcs02
for the FS/GS base MSRs if L1 first runs L2 with interception disabled,
and later enables interception.
The second issue is that KVM fails to honor userspace MSR filtering when
preparing vmcs02.
Fix both issues simultaneous as fixing only one of the issues (doesn't
matter which) would create a mess that no one should have to bisect.
Fixing only the first bug would exacerbate the MSR filtering issue as
userspace would see inconsistent behavior depending on the whims of L1.
Fixing only the second bug (MSR filtering) effectively requires fixing
the first, as the nVMX code only knows how to transition vmcs02's
bitmap from 1->0.
Move the various accessor/mutators that are currently buried in vmx.c
into vmx.h so that they can be shared by the nested code.
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Fixes: d69129b4e4 ("KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check the current VMCS controls to determine if an MSR write will be
intercepted due to MSR bitmaps being disabled. In the nested VMX case,
KVM will disable MSR bitmaps in vmcs02 if they're disabled in vmcs12 or
if KVM can't map L1's bitmaps for whatever reason.
Note, the bad behavior is relatively benign in the current code base as
KVM sets all bits in vmcs02's MSR bitmap by default, clears bits if and
only if L0 KVM also disables interception of an MSR, and only uses the
buggy helper for MSR_IA32_SPEC_CTRL. Because KVM explicitly tests WRMSR
before disabling interception of MSR_IA32_SPEC_CTRL, the flawed check
will only result in KVM reading MSR_IA32_SPEC_CTRL from hardware when it
isn't strictly necessary.
Tag the fix for stable in case a future fix wants to use
msr_write_intercepted(), in which case a buggy implementation in older
kernels could prove subtly problematic.
Fixes: d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When kvm_gfn_to_hva_cache_init() call from kvm_lapic_set_pv_eoi() fails,
MSR write to MSR_KVM_PV_EOI_EN results in #GP so it is reasonable to
expect that the value we keep internally in KVM wasn't updated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211108152819.12485-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_lapic_enable_pv_eoi() is a misnomer as the function is also
used to disable PV EOI. Rename it to kvm_lapic_set_pv_eoi().
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211108152819.12485-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.
This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.
NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
into processor.h to avoid having duplicate code for the iteration
over possible hypervisor base leaves.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the core logic of SET_CPUID and SET_CPUID2 to a common helper, the
only difference between the two ioctls() is the format of the userspace
struct. A future fix will add yet more code to the core logic.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105095101.5384-2-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fast page fault path bails out on write faults to huge pages in
order to accommodate dirty logging. This change adds a check to do that
only when dirty logging is actually enabled, so that access tracking for
huge pages can still use the fast path for write faults in the common
case.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211104003359.2201967-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap the read of iter->sptep in tdp_mmu_map_handle_target_level() with
rcu_dereference(). Shadow pages in the TDP MMU, and thus their SPTEs,
are protected by rcu.
This fixes a Sparse warning at tdp_mmu.c:900:51:
warning: incorrect type in argument 1 (different address spaces)
expected unsigned long long [usertype] *sptep
got unsigned long long [noderef] [usertype] __rcu *[usertype] sptep
Fixes: 7158bee4b4 ("KVM: MMU: pass kvm_mmu_page struct to make_spte")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211103161833.3769487-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.
Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.
Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.
Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is
not missed") we switched to using a gfn_to_pfn_cache for accessing the
guest steal time structure in order to allow for an atomic xchg of the
preempted field. This has a couple of problems.
Firstly, kvm_map_gfn() doesn't work at all for IOMEM pages when the
atomic flag is set, which it is in kvm_steal_time_set_preempted(). So a
guest vCPU using an IOMEM page for its steal time would never have its
preempted field set.
Secondly, the gfn_to_pfn_cache is not invalidated in all cases where it
should have been. There are two stages to the GFN->PFN conversion;
first the GFN is converted to a userspace HVA, and then that HVA is
looked up in the process page tables to find the underlying host PFN.
Correct invalidation of the latter would require being hooked up to the
MMU notifiers, but that doesn't happen---so it just keeps mapping and
unmapping the *wrong* PFN after the userspace page tables change.
In the !IOMEM case at least the stale page *is* pinned all the time it's
cached, so it won't be freed and reused by anyone else while still
receiving the steal time updates. The map/unmap dance only takes care
of the KVM administrivia such as marking the page dirty.
Until the gfn_to_pfn cache handles the remapping automatically by
integrating with the MMU notifiers, we might as well not get a
kernel mapping of it, and use the perfectly serviceable userspace HVA
that we already have. We just need to implement the atomic xchg on
the userspace address with appropriate exception handling, which is
fairly trivial.
Cc: stable@vger.kernel.org
Fixes: b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <3645b9b889dac6438394194bb5586a46b68d581f.camel@infradead.org>
[I didn't entirely agree with David's assessment of the
usefulness of the gfn_to_pfn cache, and integrated the outcome
of the discussion in the above commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix boolreturn.cocci warnings:
./arch/riscv/kvm/mmu.c:603:9-10: WARNING: return of 0/1 in function
'kvm_age_gfn' with return type bool
./arch/riscv/kvm/mmu.c:582:9-10: WARNING: return of 0/1 in function
'kvm_set_spte_gfn' with return type bool
./arch/riscv/kvm/mmu.c:621:9-10: WARNING: return of 0/1 in function
'kvm_test_age_gfn' with return type bool
./arch/riscv/kvm/mmu.c:568:9-10: WARNING: return of 0/1 in function
'kvm_unmap_gfn_range' with return type bool
Signed-off-by: Bixuan Cui <cuibixuan@linux.alibaba.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
The parameter passed to HFENCE.GVMA instruction in rs1 register
is guest physical address right shifted by 2 (i.e. divided by 4).
Unfortunately, we overlooked the semantics of rs1 registers for
HFENCE.GVMA instruction and never right shifted guest physical
address by 2. This issue did not manifest for hypervisors till
now because:
1) Currently, only __kvm_riscv_hfence_gvma_all() and SBI
HFENCE calls are used to invalidate TLB.
2) All H-extension implementations (such as QEMU, Spike,
Rocket Core FPGA, etc) that we tried till now were
conservatively flushing everything upon any HFENCE.GVMA
instruction.
This patch fixes GPA passed to __kvm_riscv_hfence_gvma_vmid_gpa()
and __kvm_riscv_hfence_gvma_gpa() functions.
Fixes: fd7bb4a251 ("RISC-V: KVM: Implement VMID allocator")
Reported-by: Ian Huang <ihuang@ventanamicro.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Message-Id: <20211026170136.2147619-4-anup.patel@wdc.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The timer and SBI virtualization is already in separate sources.
In future, we will have vector and AIA virtualization also added
as separate sources.
To align with above described modularity, we factor-out FP
virtualization into separate sources.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Message-Id: <20211026170136.2147619-3-anup.patel@wdc.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmF7u5YPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD6w8QAIKDLJCTqkxv5Vh4ZSmtXxg4gTZMBlg8oSQ8
sVL639aqBvFe3A6Vmz6IwBm+NT7Sm1zxkuH9qHzVR1gmXq0oLYNrIuyrzRW8PvqO
hIkSRRoVsf03755TmkxwR7/2jAFxb6FhEVAy6VWdQyI44orihIPvMp8aTIq+jvU+
XoNGb/rPf9HpSUtvuaHYvZhSZBhoi5dRnkr33R1+VR69n7Axs8lm905xcl6Pt0a0
QqYZWQvFu/BXPyNflG7LUsegRF/iiV2vNTbNNowkzlV5suqxBpJAp6ApDL/gWrHv
ya/6cMqicSjBIkWnawhXY98w6/5xfzK4IV/zc00FNWOlUdVP89Thqrgc8EkigS9R
BGcxFFqj41snr+ensSBBIkNtV+dBX52H3rUE0F9seiTXm8QWI86JobdeNadT8tUP
TXdOeCUcA+cp4Ngln18lsbOEaBkPA5H1po1nUFPHbKnVOxnqXScB7E/xF6rAbryV
m+Z+oidU7MyS/Ev/Da0ww/XFx7cs2ez9EgeQvjcdFAvUMqS6kcXEExvgGYlm+KRQ
GBMKPLCNHKdflMANoSpol7MZUmPJ45XoWKW1rntj2r9X+oJW2Z2hEx32xrWDJdqK
ixnbjog5kNZb0CjLGsUC90lo2hpRJecaLhAjgTLYaNC1QxGPrt92eat6gnwuMTBc
mpADqi7w
=qBAO
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
The diag 318 data contains values that denote information regarding the
guest's environment. Currently, it is unecessarily difficult to observe
this value (either manually-inserted debug statements, gdb stepping, mem
dumping etc). It's useful to observe this information to obtain an
at-a-glance view of the guest's environment, so lets add a simple VCPU
event that prints the CPNC to the s390dbf logs.
Signed-off-by: Collin Walling <walling@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Link: https://lore.kernel.org/r/20211027025451.290124-1-walling@linux.ibm.com
[borntraeger@de.ibm.com]: change debug level to 3
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Introduce variants of the convert and destroy page functions that also
clear the PG_arch_1 bit used to mark them as secure pages.
The PG_arch_1 flag is always allowed to overindicate; using the new
functions introduced here allows to reduce the extent of overindication
and thus improve performance.
These new functions can only be called on pages for which a reference
is already being held.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Link: https://lore.kernel.org/r/20210920132502.36111-7-imbrenda@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If handle_sske cannot set the storage key, because there is no
page table entry or no present large page entry, it calls
fixup_user_fault.
However, currently, if the call succeeds, handle_sske returns
-EAGAIN, without having set the storage key.
Instead, retry by continue'ing the loop without incrementing the
address.
The same issue in handle_pfmf was fixed by
a11bdb1a6b ("KVM: s390: Fix pfmf and conditional skey emulation").
Fixes: bd096f6443 ("KVM: s390: Add skey emulation fault handling")
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211022152648.26536-1-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
pvclock_gtod_sync_lock is completely gone in Linux 5.16. Include this
fix into the kvm/next history to record that the syzkaller report is
not valid there.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When passing the failing address and size out to user space, SGX must
ensure not to trample on the earlier fields of the emulation_failure
sub-union of struct kvm_run.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-5-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.
Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Until more flags for kvm_run.emulation_failure flags are defined, it
is undetermined whether new payload elements corresponding to those
flags will be additive or alternative. As a hint to userspace that an
alternative is possible, wrap the current payload elements in a union.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-2-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This capability exists, but we don't record anything when userspace
enables it. Let's refactor that code so that a note can be made in
the debug logs that it was enabled.
Signed-off-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20211008203112.1979843-7-farman@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The Principles of Operations describe the various reasons that
each individual SIGP orders might be rejected, and the status
bit that are set for each condition.
For example, for the Set Architecture order, it states:
"If it is not true that all other CPUs in the configu-
ration are in the stopped or check-stop state, ...
bit 54 (incorrect state) ... is set to one."
However, it also states:
"... if the CZAM facility is installed, ...
bit 55 (invalid parameter) ... is set to one."
Since the Configuration-z/Architecture-Architectural Mode (CZAM)
facility is unconditionally presented, there is no need to examine
each VCPU to determine if it is started/stopped. It can simply be
rejected outright with the Invalid Parameter bit.
Fixes: b697e435ae ("KVM: s390: Support Configuration z/Architecture Mode")
Signed-off-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Link: https://lore.kernel.org/r/20211008203112.1979843-2-farman@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Improve make_secure_pte to avoid stalls when the system is heavily
overcommitted. This was especially problematic in kvm_s390_pv_unpack,
because of the loop over all pages that needed unpacking.
Due to the locks being held, it was not possible to simply replace
uv_call with uv_call_sched. A more complex approach was
needed, in which uv_call is replaced with __uv_call, which does not
loop. When the UVC needs to be executed again, -EAGAIN is returned, and
the caller (or its caller) will try again.
When -EAGAIN is returned, the path is the same as when the page is in
writeback (and the writeback check is also performed, which is
harmless).
Fixes: 214d9bbcd3 ("s390/mm: provide memory management functions for protected KVM guests")
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Link: https://lore.kernel.org/r/20210920132502.36111-5-imbrenda@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When the system is heavily overcommitted, kvm_s390_pv_init_vm might
generate stall notifications.
Fix this by using uv_call_sched instead of just uv_call. This is ok because
we are not holding spinlocks.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Fixes: 214d9bbcd3 ("s390/mm: provide memory management functions for protected KVM guests")
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20210920132502.36111-4-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If kvm_s390_pv_destroy_cpu is called more than once, we risk calling
free_page on a random page, since the sidad field is aliased with the
gbea, which is not guaranteed to be zero.
This can happen, for example, if userspace calls the KVM_PV_DISABLE
IOCTL, and it fails, and then userspace calls the same IOCTL again.
This scenario is only possible if KVM has some serious bug or if the
hardware is broken.
The solution is to simply return successfully immediately if the vCPU
was already non secure.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Fixes: 19e1227768 ("KVM: S390: protvirt: Introduce instruction data area bounce buffer")
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20210920132502.36111-3-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add macros to describe the 4 possible CC values returned by the UVC
instruction.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20210920132502.36111-2-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We already optimize get_guest_storage_key() to assume that if we don't have
a PTE table and don't have a huge page mapped that the storage key is 0.
Similarly, optimize reset_guest_reference_bit() to simply do nothing if
there is no PTE table and no huge page mapped.
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-10-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We already optimize get_guest_storage_key() to assume that if we don't have
a PTE table and don't have a huge page mapped that the storage key is 0.
Similarly, optimize set_guest_storage_key() to simply do nothing in case
the key to set is 0.
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-9-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f260 ("mm: mmap: zap pages
with read mmap_sem in munmap").
find_vma() does not check if the address is >= the VMA start address;
use vma_lookup() instead.
Fixes: 214d9bbcd3 ("s390/mm: provide memory management functions for protected KVM guests")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Link: https://lore.kernel.org/r/20210909162248.14969-6-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
There are multiple things broken about our storage key handling
functions:
1. We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f260 ("mm: mmap: zap pages
with read mmap_sem in munmap"). gfn_to_hva() will only translate using
KVM memory regions, but won't validate the VMA.
2. We should not allocate page tables outside of VMA boundaries: if
evil user space decides to map hugetlbfs to these ranges, bad things
will happen because we suddenly have PTE or PMD page tables where we
shouldn't have them.
3. We don't handle large PUDs that might suddenly appeared inside our page
table hierarchy.
Don't manually allocate page tables, properly validate that we have VMA and
bail out on pud_large().
All callers of page table handling functions, except
get_guest_storage_key(), call fixup_user_fault() in case they
receive an -EFAULT and retry; this will allocate the necessary page tables
if required.
To keep get_guest_storage_key() working as expected and not requiring
kvm_s390_get_skeys() to call fixup_user_fault() distinguish between
"there is simply no page table or huge page yet and the key is assumed
to be 0" and "this is a fault to be reported".
Although commit 637ff9efe5 ("s390/mm: Add huge pmd storage key handling")
introduced most of the affected code, it was actually already broken
before when using get_locked_pte() without any VMA checks.
Note: Ever since commit 637ff9efe5 ("s390/mm: Add huge pmd storage key
handling") we can no longer set a guest storage key (for example from
QEMU during VM live migration) without actually resolving a fault.
Although we would have created most page tables, we would choke on the
!pmd_present(), requiring a call to fixup_user_fault(). I would
have thought that this is problematic in combination with postcopy life
migration ... but nobody noticed and this patch doesn't change the
situation. So maybe it's just fine.
Fixes: 9fcf93b5de ("KVM: S390: Create helper function get_guest_storage_key")
Fixes: 24d5dd0208 ("s390/kvm: Provide function for setting the guest storage key")
Fixes: a7e19ab55f ("KVM: s390: handle missing storage-key facility")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-5-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f260 ("mm: mmap: zap pages
with read mmap_sem in munmap"). gfn_to_hva() will only translate using
KVM memory regions, but won't validate the VMA.
Further, we should not allocate page tables outside of VMA boundaries: if
evil user space decides to map hugetlbfs to these ranges, bad things will
happen because we suddenly have PTE or PMD page tables where we
shouldn't have them.
Similarly, we have to check if we suddenly find a hugetlbfs VMA, before
calling get_locked_pte().
Fixes: 2d42f94773 ("s390/kvm: Add PGSTE manipulation functions")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-4-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
... otherwise we will try unlocking a spinlock that was never locked via a
garbage pointer.
At the time we reach this code path, we usually successfully looked up
a PGSTE already; however, evil user space could have manipulated the VMA
layout in the meantime and triggered removal of the page table.
Fixes: 1e133ab296 ("s390/mm: split arch/s390/mm/pgtable.c")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-3-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f260 ("mm: mmap: zap pages
with read mmap_sem in munmap"). The pure prescence in our guest_to_host
radix tree does not imply that there is a VMA.
Further, we should not allocate page tables (via get_locked_pte()) outside
of VMA boundaries: if evil user space decides to map hugetlbfs to these
ranges, bad things will happen because we suddenly have PTE or PMD page
tables where we shouldn't have them.
Similarly, we have to check if we suddenly find a hugetlbfs VMA, before
calling get_locked_pte().
Note that gmap_discard() is different:
zap_page_range()->unmap_single_vma() makes sure to stay within VMA
boundaries.
Fixes: b31288fa83 ("s390/kvm: support collaborative memory management")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-2-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Though gcc conveniently compiles a simple memset to "rep stos," clang
prefers to call the libc version of memset. If a test is dynamically
linked, the libc memset isn't available in L1 (nor is the PLT or the
GOT, for that matter). Even if the test is statically linked, the libc
memset may choose to use some CPU features, like AVX, which may not be
enabled in L1. Note that __builtin_memset doesn't solve the problem,
because (a) the compiler is free to call memset anyway, and (b)
__builtin_memset may also choose to use features like AVX, which may
not be available in L1.
To avoid a myriad of problems, use an explicit "rep stos" to clear the
VMCB in generic_svm_setup(), which is called both from L0 and L1.
Reported-by: Ricardo Koller <ricarkol@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: 20ba262f86 ("selftests: KVM: AMD Nested test infrastructure")
Message-Id: <20210930003649.4026553-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This variable was renamed to kvm_has_noapic_vcpu in commit
6e4e3b4df4 ("KVM: Stop using deprecated jump label APIs").
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20211021185449.3471763-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unregister KVM's posted interrupt wakeup handler during unsetup so that a
spurious interrupt that arrives after kvm_intel.ko is unloaded doesn't
call into freed memory.
Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a synchronize_rcu() after clearing the posted interrupt wakeup handler
to ensure all readers, i.e. in-flight IRQ handlers, see the new handler
before returning to the caller. If the caller is an exiting module and
is unregistering its handler, failure to wait could result in the IRQ
handler jumping into an unloaded module.
The registration path doesn't require synchronization, as it's the
caller's responsibility to not generate interrupts it cares about until
after its handler is registered.
Fixes: f6b3c72c23 ("x86/irq: Define a global vector for VT-d Posted-Interrupts")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a rw_semaphore instead of a mutex to coordinate APICv updates so that
vCPUs responding to requests can take the lock for read and run in
parallel. Using a mutex forces serialization of vCPUs even though
kvm_vcpu_update_apicv() only touches data local to that vCPU or is
protected by a different lock, e.g. SVM's ir_list_lock.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move SVM's assertion that vCPU's APICv state is consistent with its VM's
state out of svm_vcpu_run() and into x86's common inner run loop. The
assertion and underlying logic is not unique to SVM, it's just that SVM
has more inhibiting conditions and thus is more likely to run headfirst
into any KVM bugs.
Add relevant comments to document exactly why the update path has unusual
ordering between the update the kick, why said ordering is safe, and also
the basic rules behind the assertion in the run loop.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>