IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When a security module is loaded (in this case, SELinux), the
security_xfrm_policy_lookup() hook can return an access denied permission
(or other error). We were not handling that correctly, and in fact
inverting the return logic and propagating a false "ok" back up to
xfrm_lookup(), which then allowed packets to pass as if they were not
associated with an xfrm policy.
The way I was seeing the problem was when connecting via IPsec to a
confined service on an SELinux box (vsftpd), which did not have the
appropriate SELinux policy permissions to send packets via IPsec.
The first SYNACK would be blocked, because of an uncached lookup via
flow_cache_lookup(), which would fail to resolve an xfrm policy because
the SELinux policy is checked at that point via the resolver.
However, retransmitted SYNACKs would then find a cached flow entry when
calling into flow_cache_lookup() with a null xfrm policy, which is
interpreted by xfrm_lookup() as the packet not having any associated
policy and similarly to the first case, allowing it to pass without
transformation.
The solution presented here is to first ensure that errno values are
correctly propagated all the way back up through the various call chains
from security_xfrm_policy_lookup(), and handled correctly.
Then, flow_cache_lookup() is modified, so that if the policy resolver
fails (typically a permission denied via the security module), the flow
cache entry is killed rather than having a null policy assigned (which
indicates that the packet can pass freely). This also forces any future
lookups for the same flow to consult the security module (e.g. SELinux)
for current security policy (rather than, say, caching the error on the
flow cache entry).
Signed-off-by: James Morris <jmorris@namei.org>
This implements a seemless mechanism for xfrm policy selection and
state matching based on the flow sid. This also includes the necessary
SELinux enforcement pieces.
Signed-off-by: Venkat Yekkirala <vyekkirala@TrustedCS.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
for_each_cpu() actually iterates across all possible CPUs. We've had mistakes
in the past where people were using for_each_cpu() where they should have been
iterating across only online or present CPUs. This is inefficient and
possibly buggy.
We're renaming for_each_cpu() to for_each_possible_cpu() to avoid this in the
future.
This patch replaces for_each_cpu with for_each_possible_cpu under /net
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch puts mostly read only data in the right section
(read_mostly), to help sharing of these data between CPUS without
memory ping pongs.
On one of my production machine, tcp_statistics was sitting in a
heavily modified cache line, so *every* SNMP update had to force a
reload.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!