IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We never initialize the two interval tree nodes, and zero fill is not the
same as RB_CLEAR_NODE. This can hide issues where we missed adding the
area to the trees. Factor out the allocation and clear the two nodes.
Fixes: 51fe6141f0f6 ("iommufd: Data structure to provide IOVA to PFN mapping")
Link: https://lore.kernel.org/r/20231030145035.GG691768@ziepe.ca
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
In iopt_area_split(), if the original iopt_area has filled a domain and is
linked to domains_itree, pages_nodes have to be properly
reinserted. Otherwise the domains_itree becomes corrupted and we will UAF.
Fixes: 51fe6141f0f6 ("iommufd: Data structure to provide IOVA to PFN mapping")
Link: https://lore.kernel.org/r/20231027162941.2864615-2-den@valinux.co.jp
Cc: stable@vger.kernel.org
Signed-off-by: Koichiro Den <den@valinux.co.jp>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
When remapping hardware is configured by system software in scalable mode
as Nested (PGTT=011b) and with PWSNP field Set in the PASID-table-entry,
it may Set Accessed bit and Dirty bit (and Extended Access bit if enabled)
in first-stage page-table entries even when second-stage mappings indicate
that corresponding first-stage page-table is Read-Only.
As the result, contents of pages designated by VMM as Read-Only can be
modified by IOMMU via PML5E (PML4E for 4-level tables) access as part of
address translation process due to DMAs issued by Guest.
This disallows read-only mappings in the domain that is supposed to be used
as nested parent. Reference from Sapphire Rapids Specification Update [1],
errata details, SPR17. Userspace should know this limitation by checking
the IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17 flag reported in the IOMMU_GET_HW_INFO
ioctl.
[1] https://www.intel.com/content/www/us/en/content-details/772415/content-details.html
Link: https://lore.kernel.org/r/20231026044216.64964-9-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This adds the support for IOMMU_HWPT_DATA_VTD_S1 type. And 'nested_parent'
is added to mark the nested parent domain to sanitize the input parent domain.
Link: https://lore.kernel.org/r/20231026044216.64964-8-yi.l.liu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This adds the helper for setting the nested domain to a device hence
enable nested domain usage on Intel VT-d.
Link: https://lore.kernel.org/r/20231026044216.64964-7-yi.l.liu@intel.com
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This makes the helpers visible to nested.c.
Link: https://lore.kernel.org/r/20231026044216.64964-6-yi.l.liu@intel.com
Suggested-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The configurations are passed in from the user when the user domain is
allocated. This helper interprets these configurations according to the
data structure defined in uapi/linux/iommufd.h. The EINVAL error will be
returned if any of configurations are not compatible with the hardware
capabilities. The caller can retry with another compatible user domain.
The encoding of fields of each pasid entry is defined in section 9.6 of
the VT-d spec.
Link: https://lore.kernel.org/r/20231026044216.64964-5-yi.l.liu@intel.com
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This adds helper for accepting user parameters and allocate a nested
domain.
Link: https://lore.kernel.org/r/20231026044216.64964-4-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The nested domain fields are exclusive to those that used for a DMA
remapping domain. Use union to avoid memory waste.
Link: https://lore.kernel.org/r/20231026044216.64964-3-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This adds IOMMU_HWPT_DATA_VTD_S1 for stage-1 hw_pagetable of Intel
VT-d and the corressponding data structure for userspace specified parameter
for the domain allocation.
Link: https://lore.kernel.org/r/20231026044216.64964-2-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
This adds the scalable mode check before allocating the nested parent domain
as checking nested capability is not enough. User may turn off scalable mode
which also means no nested support even if the hardware supports it.
Fixes: c97d1b20d383 ("iommu/vt-d: Add domain_alloc_user op")
Link: https://lore.kernel.org/r/20231024150011.44642-1-yi.l.liu@intel.com
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The IOMMU_HWPT_ALLOC ioctl now supports passing user_data to allocate a
user-managed domain for nested HWPTs. Add its coverage for that. Also,
update _test_cmd_hwpt_alloc() and add test_cmd/err_hwpt_alloc_nested().
Link: https://lore.kernel.org/r/20231026043938.63898-11-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add nested domain support in the ->domain_alloc_user op with some proper
sanity checks. Then, add a domain_nested_ops for all nested domains and
split the get_md_pagetable helper into paging and nested helpers.
Also, add an iotlb as a testing property of a nested domain.
Link: https://lore.kernel.org/r/20231026043938.63898-10-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Wrap up the data type/pointer/len sanity and a copy_struct_from_user call
for iommu drivers to copy driver specific data via struct iommu_user_data.
And expect it to be used in the domain_alloc_user op for example.
Link: https://lore.kernel.org/r/20231026043938.63898-9-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Co-developed-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
IOMMU_HWPT_ALLOC already supports iommu_domain allocation for usersapce.
But it can only allocate a hw_pagetable that associates to a given IOAS,
i.e. only a kernel-managed hw_pagetable of IOMMUFD_OBJ_HWPT_PAGING type.
IOMMU drivers can now support user-managed hw_pagetables, for two-stage
translation use cases that require user data input from the user space.
Add a new IOMMUFD_OBJ_HWPT_NESTED type with its abort/destroy(). Pair it
with a new iommufd_hwpt_nested structure and its to_hwpt_nested() helper.
Update the to_hwpt_paging() helper, so a NESTED-type hw_pagetable can be
handled in the callers, for example iommufd_hw_pagetable_enforce_rr().
Screen the inputs including the parent PAGING-type hw_pagetable that has
a need of a new nest_parent flag in the iommufd_hwpt_paging structure.
Extend the IOMMU_HWPT_ALLOC ioctl to accept an IOMMU driver specific data
input which is tagged by the enum iommu_hwpt_data_type. Also, update the
@pt_id to accept hwpt_id too besides an ioas_id. Then, use them to allocate
a hw_pagetable of IOMMUFD_OBJ_HWPT_NESTED type using the
iommufd_hw_pagetable_alloc_nested() allocator.
Link: https://lore.kernel.org/r/20231026043938.63898-8-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Co-developed-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
domain_alloc_user op already accepts user flags for domain allocation, add
a parent domain pointer and a driver specific user data support as well.
The user data would be tagged with a type for iommu drivers to add their
own driver specific user data per hw_pagetable.
Add a struct iommu_user_data as a bundle of data_ptr/data_len/type from an
iommufd core uAPI structure. Make the user data opaque to the core, since
a userspace driver must match the kernel driver. In the future, if drivers
share some common parameter, there would be a generic parameter as well.
Link: https://lore.kernel.org/r/20231026043938.63898-7-yi.l.liu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Co-developed-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Allow iommufd_hwpt_alloc() to have a common routine but jump to different
allocators corresponding to different user input pt_obj types, either an
IOMMUFD_OBJ_IOAS for a PAGING hwpt or an IOMMUFD_OBJ_HWPT_PAGING as the
parent for a NESTED hwpt.
Also, move the "flags" validation to the hwpt allocator (paging), so that
later the hwpt_nested allocator can do its own separate flags validation.
Link: https://lore.kernel.org/r/20231026043938.63898-6-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
To prepare for IOMMUFD_OBJ_HWPT_NESTED, derive struct iommufd_hwpt_paging
from struct iommufd_hw_pagetable, by leaving the common members in struct
iommufd_hw_pagetable. Add a __iommufd_object_alloc and to_hwpt_paging()
helpers for the new structure.
Then, update "hwpt" to "hwpt_paging" throughout the files, accordingly.
Link: https://lore.kernel.org/r/20231026043938.63898-5-yi.l.liu@intel.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Some of the configurations during the attach/replace() should only apply
to IOMMUFD_OBJ_HWPT_PAGING. Once IOMMUFD_OBJ_HWPT_NESTED gets introduced
in a following patch, keeping them unconditionally in the common routine
will not work.
Wrap all of those PAGING-only configurations together into helpers. Do a
hwpt_is_paging check whenever calling them or their fallback routines.
Link: https://lore.kernel.org/r/20231026043938.63898-4-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
To add a new IOMMUFD_OBJ_HWPT_NESTED, rename the HWPT object to confine
it to PAGING hwpts/domains. The following patch will separate the hwpt
structure as well.
Link: https://lore.kernel.org/r/20231026043938.63898-3-yi.l.liu@intel.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Introduce a new domain type for a user I/O page table, which is nested on
top of another user space address represented by a PAGING domain. This
new domain can be allocated by the domain_alloc_user op, and attached to
a device through the existing iommu_attach_device/group() interfaces.
The mappings of a nested domain are managed by user space software, so it
is not necessary to have map/unmap callbacks.
Link: https://lore.kernel.org/r/20231026043938.63898-2-yi.l.liu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
According to the conversation in the following link:
https://lore.kernel.org/linux-iommu/20231020135501.GG3952@nvidia.com/
The enforce_cache_coherency should be set/enforced in the hwpt allocation
routine. The iommu driver in its attach_dev() op should decide whether to
reject or not a device that doesn't match with the configuration of cache
coherency. Drop the enforce_cache_coherency piece in the attach/replace()
and move the remaining "num_devices" piece closer to the refcount that is
using it.
Accordingly drop its function prototype in the header and mark it static.
Also add some extra comments to clarify the expected behaviors.
Link: https://lore.kernel.org/r/20231024012958.30842-1-nicolinc@nvidia.com
Suggested-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Change test_mock_dirty_bitmaps() to pass a flag where it specifies the flag
under test. The test does the same thing as the GET_DIRTY_BITMAP regular
test. Except that it tests whether the dirtied bits are fetched all the
same a second time, as opposed to observing them cleared.
Link: https://lore.kernel.org/r/20231024135109.73787-19-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Enumerate the capabilities from the mock device and test whether it
advertises as expected. Include it as part of the iommufd_dirty_tracking
fixture.
Link: https://lore.kernel.org/r/20231024135109.73787-18-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add a new test ioctl for simulating the dirty IOVAs in the mock domain, and
implement the mock iommu domain ops that get the dirty tracking supported.
The selftest exercises the usual main workflow of:
1) Setting dirty tracking from the iommu domain
2) Read and clear dirty IOPTEs
Different fixtures will test different IOVA range sizes, that exercise
corner cases of the bitmaps.
Link: https://lore.kernel.org/r/20231024135109.73787-17-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Change mock_domain to supporting dirty tracking and add tests to exercise
the new SET_DIRTY_TRACKING API in the iommufd_dirty_tracking selftest
fixture.
Link: https://lore.kernel.org/r/20231024135109.73787-16-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
In order to selftest the iommu domain dirty enforcing implement the
mock_domain necessary support and add a new dev_flags to test that the
hwpt_alloc/attach_device fails as expected.
Expand the existing mock_domain fixture with a enforce_dirty test that
exercises the hwpt_alloc and device attachment.
Link: https://lore.kernel.org/r/20231024135109.73787-15-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Expand mock_domain test to be able to manipulate the device capabilities.
This allows testing with mockdev without dirty tracking support advertised
and thus make sure enforce_dirty test does the expected.
To avoid breaking IOMMUFD_TEST UABI replicate the mock_domain struct and
thus add an input dev_flags at the end.
Link: https://lore.kernel.org/r/20231024135109.73787-14-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
IOMMU advertises Access/Dirty bits for second-stage page table if the
extended capability DMAR register reports it (ECAP, mnemonic ECAP.SSADS).
The first stage table is compatible with CPU page table thus A/D bits are
implicitly supported. Relevant Intel IOMMU SDM ref for first stage table
"3.6.2 Accessed, Extended Accessed, and Dirty Flags" and second stage table
"3.7.2 Accessed and Dirty Flags".
First stage page table is enabled by default so it's allowed to set dirty
tracking and no control bits needed, it just returns 0. To use SSADS, set
bit 9 (SSADE) in the scalable-mode PASID table entry and flush the IOTLB
via pasid_flush_caches() following the manual. Relevant SDM refs:
"3.7.2 Accessed and Dirty Flags"
"6.5.3.3 Guidance to Software for Invalidations,
Table 23. Guidance to Software for Invalidations"
PTE dirty bit is located in bit 9 and it's cached in the IOTLB so flush
IOTLB to make sure IOMMU attempts to set the dirty bit again. Note that
iommu_dirty_bitmap_record() will add the IOVA to iotlb_gather and thus the
caller of the iommu op will flush the IOTLB. Relevant manuals over the
hardware translation is chapter 6 with some special mention to:
"6.2.3.1 Scalable-Mode PASID-Table Entry Programming Considerations"
"6.2.4 IOTLB"
Select IOMMUFD_DRIVER only if IOMMUFD is enabled, given that IOMMU dirty
tracking requires IOMMUFD.
Link: https://lore.kernel.org/r/20231024135109.73787-13-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
IOMMU advertises Access/Dirty bits if the extended feature register reports
it. Relevant AMD IOMMU SDM ref[0] "1.3.8 Enhanced Support for Access and
Dirty Bits"
To enable it set the DTE flag in bits 7 and 8 to enable access, or
access+dirty. With that, the IOMMU starts marking the D and A flags on
every Memory Request or ATS translation request. It is on the VMM side to
steer whether to enable dirty tracking or not, rather than wrongly doing in
IOMMU. Relevant AMD IOMMU SDM ref [0], "Table 7. Device Table Entry (DTE)
Field Definitions" particularly the entry "HAD".
To actually toggle on and off it's relatively simple as it's setting 2 bits
on DTE and flush the device DTE cache.
To get what's dirtied use existing AMD io-pgtable support, by walking the
pagetables over each IOVA, with fetch_pte(). The IOTLB flushing is left to
the caller (much like unmap), and iommu_dirty_bitmap_record() is the one
adding page-ranges to invalidate. This allows caller to batch the flush
over a big span of IOVA space, without the iommu wondering about when to
flush.
Worthwhile sections from AMD IOMMU SDM:
"2.2.3.1 Host Access Support"
"2.2.3.2 Host Dirty Support"
For details on how IOMMU hardware updates the dirty bit see, and expects
from its consequent clearing by CPU:
"2.2.7.4 Updating Accessed and Dirty Bits in the Guest Address Tables"
"2.2.7.5 Clearing Accessed and Dirty Bits"
Quoting the SDM:
"The setting of accessed and dirty status bits in the page tables is
visible to both the CPU and the peripheral when sharing guest page tables.
The IOMMU interlocked operations to update A and D bits must be 64-bit
operations and naturally aligned on a 64-bit boundary"
.. and for the IOMMU update sequence to Dirty bit, essentially is states:
1. Decodes the read and write intent from the memory access.
2. If P=0 in the page descriptor, fail the access.
3. Compare the A & D bits in the descriptor with the read and write
intent in the request.
4. If the A or D bits need to be updated in the descriptor:
* Start atomic operation.
* Read the descriptor as a 64-bit access.
* If the descriptor no longer appears to require an update, release the
atomic lock with
no further action and continue to step 5.
* Calculate the new A & D bits.
* Write the descriptor as a 64-bit access.
* End atomic operation.
5. Continue to the next stage of translation or to the memory access.
Access/Dirty bits readout also need to consider the non-default page-sizes
(aka replicated PTEs as mentined by manual), as AMD supports all powers of
two (except 512G) page sizes.
Select IOMMUFD_DRIVER only if IOMMUFD is enabled considering that IOMMU
dirty tracking requires IOMMUFD.
Link: https://lore.kernel.org/r/20231024135109.73787-12-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add the domain_alloc_user op implementation. To that end, refactor
amd_iommu_domain_alloc() to receive a dev pointer and flags, while renaming
it too, such that it becomes a common function shared with
domain_alloc_user() implementation. The sole difference with
domain_alloc_user() is that we initialize also other fields that
iommu_domain_alloc() does. It lets it return the iommu domain correctly
initialized in one function.
This is in preparation to add dirty enforcement on AMD implementation of
domain_alloc_user.
Link: https://lore.kernel.org/r/20231024135109.73787-11-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
VFIO has an operation where it unmaps an IOVA while returning a bitmap with
the dirty data. In reality the operation doesn't quite query the IO
pagetables that the PTE was dirty or not. Instead it marks as dirty on
anything that was mapped, and doing so in one syscall.
In IOMMUFD the equivalent is done in two operations by querying with
GET_DIRTY_IOVA followed by UNMAP_IOVA. However, this would incur two TLB
flushes given that after clearing dirty bits IOMMU implementations require
invalidating their IOTLB, plus another invalidation needed for the UNMAP.
To allow dirty bits to be queried faster, add a flag
(IOMMU_HWPT_GET_DIRTY_BITMAP_NO_CLEAR) that requests to not clear the dirty
bits from the PTE (but just reading them), under the expectation that the
next operation is the unmap. An alternative is to unmap and just
perpectually mark as dirty as that's the same behaviour as today. So here
equivalent functionally can be provided with unmap alone, and if real dirty
info is required it will amortize the cost while querying.
There's still a race against DMA where in theory the unmap of the IOVA
(when the guest invalidates the IOTLB via emulated iommu) would race
against the VF performing DMA on the same IOVA. As discussed in [0], we are
accepting to resolve this race as throwing away the DMA and it doesn't
matter if it hit physical DRAM or not, the VM can't tell if we threw it
away because the DMA was blocked or because we failed to copy the DRAM.
[0] https://lore.kernel.org/linux-iommu/20220502185239.GR8364@nvidia.com/
Link: https://lore.kernel.org/r/20231024135109.73787-10-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Extend IOMMUFD_CMD_GET_HW_INFO op to query generic iommu capabilities for a
given device.
Capabilities are IOMMU agnostic and use device_iommu_capable() API passing
one of the IOMMU_CAP_*. Enumerate IOMMU_CAP_DIRTY_TRACKING for now in the
out_capabilities field returned back to userspace.
Link: https://lore.kernel.org/r/20231024135109.73787-9-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Connect a hw_pagetable to the IOMMU core dirty tracking
read_and_clear_dirty iommu domain op. It exposes all of the functionality
for the UAPI that read the dirtied IOVAs while clearing the Dirty bits from
the PTEs.
In doing so, add an IO pagetable API iopt_read_and_clear_dirty_data() that
performs the reading of dirty IOPTEs for a given IOVA range and then
copying back to userspace bitmap.
Underneath it uses the IOMMU domain kernel API which will read the dirty
bits, as well as atomically clearing the IOPTE dirty bit and flushing the
IOTLB at the end. The IOVA bitmaps usage takes care of the iteration of the
bitmaps user pages efficiently and without copies. Within the iterator
function we iterate over io-pagetable contigous areas that have been
mapped.
Contrary to past incantation of a similar interface in VFIO the IOVA range
to be scanned is tied in to the bitmap size, thus the application needs to
pass a appropriately sized bitmap address taking into account the iova
range being passed *and* page size ... as opposed to allowing bitmap-iova
!= iova.
Link: https://lore.kernel.org/r/20231024135109.73787-8-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Every IOMMU driver should be able to implement the needed iommu domain ops
to control dirty tracking.
Connect a hw_pagetable to the IOMMU core dirty tracking ops, specifically
the ability to enable/disable dirty tracking on an IOMMU domain
(hw_pagetable id). To that end add an io_pagetable kernel API to toggle
dirty tracking:
* iopt_set_dirty_tracking(iopt, [domain], state)
The intended caller of this is via the hw_pagetable object that is created.
Internally it will ensure the leftover dirty state is cleared /right
before/ dirty tracking starts. This is also useful for iommu drivers which
may decide that dirty tracking is always-enabled at boot without wanting to
toggle dynamically via corresponding iommu domain op.
Link: https://lore.kernel.org/r/20231024135109.73787-7-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Throughout IOMMU domain lifetime that wants to use dirty tracking, some
guarantees are needed such that any device attached to the iommu_domain
supports dirty tracking.
The idea is to handle a case where IOMMU in the system are assymetric
feature-wise and thus the capability may not be supported for all devices.
The enforcement is done by adding a flag into HWPT_ALLOC namely:
IOMMU_HWPT_ALLOC_DIRTY_TRACKING
.. Passed in HWPT_ALLOC ioctl() flags. The enforcement is done by creating
a iommu_domain via domain_alloc_user() and validating the requested flags
with what the device IOMMU supports (and failing accordingly) advertised).
Advertising the new IOMMU domain feature flag requires that the individual
iommu driver capability is supported when a future device attachment
happens.
Link: https://lore.kernel.org/r/20231024135109.73787-6-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add to iommu domain operations a set of callbacks to perform dirty
tracking, particulary to start and stop tracking and to read and clear the
dirty data.
Drivers are generally expected to dynamically change its translation
structures to toggle the tracking and flush some form of control state
structure that stands in the IOVA translation path. Though it's not
mandatory, as drivers can also enable dirty tracking at boot, and just
clear the dirty bits before setting dirty tracking. For each of the newly
added IOMMU core APIs:
iommu_cap::IOMMU_CAP_DIRTY_TRACKING: new device iommu_capable value when
probing for capabilities of the device.
.set_dirty_tracking(): an iommu driver is expected to change its
translation structures and enable dirty tracking for the devices in the
iommu_domain. For drivers making dirty tracking always-enabled, it should
just return 0.
.read_and_clear_dirty(): an iommu driver is expected to walk the pagetables
for the iova range passed in and use iommu_dirty_bitmap_record() to record
dirty info per IOVA. When detecting that a given IOVA is dirty it should
also clear its dirty state from the PTE, *unless* the flag
IOMMU_DIRTY_NO_CLEAR is passed in -- flushing is steered from the caller of
the domain_op via iotlb_gather. The iommu core APIs use the same data
structure in use for dirty tracking for VFIO device dirty (struct
iova_bitmap) abstracted by iommu_dirty_bitmap_record() helper function.
domain::dirty_ops: IOMMU domains will store the dirty ops depending on
whether the iommu device supports dirty tracking or not. iommu drivers can
then use this field to figure if the dirty tracking is supported+enforced
on attach. The enforcement is enable via domain_alloc_user() which is done
via IOMMUFD hwpt flag introduced later.
Link: https://lore.kernel.org/r/20231024135109.73787-5-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Have the IOVA bitmap exported symbols adhere to the IOMMUFD symbol
export convention i.e. using the IOMMUFD namespace. In doing so,
import the namespace in the current users. This means VFIO and the
vfio-pci drivers that use iova_bitmap_set().
Link: https://lore.kernel.org/r/20231024135109.73787-4-joao.m.martins@oracle.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Brett Creeley <brett.creeley@amd.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Both VFIO and IOMMUFD will need iova bitmap for storing dirties and walking
the user bitmaps, so move to the common dependency into IOMMUFD. In doing
so, create the symbol IOMMUFD_DRIVER which designates the builtin code that
will be used by drivers when selected. Today this means MLX5_VFIO_PCI and
PDS_VFIO_PCI. IOMMU drivers will do the same (in future patches) when
supporting dirty tracking and select IOMMUFD_DRIVER accordingly.
Given that the symbol maybe be disabled, add header definitions in
iova_bitmap.h for when IOMMUFD_DRIVER=n
Link: https://lore.kernel.org/r/20231024135109.73787-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Brett Creeley <brett.creeley@amd.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
In preparation to move iova_bitmap into iommufd, export the rest of API
symbols that will be used in what could be used by modules, namely:
iova_bitmap_alloc
iova_bitmap_free
iova_bitmap_for_each
Link: https://lore.kernel.org/r/20231024135109.73787-2-joao.m.martins@oracle.com
Suggested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The IOMMU_HWPT_ALLOC_NEST_PARENT flag is used to allocate a HWPT. Though
a HWPT holds a domain in the core structure, it is still quite confusing
to describe it using "domain" in the uAPI kdoc. Correct it to "HWPT".
Fixes: 4ff542163397 ("iommufd: Support allocating nested parent domain")
Link: https://lore.kernel.org/r/20231017181552.12667-1-nicolinc@nvidia.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
TEST_LENGTH passing ".size = sizeof(struct _struct) - 1" expects -EINVAL
from "if (ucmd.user_size < op->min_size)" check in iommufd_fops_ioctl().
This has been working when min_size is exactly the size of the structure.
However, if the size of the structure becomes larger than min_size, i.e.
the passing size above is larger than min_size, that min_size sanity no
longer works.
Since the first test in TEST_LENGTH() was to test that min_size sanity
routine, rework it to support a min_size calculation, rather than using
the full size of the structure.
Link: https://lore.kernel.org/r/20231015074648.24185-1-nicolinc@nvidia.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add the domain_alloc_user() op implementation. It supports allocating
domains to be used as parent under nested translation.
Unlike other drivers VT-D uses only a single page table format so it only
needs to check if the HW can support nesting.
Link: https://lore.kernel.org/r/20230928071528.26258-7-yi.l.liu@intel.com
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Add mock_domain_alloc_user() and a new test case for
IOMMU_HWPT_ALLOC_NEST_PARENT.
Link: https://lore.kernel.org/r/20230928071528.26258-6-yi.l.liu@intel.com
Co-developed-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Extend IOMMU_HWPT_ALLOC to allocate domains to be used as parent (stage-2)
in nested translation.
Add IOMMU_HWPT_ALLOC_NEST_PARENT to the uAPI.
Link: https://lore.kernel.org/r/20230928071528.26258-5-yi.l.liu@intel.com
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Extends iommufd_hw_pagetable_alloc() to accept user flags, the uAPI will
provide the flags.
Link: https://lore.kernel.org/r/20230928071528.26258-4-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Make IOMMUFD use iommu_domain_alloc_user() by default for iommu_domain
creation. IOMMUFD needs to support iommu_domain allocation with parameters
from userspace in nested support, and a driver is expected to implement
everything under this op.
If the iommu driver doesn't provide domain_alloc_user callback then
IOMMUFD falls back to use iommu_domain_alloc() with an UNMANAGED type if
possible.
Link: https://lore.kernel.org/r/20230928071528.26258-3-yi.l.liu@intel.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Co-developed-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Introduce a new iommu_domain op to create domains owned by userspace,
e.g. through IOMMUFD. These domains have a few different properties
compares to kernel owned domains:
- They may be PAGING domains, but created with special parameters.
For instance aperture size changes/number of levels, different
IOPTE formats, or other things necessary to make a vIOMMU work
- We have to track all the memory allocations with GFP_KERNEL_ACCOUNT
to make the cgroup sandbox stronger
- Device-specialty domains, such as NESTED domains can be created by
IOMMUFD.
The new op clearly says the domain is being created by IOMMUFD, that the
domain is intended for userspace use, and it provides a way to pass user
flags or a driver specific uAPI structure to customize the created domain
to exactly what the vIOMMU userspace driver requires.
iommu drivers that cannot support VFIO/IOMMUFD should not support this
op. This includes any driver that cannot provide a fully functional PAGING
domain.
This new op for now is only supposed to be used by IOMMUFD, hence no
wrapper for it. IOMMUFD would call the callback directly. As for domain
free, IOMMUFD would use iommu_domain_free().
Link: https://lore.kernel.org/r/20230928071528.26258-2-yi.l.liu@intel.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Co-developed-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The point in iterating variant->mock_domains is to test the idev_ids[0]
and idev_ids[1]. So use it instead of keeping testing idev_ids[0] only.
Link: https://lore.kernel.org/r/20230919011637.16483-1-nicolinc@nvidia.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>