IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit cc1fe215e1efa406b03aa4389e6269b61342dec5 upstream
Split out the inner workings of do_cpu_down() to allow reuse of that
function for the upcoming SMT disabling mechanism.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c4de65696d865c225fda3b9913b31284ea65ea96 upstream
The asymmetry caused a warning to trigger if the bootup was stopped in state
CPUHP_AP_ONLINE_IDLE. The warning no longer triggers as kthread_park() can
now be invoked on already or still parked threads. But there is still no
reason to have this be asymmetric.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f048c399e0f7490ab7296bc2c255d37eb14a9675 upstream
Provide information whether SMT is supoorted by the CPUs. Preparatory patch
for SMT control mechanism.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6a4d2657e048f096c7ffcad254010bd94891c8c0 upstream
If the CPU is supporting SMT then the primary thread can be found by
checking the lower APIC ID bits for zero. smp_num_siblings is used to build
the mask for the APIC ID bits which need to be taken into account.
This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
than the initial APIC ID in CPUID. But according to AMD the lower bits have
to be consistent. Intel gave a tentative confirmation as well.
Preparatory patch to support disabling SMT at boot/runtime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 56563f53d3066afa9e63d6c997bf67e76a8b05c0 upstream
The pr_warn in l1tf_select_mitigation would have used the prior pr_fmt
which was defined as "Spectre V2 : ".
Move the function to be past SSBD and also define the pr_fmt.
Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 377eeaa8e11fe815b1d07c81c4a0e2843a8c15eb upstream
For the L1TF workaround its necessary to limit the swap file size to below
MAX_PA/2, so that the higher bits of the swap offset inverted never point
to valid memory.
Add a mechanism for the architecture to override the swap file size check
in swapfile.c and add a x86 specific max swapfile check function that
enforces that limit.
The check is only enabled if the CPU is vulnerable to L1TF.
In VMs with 42bit MAX_PA the typical limit is 2TB now, on a native system
with 46bit PA it is 32TB. The limit is only per individual swap file, so
it's always possible to exceed these limits with multiple swap files or
partitions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 42e4089c7890725fcd329999252dc489b72f2921 upstream
For L1TF PROT_NONE mappings are protected by inverting the PFN in the page
table entry. This sets the high bits in the CPU's address space, thus
making sure to point to not point an unmapped entry to valid cached memory.
Some server system BIOSes put the MMIO mappings high up in the physical
address space. If such an high mapping was mapped to unprivileged users
they could attack low memory by setting such a mapping to PROT_NONE. This
could happen through a special device driver which is not access
protected. Normal /dev/mem is of course access protected.
To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings.
Valid page mappings are allowed because the system is then unsafe anyways.
It's not expected that users commonly use PROT_NONE on MMIO. But to
minimize any impact this is only enforced if the mapping actually refers to
a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip
the check for root.
For mmaps this is straight forward and can be handled in vm_insert_pfn and
in remap_pfn_range().
For mprotect it's a bit trickier. At the point where the actual PTEs are
accessed a lot of state has been changed and it would be difficult to undo
on an error. Since this is a uncommon case use a separate early page talk
walk pass for MMIO PROT_NONE mappings that checks for this condition
early. For non MMIO and non PROT_NONE there are no changes.
[dwmw2: Backport to 4.9]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 17dbca119312b4e8173d4e25ff64262119fcef38 upstream
L1TF core kernel workarounds are cheap and normally always enabled, However
they still should be reported in sysfs if the system is vulnerable or
mitigated. Add the necessary CPU feature/bug bits.
- Extend the existing checks for Meltdowns to determine if the system is
vulnerable. All CPUs which are not vulnerable to Meltdown are also not
vulnerable to L1TF
- Check for 32bit non PAE and emit a warning as there is no practical way
for mitigation due to the limited physical address bits
- If the system has more than MAX_PA/2 physical memory the invert page
workarounds don't protect the system against the L1TF attack anymore,
because an inverted physical address will also point to valid
memory. Print a warning in this case and report that the system is
vulnerable.
Add a function which returns the PFN limit for the L1TF mitigation, which
will be used in follow up patches for sanity and range checks.
[ tglx: Renamed the CPU feature bit to L1TF_PTEINV ]
[ dwmw2: Backport to 4.9 (cpufeatures.h, E820) ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 10a70416e1f067f6c4efda6ffd8ea96002ac4223 upstream
The L1TF workaround doesn't make any attempt to mitigate speculate accesses
to the first physical page for zeroed PTEs. Normally it only contains some
data from the early real mode BIOS.
It's not entirely clear that the first page is reserved in all
configurations, so add an extra reservation call to make sure it is really
reserved. In most configurations (e.g. with the standard reservations)
it's likely a nop.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b28baca9b1f0d4a42b865da7a05b1c81424bd5c upstream
When PTEs are set to PROT_NONE the kernel just clears the Present bit and
preserves the PFN, which creates attack surface for L1TF speculation
speculation attacks.
This is important inside guests, because L1TF speculation bypasses physical
page remapping. While the host has its own migitations preventing leaking
data from other VMs into the guest, this would still risk leaking the wrong
page inside the current guest.
This uses the same technique as Linus' swap entry patch: while an entry is
is in PROTNONE state invert the complete PFN part part of it. This ensures
that the the highest bit will point to non existing memory.
The invert is done by pte/pmd_modify and pfn/pmd/pud_pte for PROTNONE and
pte/pmd/pud_pfn undo it.
This assume that no code path touches the PFN part of a PTE directly
without using these primitives.
This doesn't handle the case that MMIO is on the top of the CPU physical
memory. If such an MMIO region was exposed by an unpriviledged driver for
mmap it would be possible to attack some real memory. However this
situation is all rather unlikely.
For 32bit non PAE the inversion is not done because there are really not
enough bits to protect anything.
Q: Why does the guest need to be protected when the HyperVisor already has
L1TF mitigations?
A: Here's an example:
Physical pages 1 2 get mapped into a guest as
GPA 1 -> PA 2
GPA 2 -> PA 1
through EPT.
The L1TF speculation ignores the EPT remapping.
Now the guest kernel maps GPA 1 to process A and GPA 2 to process B, and
they belong to different users and should be isolated.
A sets the GPA 1 PA 2 PTE to PROT_NONE to bypass the EPT remapping and
gets read access to the underlying physical page. Which in this case
points to PA 2, so it can read process B's data, if it happened to be in
L1, so isolation inside the guest is broken.
There's nothing the hypervisor can do about this. This mitigation has to
be done in the guest itself.
[ tglx: Massaged changelog ]
[ dwmw2: backported to 4.9 ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f22b4cd45b67b3496f4aa4c7180a1271c6452f6 upstream
With L1 terminal fault the CPU speculates into unmapped PTEs, and resulting
side effects allow to read the memory the PTE is pointing too, if its
values are still in the L1 cache.
For swapped out pages Linux uses unmapped PTEs and stores a swap entry into
them.
To protect against L1TF it must be ensured that the swap entry is not
pointing to valid memory, which requires setting higher bits (between bit
36 and bit 45) that are inside the CPUs physical address space, but outside
any real memory.
To do this invert the offset to make sure the higher bits are always set,
as long as the swap file is not too big.
Note there is no workaround for 32bit !PAE, or on systems which have more
than MAX_PA/2 worth of memory. The later case is very unlikely to happen on
real systems.
[AK: updated description and minor tweaks by. Split out from the original
patch ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bcd11afa7adad8d720e7ba5ef58bdcd9775cf45f upstream
If pages are swapped out, the swap entry is stored in the corresponding
PTE, which has the Present bit cleared. CPUs vulnerable to L1TF speculate
on PTE entries which have the present bit set and would treat the swap
entry as phsyical address (PFN). To mitigate that the upper bits of the PTE
must be set so the PTE points to non existent memory.
The swap entry stores the type and the offset of a swapped out page in the
PTE. type is stored in bit 9-13 and offset in bit 14-63. The hardware
ignores the bits beyond the phsyical address space limit, so to make the
mitigation effective its required to start 'offset' at the lowest possible
bit so that even large swap offsets do not reach into the physical address
space limit bits.
Move offset to bit 9-58 and type to bit 59-63 which are the bits that
hardware generally doesn't care about.
That, in turn, means that if you on desktop chip with only 40 bits of
physical addressing, now that the offset starts at bit 9, there needs to be
30 bits of offset actually *in use* until bit 39 ends up being set, which
means when inverted it will again point into existing memory.
So that's 4 terabyte of swap space (because the offset is counted in pages,
so 30 bits of offset is 42 bits of actual coverage). With bigger physical
addressing, that obviously grows further, until the limit of the offset is
hit (at 50 bits of offset - 62 bits of actual swap file coverage).
This is a preparatory change for the actual swap entry inversion to protect
against L1TF.
[ AK: Updated description and minor tweaks. Split into two parts ]
[ tglx: Massaged changelog ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eee4818baac0f2b37848fdf90e4b16430dc536ac upstream
_PAGE_PSE is used to distinguish between a truly non-present
(_PAGE_PRESENT=0) PMD, and a PMD which is undergoing a THP split and
should be treated as present.
But _PAGE_SWP_SOFT_DIRTY currently uses the _PAGE_PSE bit, which would
cause confusion between one of those PMDs undergoing a THP split, and a
soft-dirty PMD. Dropping _PAGE_PSE check in pmd_present() does not work
well, because it can hurt optimization of tlb handling in thp split.
Thus, we need to move the bit.
In the current kernel, bits 1-4 are not used in non-present format since
commit 00839ee3b299 ("x86/mm: Move swap offset/type up in PTE to work
around erratum"). So let's move _PAGE_SWP_SOFT_DIRTY to bit 1. Bit 7
is used as reserved (always clear), so please don't use it for other
purpose.
[dwmw2: Pulled in to 4.9 backport to support L1TF changes]
Link: http://lkml.kernel.org/r/20170717193955.20207-3-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 50896e180c6aa3a9c61a26ced99e15d602666a4c upstream
L1 Terminal Fault (L1TF) is a speculation related vulnerability. The CPU
speculates on PTE entries which do not have the PRESENT bit set, if the
content of the resulting physical address is available in the L1D cache.
The OS side mitigation makes sure that a !PRESENT PTE entry points to a
physical address outside the actually existing and cachable memory
space. This is achieved by inverting the upper bits of the PTE. Due to the
address space limitations this only works for 64bit and 32bit PAE kernels,
but not for 32bit non PAE.
This mitigation applies to both host and guest kernels, but in case of a
64bit host (hypervisor) and a 32bit PAE guest, inverting the upper bits of
the PAE address space (44bit) is not enough if the host has more than 43
bits of populated memory address space, because the speculation treats the
PTE content as a physical host address bypassing EPT.
The host (hypervisor) protects itself against the guest by flushing L1D as
needed, but pages inside the guest are not protected against attacks from
other processes inside the same guest.
For the guest the inverted PTE mask has to match the host to provide the
full protection for all pages the host could possibly map into the
guest. The hosts populated address space is not known to the guest, so the
mask must cover the possible maximal host address space, i.e. 52 bit.
On 32bit PAE the maximum PTE mask is currently set to 44 bit because that
is the limit imposed by 32bit unsigned long PFNs in the VMs. This limits
the mask to be below what the host could possible use for physical pages.
The L1TF PROT_NONE protection code uses the PTE masks to determine which
bits to invert to make sure the higher bits are set for unmapped entries to
prevent L1TF speculation attacks against EPT inside guests.
In order to invert all bits that could be used by the host, increase
__PHYSICAL_PAGE_SHIFT to 52 to match 64bit.
The real limit for a 32bit PAE kernel is still 44 bits because all Linux
PTEs are created from unsigned long PFNs, so they cannot be higher than 44
bits on a 32bit kernel. So these extra PFN bits should be never set. The
only users of this macro are using it to look at PTEs, so it's safe.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fdf82a7856b32d905c39afc85e34364491e46346 upstream.
The article "Spectre Returns! Speculation Attacks using the Return Stack
Buffer" [1] describes two new (sub-)variants of spectrev2-like attacks,
making use solely of the RSB contents even on CPUs that don't fallback to
BTB on RSB underflow (Skylake+).
Mitigate userspace-userspace attacks by always unconditionally filling RSB on
context switch when the generic spectrev2 mitigation has been enabled.
[1] https://arxiv.org/pdf/1807.07940.pdf
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1807261308190.997@cbobk.fhfr.pm
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5800dc5c19f34e6e03b5adab1282535cb102fafd upstream.
Nadav reported that on guests we're failing to rewrite the indirect
calls to CALLEE_SAVE paravirt functions. In particular the
pv_queued_spin_unlock() call is left unpatched and that is all over the
place. This obviously wrecks Spectre-v2 mitigation (for paravirt
guests) which relies on not actually having indirect calls around.
The reason is an incorrect clobber test in paravirt_patch_call(); this
function rewrites an indirect call with a direct call to the _SAME_
function, there is no possible way the clobbers can be different
because of this.
Therefore remove this clobber check. Also put WARNs on the other patch
failure case (not enough room for the instruction) which I've not seen
trigger in my (limited) testing.
Three live kernel image disassemblies for lock_sock_nested (as a small
function that illustrates the problem nicely). PRE is the current
situation for guests, POST is with this patch applied and NATIVE is with
or without the patch for !guests.
PRE:
(gdb) disassemble lock_sock_nested
Dump of assembler code for function lock_sock_nested:
0xffffffff817be970 <+0>: push %rbp
0xffffffff817be971 <+1>: mov %rdi,%rbp
0xffffffff817be974 <+4>: push %rbx
0xffffffff817be975 <+5>: lea 0x88(%rbp),%rbx
0xffffffff817be97c <+12>: callq 0xffffffff819f7160 <_cond_resched>
0xffffffff817be981 <+17>: mov %rbx,%rdi
0xffffffff817be984 <+20>: callq 0xffffffff819fbb00 <_raw_spin_lock_bh>
0xffffffff817be989 <+25>: mov 0x8c(%rbp),%eax
0xffffffff817be98f <+31>: test %eax,%eax
0xffffffff817be991 <+33>: jne 0xffffffff817be9ba <lock_sock_nested+74>
0xffffffff817be993 <+35>: movl $0x1,0x8c(%rbp)
0xffffffff817be99d <+45>: mov %rbx,%rdi
0xffffffff817be9a0 <+48>: callq *0xffffffff822299e8
0xffffffff817be9a7 <+55>: pop %rbx
0xffffffff817be9a8 <+56>: pop %rbp
0xffffffff817be9a9 <+57>: mov $0x200,%esi
0xffffffff817be9ae <+62>: mov $0xffffffff817be993,%rdi
0xffffffff817be9b5 <+69>: jmpq 0xffffffff81063ae0 <__local_bh_enable_ip>
0xffffffff817be9ba <+74>: mov %rbp,%rdi
0xffffffff817be9bd <+77>: callq 0xffffffff817be8c0 <__lock_sock>
0xffffffff817be9c2 <+82>: jmp 0xffffffff817be993 <lock_sock_nested+35>
End of assembler dump.
POST:
(gdb) disassemble lock_sock_nested
Dump of assembler code for function lock_sock_nested:
0xffffffff817be970 <+0>: push %rbp
0xffffffff817be971 <+1>: mov %rdi,%rbp
0xffffffff817be974 <+4>: push %rbx
0xffffffff817be975 <+5>: lea 0x88(%rbp),%rbx
0xffffffff817be97c <+12>: callq 0xffffffff819f7160 <_cond_resched>
0xffffffff817be981 <+17>: mov %rbx,%rdi
0xffffffff817be984 <+20>: callq 0xffffffff819fbb00 <_raw_spin_lock_bh>
0xffffffff817be989 <+25>: mov 0x8c(%rbp),%eax
0xffffffff817be98f <+31>: test %eax,%eax
0xffffffff817be991 <+33>: jne 0xffffffff817be9ba <lock_sock_nested+74>
0xffffffff817be993 <+35>: movl $0x1,0x8c(%rbp)
0xffffffff817be99d <+45>: mov %rbx,%rdi
0xffffffff817be9a0 <+48>: callq 0xffffffff810a0c20 <__raw_callee_save___pv_queued_spin_unlock>
0xffffffff817be9a5 <+53>: xchg %ax,%ax
0xffffffff817be9a7 <+55>: pop %rbx
0xffffffff817be9a8 <+56>: pop %rbp
0xffffffff817be9a9 <+57>: mov $0x200,%esi
0xffffffff817be9ae <+62>: mov $0xffffffff817be993,%rdi
0xffffffff817be9b5 <+69>: jmpq 0xffffffff81063aa0 <__local_bh_enable_ip>
0xffffffff817be9ba <+74>: mov %rbp,%rdi
0xffffffff817be9bd <+77>: callq 0xffffffff817be8c0 <__lock_sock>
0xffffffff817be9c2 <+82>: jmp 0xffffffff817be993 <lock_sock_nested+35>
End of assembler dump.
NATIVE:
(gdb) disassemble lock_sock_nested
Dump of assembler code for function lock_sock_nested:
0xffffffff817be970 <+0>: push %rbp
0xffffffff817be971 <+1>: mov %rdi,%rbp
0xffffffff817be974 <+4>: push %rbx
0xffffffff817be975 <+5>: lea 0x88(%rbp),%rbx
0xffffffff817be97c <+12>: callq 0xffffffff819f7160 <_cond_resched>
0xffffffff817be981 <+17>: mov %rbx,%rdi
0xffffffff817be984 <+20>: callq 0xffffffff819fbb00 <_raw_spin_lock_bh>
0xffffffff817be989 <+25>: mov 0x8c(%rbp),%eax
0xffffffff817be98f <+31>: test %eax,%eax
0xffffffff817be991 <+33>: jne 0xffffffff817be9ba <lock_sock_nested+74>
0xffffffff817be993 <+35>: movl $0x1,0x8c(%rbp)
0xffffffff817be99d <+45>: mov %rbx,%rdi
0xffffffff817be9a0 <+48>: movb $0x0,(%rdi)
0xffffffff817be9a3 <+51>: nopl 0x0(%rax)
0xffffffff817be9a7 <+55>: pop %rbx
0xffffffff817be9a8 <+56>: pop %rbp
0xffffffff817be9a9 <+57>: mov $0x200,%esi
0xffffffff817be9ae <+62>: mov $0xffffffff817be993,%rdi
0xffffffff817be9b5 <+69>: jmpq 0xffffffff81063ae0 <__local_bh_enable_ip>
0xffffffff817be9ba <+74>: mov %rbp,%rdi
0xffffffff817be9bd <+77>: callq 0xffffffff817be8c0 <__lock_sock>
0xffffffff817be9c2 <+82>: jmp 0xffffffff817be993 <lock_sock_nested+35>
End of assembler dump.
Fixes: 63f70270ccd9 ("[PATCH] i386: PARAVIRT: add common patching machinery")
Fixes: 3010a0663fd9 ("x86/paravirt, objtool: Annotate indirect calls")
Reported-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1bcfe0564044be578841744faea1c2f46adc8178 upstream.
Use the correct IRQ line for the MSI controller in the PCIe host
controller. Apparently a different IRQ line is used compared to other
i.MX6 variants. Without this change MSI IRQs aren't properly propagated
to the upstream interrupt controller.
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Reviewed-by: Lucas Stach <l.stach@pengutronix.de>
Fixes: b1d17f68e5c5 ("ARM: dts: imx: add initial imx6sx device tree source")
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 062d0f22a30c39840ea49b72cfcfc1aa4cc538fa upstream.
In write to debugfs file 'resource_stats' the local buffer 'tmp_str' is
written at index 'count-1' where 'count' is the size of the write, so
potentially 0.
This patch filters odd values for the write size/position to avoid this
type of problem.
Signed-off-by: Michael Mera <dev@michaelmera.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 069f05346d01e7298939f16533953cdf52370be3 upstream.
devm_kasprintf() may fail, so we should better add a NULL check
and propagate an error on failure.
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d8f9cc328c8888369880e2527e9186d745f2bbf6 upstream.
To allow rereg_user_mr to modify the MR from read-only to writable without
using get_user_pages again, we needed to define the initial MR as writable.
However, this was originally done unconditionally, without taking into
account the writability of the underlying virtual memory.
As a result, any attempt to register a read-only MR over read-only
virtual memory failed.
To fix this, do not add the writable flag bit when the user virtual memory
is not writable (e.g. const memory).
However, when the underlying memory is NOT writable (and we therefore
do not define the initial MR as writable), the IB core adds a
"force writable" flag to its user-pages request. If this succeeds,
the reg_user_mr caller gets a writable copy of the original pages.
If the user-space caller then does a rereg_user_mr operation to enable
writability, this will succeed. This should not be allowed, since
the original virtual memory was not writable.
Cc: <stable@vger.kernel.org>
Fixes: 9376932d0c26 ("IB/mlx4_ib: Add support for user MR re-registration")
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 08bb558ac11ab944e0539e78619d7b4c356278bd upstream.
Make the MR writability flags check, which is performed in umem.c,
a static inline function in file ib_verbs.h
This allows the function to be used by low-level infiniband drivers.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2fd1d2c4ceb2248a727696962cf3370dc9f5a0a4 upstream.
Andrei Vagin writes:
FYI: This bug has been reproduced on 4.11.7
> BUG: Dentry ffff895a3dd01240{i=4e7c09a,n=lo} still in use (1) [unmount of proc proc]
> ------------[ cut here ]------------
> WARNING: CPU: 1 PID: 13588 at fs/dcache.c:1445 umount_check+0x6e/0x80
> CPU: 1 PID: 13588 Comm: kworker/1:1 Not tainted 4.11.7-200.fc25.x86_64 #1
> Hardware name: CompuLab sbc-flt1/fitlet, BIOS SBCFLT_0.08.04 06/27/2015
> Workqueue: events proc_cleanup_work
> Call Trace:
> dump_stack+0x63/0x86
> __warn+0xcb/0xf0
> warn_slowpath_null+0x1d/0x20
> umount_check+0x6e/0x80
> d_walk+0xc6/0x270
> ? dentry_free+0x80/0x80
> do_one_tree+0x26/0x40
> shrink_dcache_for_umount+0x2d/0x90
> generic_shutdown_super+0x1f/0xf0
> kill_anon_super+0x12/0x20
> proc_kill_sb+0x40/0x50
> deactivate_locked_super+0x43/0x70
> deactivate_super+0x5a/0x60
> cleanup_mnt+0x3f/0x90
> mntput_no_expire+0x13b/0x190
> kern_unmount+0x3e/0x50
> pid_ns_release_proc+0x15/0x20
> proc_cleanup_work+0x15/0x20
> process_one_work+0x197/0x450
> worker_thread+0x4e/0x4a0
> kthread+0x109/0x140
> ? process_one_work+0x450/0x450
> ? kthread_park+0x90/0x90
> ret_from_fork+0x2c/0x40
> ---[ end trace e1c109611e5d0b41 ]---
> VFS: Busy inodes after unmount of proc. Self-destruct in 5 seconds. Have a nice day...
> BUG: unable to handle kernel NULL pointer dereference at (null)
> IP: _raw_spin_lock+0xc/0x30
> PGD 0
Fix this by taking a reference to the super block in proc_sys_prune_dcache.
The superblock reference is the core of the fix however the sysctl_inodes
list is converted to a hlist so that hlist_del_init_rcu may be used. This
allows proc_sys_prune_dache to remove inodes the sysctl_inodes list, while
not causing problems for proc_sys_evict_inode when if it later choses to
remove the inode from the sysctl_inodes list. Removing inodes from the
sysctl_inodes list allows proc_sys_prune_dcache to have a progress
guarantee, while still being able to drop all locks. The fact that
head->unregistering is set in start_unregistering ensures that no more
inodes will be added to the the sysctl_inodes list.
Previously the code did a dance where it delayed calling iput until the
next entry in the list was being considered to ensure the inode remained on
the sysctl_inodes list until the next entry was walked to. The structure
of the loop in this patch does not need that so is much easier to
understand and maintain.
Cc: stable@vger.kernel.org
Reported-by: Andrei Vagin <avagin@gmail.com>
Tested-by: Andrei Vagin <avagin@openvz.org>
Fixes: ace0c791e6c3 ("proc/sysctl: Don't grab i_lock under sysctl_lock.")
Fixes: d6cffbbe9a7e ("proc/sysctl: prune stale dentries during unregistering")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ace0c791e6c3cf5ef37cad2df69f0d90ccc40ffb upstream.
Konstantin Khlebnikov <khlebnikov@yandex-team.ru> writes:
> This patch has locking problem. I've got lockdep splat under LTP.
>
> [ 6633.115456] ======================================================
> [ 6633.115502] [ INFO: possible circular locking dependency detected ]
> [ 6633.115553] 4.9.10-debug+ #9 Tainted: G L
> [ 6633.115584] -------------------------------------------------------
> [ 6633.115627] ksm02/284980 is trying to acquire lock:
> [ 6633.115659] (&sb->s_type->i_lock_key#4){+.+...}, at: [<ffffffff816bc1ce>] igrab+0x1e/0x80
> [ 6633.115834] but task is already holding lock:
> [ 6633.115882] (sysctl_lock){+.+...}, at: [<ffffffff817e379b>] unregister_sysctl_table+0x6b/0x110
> [ 6633.116026] which lock already depends on the new lock.
> [ 6633.116026]
> [ 6633.116080]
> [ 6633.116080] the existing dependency chain (in reverse order) is:
> [ 6633.116117]
> -> #2 (sysctl_lock){+.+...}:
> -> #1 (&(&dentry->d_lockref.lock)->rlock){+.+...}:
> -> #0 (&sb->s_type->i_lock_key#4){+.+...}:
>
> d_lock nests inside i_lock
> sysctl_lock nests inside d_lock in d_compare
>
> This patch adds i_lock nesting inside sysctl_lock.
Al Viro <viro@ZenIV.linux.org.uk> replied:
> Once ->unregistering is set, you can drop sysctl_lock just fine. So I'd
> try something like this - use rcu_read_lock() in proc_sys_prune_dcache(),
> drop sysctl_lock() before it and regain after. Make sure that no inodes
> are added to the list ones ->unregistering has been set and use RCU list
> primitives for modifying the inode list, with sysctl_lock still used to
> serialize its modifications.
>
> Freeing struct inode is RCU-delayed (see proc_destroy_inode()), so doing
> igrab() is safe there. Since we don't drop inode reference until after we'd
> passed beyond it in the list, list_for_each_entry_rcu() should be fine.
I agree with Al Viro's analsysis of the situtation.
Fixes: d6cffbbe9a7e ("proc/sysctl: prune stale dentries during unregistering")
Reported-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Tested-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d6cffbbe9a7e51eb705182965a189457c17ba8a3 upstream.
Currently unregistering sysctl table does not prune its dentries.
Stale dentries could slowdown sysctl operations significantly.
For example, command:
# for i in {1..100000} ; do unshare -n -- sysctl -a &> /dev/null ; done
creates a millions of stale denties around sysctls of loopback interface:
# sysctl fs.dentry-state
fs.dentry-state = 25812579 24724135 45 0 0 0
All of them have matching names thus lookup have to scan though whole
hash chain and call d_compare (proc_sys_compare) which checks them
under system-wide spinlock (sysctl_lock).
# time sysctl -a > /dev/null
real 1m12.806s
user 0m0.016s
sys 1m12.400s
Currently only memory reclaimer could remove this garbage.
But without significant memory pressure this never happens.
This patch collects sysctl inodes into list on sysctl table header and
prunes all their dentries once that table unregisters.
Konstantin Khlebnikov <khlebnikov@yandex-team.ru> writes:
> On 10.02.2017 10:47, Al Viro wrote:
>> how about >> the matching stats *after* that patch?
>
> dcache size doesn't grow endlessly, so stats are fine
>
> # sysctl fs.dentry-state
> fs.dentry-state = 92712 58376 45 0 0 0
>
> # time sysctl -a &>/dev/null
>
> real 0m0.013s
> user 0m0.004s
> sys 0m0.008s
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 119e1ef80ecfe0d1deb6378d4ab41f5b71519de1 upstream.
__legitimize_mnt() has two problems - one is that in case of success
the check of mount_lock is not ordered wrt preceding increment of
refcount, making it possible to have successful __legitimize_mnt()
on one CPU just before the otherwise final mntpu() on another,
with __legitimize_mnt() not seeing mntput() taking the lock and
mntput() not seeing the increment done by __legitimize_mnt().
Solved by a pair of barriers.
Another is that failure of __legitimize_mnt() on the second
read_seqretry() leaves us with reference that'll need to be
dropped by caller; however, if that races with final mntput()
we can end up with caller dropping rcu_read_lock() and doing
mntput() to release that reference - with the first mntput()
having freed the damn thing just as rcu_read_lock() had been
dropped. Solution: in "do mntput() yourself" failure case
grab mount_lock, check if MNT_DOOMED has been set by racing
final mntput() that has missed our increment and if it has -
undo the increment and treat that as "failure, caller doesn't
need to drop anything" case.
It's not easy to hit - the final mntput() has to come right
after the first read_seqretry() in __legitimize_mnt() *and*
manage to miss the increment done by __legitimize_mnt() before
the second read_seqretry() in there. The things that are almost
impossible to hit on bare hardware are not impossible on SMP
KVM, though...
Reported-by: Oleg Nesterov <oleg@redhat.com>
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9ea0a46ca2c318fcc449c1e6b62a7230a17888f1 upstream.
mntput_no_expire() does the calculation of total refcount under mount_lock;
unfortunately, the decrement (as well as all increments) are done outside
of it, leading to false positives in the "are we dropping the last reference"
test. Consider the following situation:
* mnt is a lazy-umounted mount, kept alive by two opened files. One
of those files gets closed. Total refcount of mnt is 2. On CPU 42
mntput(mnt) (called from __fput()) drops one reference, decrementing component
* After it has looked at component #0, the process on CPU 0 does
mntget(), incrementing component #0, gets preempted and gets to run again -
on CPU 69. There it does mntput(), which drops the reference (component #69)
and proceeds to spin on mount_lock.
* On CPU 42 our first mntput() finishes counting. It observes the
decrement of component #69, but not the increment of component #0. As the
result, the total it gets is not 1 as it should've been - it's 0. At which
point we decide that vfsmount needs to be killed and proceed to free it and
shut the filesystem down. However, there's still another opened file
on that filesystem, with reference to (now freed) vfsmount, etc. and we are
screwed.
It's not a wide race, but it can be reproduced with artificial slowdown of
the mnt_get_count() loop, and it should be easier to hit on SMP KVM setups.
Fix consists of moving the refcount decrement under mount_lock; the tricky
part is that we want (and can) keep the fast case (i.e. mount that still
has non-NULL ->mnt_ns) entirely out of mount_lock. All places that zero
mnt->mnt_ns are dropping some reference to mnt and they call synchronize_rcu()
before that mntput(). IOW, if mntput() observes (under rcu_read_lock())
a non-NULL ->mnt_ns, it is guaranteed that there is another reference yet to
be dropped.
Reported-by: Jann Horn <jannh@google.com>
Tested-by: Jann Horn <jannh@google.com>
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c0d7cd5c8416b1ef41534d19163cb07ffaa03ab upstream.
RCU pathwalk relies upon the assumption that anything that changes
->d_inode of a dentry will invalidate its ->d_seq. That's almost
true - the one exception is that the final dput() of already unhashed
dentry does *not* touch ->d_seq at all. Unhashing does, though,
so for anything we'd found by RCU dcache lookup we are fine.
Unfortunately, we can *start* with an unhashed dentry or jump into
it.
We could try and be careful in the (few) places where that could
happen. Or we could just make the final dput() invalidate the damn
thing, unhashed or not. The latter is much simpler and easier to
backport, so let's do it that way.
Reported-by: "Dae R. Jeong" <threeearcat@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 90bad5e05bcdb0308cfa3d3a60f5c0b9c8e2efb3 upstream.
Since mountpoint crossing can happen without leaving lazy mode,
root dentries do need the same protection against having their
memory freed without RCU delay as everything else in the tree.
It's partially hidden by RCU delay between detaching from the
mount tree and dropping the vfsmount reference, but the starting
point of pathwalk can be on an already detached mount, in which
case umount-caused RCU delay has already passed by the time the
lazy pathwalk grabs rcu_read_lock(). If the starting point
happens to be at the root of that vfsmount *and* that vfsmount
covers the entire filesystem, we get trouble.
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b5b1404d0815894de0690de8a1ab58269e56eae6 upstream.
This is purely a preparatory patch for upcoming changes during the 4.19
merge window.
We have a function called "boot_cpu_state_init()" that isn't really
about the bootup cpu state: that is done much earlier by the similarly
named "boot_cpu_init()" (note lack of "state" in name).
This function initializes some hotplug CPU state, and needs to run after
the percpu data has been properly initialized. It even has a comment to
that effect.
Except it _doesn't_ actually run after the percpu data has been properly
initialized. On x86 it happens to do that, but on at least arm and
arm64, the percpu base pointers are initialized by the arch-specific
'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
This had some unexpected results, and in particular we have a patch
pending for the merge window that did the obvious cleanup of using
'this_cpu_write()' in the cpu hotplug init code:
- per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
+ this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
which is obviously the right thing to do. Except because of the
ordering issue, it actually failed miserably and unexpectedly on arm64.
So this just fixes the ordering, and changes the name of the function to
be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
hotplug state, because the core CPU state was supposed to have already
been done earlier.
Marked for stable, since the (not yet merged) patch that will show this
problem is marked for stable.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1214fd7b497400d200e3f4e64e2338b303a20949 upstream.
Surround scsi_execute() calls with scsi_autopm_get_device() and
scsi_autopm_put_device(). Note: removing sr_mutex protection from the
scsi_cd_get() and scsi_cd_put() calls is safe because the purpose of
sr_mutex is to serialize cdrom_*() calls.
This patch avoids that complaints similar to the following appear in the
kernel log if runtime power management is enabled:
INFO: task systemd-udevd:650 blocked for more than 120 seconds.
Not tainted 4.18.0-rc7-dbg+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
systemd-udevd D28176 650 513 0x00000104
Call Trace:
__schedule+0x444/0xfe0
schedule+0x4e/0xe0
schedule_preempt_disabled+0x18/0x30
__mutex_lock+0x41c/0xc70
mutex_lock_nested+0x1b/0x20
__blkdev_get+0x106/0x970
blkdev_get+0x22c/0x5a0
blkdev_open+0xe9/0x100
do_dentry_open.isra.19+0x33e/0x570
vfs_open+0x7c/0xd0
path_openat+0x6e3/0x1120
do_filp_open+0x11c/0x1c0
do_sys_open+0x208/0x2d0
__x64_sys_openat+0x59/0x70
do_syscall_64+0x77/0x230
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Maurizio Lombardi <mlombard@redhat.com>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: <stable@vger.kernel.org>
Tested-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fdcb613d49321b5bf5d5a1bd0fba8e7c241dcc70 upstream.
The LPSS PWM device on on Bay Trail and Cherry Trail devices has a set
of private registers at offset 0x800, the current lpss_device_desc for
them already sets the LPSS_SAVE_CTX flag to have these saved/restored
over device-suspend, but the current lpss_device_desc was not setting
the prv_offset field, leading to the regular device registers getting
saved/restored instead.
This is causing the PWM controller to no longer work, resulting in a black
screen, after a suspend/resume on systems where the firmware clears the
APB clock and reset bits at offset 0x804.
This commit fixes this by properly setting prv_offset to 0x800 for
the PWM devices.
Cc: stable@vger.kernel.org
Fixes: e1c748179754 ("ACPI / LPSS: Add Intel BayTrail ACPI mode PWM")
Fixes: 1bfbd8eb8a7f ("ACPI / LPSS: Add ACPI IDs for Intel Braswell")
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Rafael J . Wysocki <rjw@rjwysocki.net>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d472b3a6cf63cd31cae1ed61930f07e6cd6671b5 upstream.
skb_shinfo() can change when calling __pskb_pull_tail(): Don't cache
its return value.
Cc: stable@vger.kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Wei Liu <wei.liu2@citrix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c53776e29f81719efcf8f7a6e30cdf753bee94d upstream.
Way back in 4.9, we committed 4cd13c21b207 ("softirq: Let ksoftirqd do
its job"), and ever since we've had small nagging issues with it. For
example, we've had:
1ff688209e2e ("watchdog: core: make sure the watchdog_worker is not deferred")
8d5755b3f77b ("watchdog: softdog: fire watchdog even if softirqs do not get to run")
217f69743681 ("net: busy-poll: allow preemption in sk_busy_loop()")
all of which worked around some of the effects of that commit.
The DVB people have also complained that the commit causes excessive USB
URB latencies, which seems to be due to the USB code using tasklets to
schedule USB traffic. This seems to be an issue mainly when already
living on the edge, but waiting for ksoftirqd to handle it really does
seem to cause excessive latencies.
Now Hanna Hawa reports that this issue isn't just limited to USB URB and
DVB, but also causes timeout problems for the Marvell SoC team:
"I'm facing kernel panic issue while running raid 5 on sata disks
connected to Macchiatobin (Marvell community board with Armada-8040
SoC with 4 ARMv8 cores of CA72) Raid 5 built with Marvell DMA engine
and async_tx mechanism (ASYNC_TX_DMA [=y]); the DMA driver (mv_xor_v2)
uses a tasklet to clean the done descriptors from the queue"
The latency problem causes a panic:
mv_xor_v2 f0400000.xor: dma_sync_wait: timeout!
Kernel panic - not syncing: async_tx_quiesce: DMA error waiting for transaction
We've discussed simply just reverting the original commit entirely, and
also much more involved solutions (with per-softirq threads etc). This
patch is intentionally stupid and fairly limited, because the issue
still remains, and the other solutions either got sidetracked or had
other issues.
We should probably also consider the timer softirqs to be synchronous
and not be delayed to ksoftirqd (since they were the issue with the
earlier watchdog problems), but that should be done as a separate patch.
This does only the tasklet cases.
Reported-and-tested-by: Hanna Hawa <hannah@marvell.com>
Reported-and-tested-by: Josef Griebichler <griebichler.josef@gmx.at>
Reported-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 12c8f25a016dff69ee284aa3338bebfd2cfcba33 upstream.
KASAN uses the __no_sanitize_address macro to disable instrumentation of
particular functions. Right now it's defined only for GCC build, which
causes false positives when clang is used.
This patch adds a definition for clang.
Note, that clang's revision 329612 or higher is required.
[andreyknvl@google.com: remove redundant #ifdef CONFIG_KASAN check]
Link: http://lkml.kernel.org/r/c79aa31a2a2790f6131ed607c58b0dd45dd62a6c.1523967959.git.andreyknvl@google.com
Link: http://lkml.kernel.org/r/4ad725cc903f8534f8c8a60f0daade5e3d674f8d.1523554166.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Paul Lawrence <paullawrence@google.com>
Cc: Sandipan Das <sandipan@linux.vnet.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sodagudi Prasad <psodagud@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fedb8da96355f5f64353625bf96dc69423ad1826 upstream.
For years I thought all parisc machines executed loads and stores in
order. However, Jeff Law recently indicated on gcc-patches that this is
not correct. There are various degrees of out-of-order execution all the
way back to the PA7xxx processor series (hit-under-miss). The PA8xxx
series has full out-of-order execution for both integer operations, and
loads and stores.
This is described in the following article:
http://web.archive.org/web/20040214092531/http://www.cpus.hp.com/technical_references/advperf.shtml
For this reason, we need to define mb() and to insert a memory barrier
before the store unlocking spinlocks. This ensures that all memory
accesses are complete prior to unlocking. The ldcw instruction performs
the same function on entry.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: stable@vger.kernel.org # 4.0+
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 66509a276c8c1d19ee3f661a41b418d101c57d29 upstream.
Enable the -mlong-calls compiler option by default, because otherwise in most
cases linking the vmlinux binary fails due to truncations of R_PARISC_PCREL22F
relocations. This fixes building the 64-bit defconfig.
Cc: stable@vger.kernel.org # 4.0+
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ab2011ea368ec3433ad49e1b9e1c7b70d2e65df upstream.
There is a race condition in tpm_common_write function allowing
two threads on the same /dev/tpm<N>, or two different applications
on the same /dev/tpmrm<N> to overwrite each other commands/responses.
Fixed this by taking the priv->buffer_mutex early in the function.
Also converted the priv->data_pending from atomic to a regular size_t
type. There is no need for it to be atomic since it is only touched
under the protection of the priv->buffer_mutex.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5012284700775a4e6e3fbe7eac4c543c4874b559 upstream.
Commit 8844618d8aa7: "ext4: only look at the bg_flags field if it is
valid" will complain if block group zero does not have the
EXT4_BG_INODE_ZEROED flag set. Unfortunately, this is not correct,
since a freshly created file system has this flag cleared. It gets
almost immediately after the file system is mounted read-write --- but
the following somewhat unlikely sequence will end up triggering a
false positive report of a corrupted file system:
mkfs.ext4 /dev/vdc
mount -o ro /dev/vdc /vdc
mount -o remount,rw /dev/vdc
Instead, when initializing the inode table for block group zero, test
to make sure that itable_unused count is not too large, since that is
the case that will result in some or all of the reserved inodes
getting cleared.
This fixes the failures reported by Eric Whiteney when running
generic/230 and generic/231 in the the nojournal test case.
Fixes: 8844618d8aa7 ("ext4: only look at the bg_flags field if it is valid")
Reported-by: Eric Whitney <enwlinux@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 92d34134193e5b129dc24f8d79cb9196626e8d7a upstream.
The code is assuming the buffer is max_size length, but we weren't
allocating enough space for it.
Signed-off-by: Shankara Pailoor <shankarapailoor@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b697d7d8c741f27b728a878fc55852b06d0f6f5e upstream.
The __get_txreq() function can return a pointer, ERR_PTR(-EBUSY), or NULL.
All of the relevant call sites look for IS_ERR, so the NULL return would
lead to a NULL pointer exception.
Do not use the ERR_PTR mechanism for this function.
Update all call sites to handle the return value correctly.
Clean up error paths to reflect return value.
Fixes: 45842abbb292 ("staging/rdma/hfi1: move txreq header code")
Cc: <stable@vger.kernel.org> # 4.9.x+
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Reviewed-by: Kamenee Arumugam <kamenee.arumugam@intel.com>
Signed-off-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e01e80634ecdde1dd113ac43b3adad21b47f3957 upstream.
One of the classes of kernel stack content leaks[1] is exposing the
contents of prior heap or stack contents when a new process stack is
allocated. Normally, those stacks are not zeroed, and the old contents
remain in place. In the face of stack content exposure flaws, those
contents can leak to userspace.
Fixing this will make the kernel no longer vulnerable to these flaws, as
the stack will be wiped each time a stack is assigned to a new process.
There's not a meaningful change in runtime performance; it almost looks
like it provides a benefit.
Performing back-to-back kernel builds before:
Run times: 157.86 157.09 158.90 160.94 160.80
Mean: 159.12
Std Dev: 1.54
and after:
Run times: 159.31 157.34 156.71 158.15 160.81
Mean: 158.46
Std Dev: 1.46
Instead of making this a build or runtime config, Andy Lutomirski
recommended this just be enabled by default.
[1] A noisy search for many kinds of stack content leaks can be seen here:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+stack+leak
I did some more with perf and cycle counts on running 100,000 execs of
/bin/true.
before:
Cycles: 218858861551 218853036130 214727610969 227656844122 224980542841
Mean: 221015379122.60
Std Dev: 4662486552.47
after:
Cycles: 213868945060 213119275204 211820169456 224426673259 225489986348
Mean: 217745009865.40
Std Dev: 5935559279.99
It continues to look like it's faster, though the deviation is rather
wide, but I'm not sure what I could do that would be less noisy. I'm
open to ideas!
Link: http://lkml.kernel.org/r/20180221021659.GA37073@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ Srivatsa: Backported to 4.9.y ]
Signed-off-by: Srivatsa S. Bhat <srivatsa@csail.mit.edu>
Reviewed-by: Srinidhi Rao <srinidhir@vmware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 58152ecbbcc6a0ce7fddd5bf5f6ee535834ece0c upstream.
In case skb in out_or_order_queue is the result of
multiple skbs coalescing, we would like to get a proper gso_segs
counter tracking, so that future tcp_drop() can report an accurate
number.
I chose to not implement this tracking for skbs in receive queue,
since they are not dropped, unless socket is disconnected.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd3599a0e142cd73edd3b6801068ac3f48ac771a upstream.
When we clone a range into a file we can end up dropping existing
extent maps (or trimming them) and replacing them with new ones if the
range to be cloned overlaps with a range in the destination inode.
When that happens we add the new extent maps to the list of modified
extents in the inode's extent map tree, so that a "fast" fsync (the flag
BTRFS_INODE_NEEDS_FULL_SYNC not set in the inode) will see the extent maps
and log corresponding extent items. However, at the end of range cloning
operation we do truncate all the pages in the affected range (in order to
ensure future reads will not get stale data). Sometimes this truncation
will release the corresponding extent maps besides the pages from the page
cache. If this happens, then a "fast" fsync operation will miss logging
some extent items, because it relies exclusively on the extent maps being
present in the inode's extent tree, leading to data loss/corruption if
the fsync ends up using the same transaction used by the clone operation
(that transaction was not committed in the meanwhile). An extent map is
released through the callback btrfs_invalidatepage(), which gets called by
truncate_inode_pages_range(), and it calls __btrfs_releasepage(). The
later ends up calling try_release_extent_mapping() which will release the
extent map if some conditions are met, like the file size being greater
than 16Mb, gfp flags allow blocking and the range not being locked (which
is the case during the clone operation) nor being the extent map flagged
as pinned (also the case for cloning).
The following example, turned into a test for fstests, reproduces the
issue:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0x18 9000K 6908K" /mnt/foo
$ xfs_io -f -c "pwrite -S 0x20 2572K 156K" /mnt/bar
$ xfs_io -c "fsync" /mnt/bar
# reflink destination offset corresponds to the size of file bar,
# 2728Kb minus 4Kb.
$ xfs_io -c ""reflink ${SCRATCH_MNT}/foo 0 2724K 15908K" /mnt/bar
$ xfs_io -c "fsync" /mnt/bar
$ md5sum /mnt/bar
95a95813a8c2abc9aa75a6c2914a077e /mnt/bar
<power fail>
$ mount /dev/sdb /mnt
$ md5sum /mnt/bar
207fd8d0b161be8a84b945f0df8d5f8d /mnt/bar
# digest should be 95a95813a8c2abc9aa75a6c2914a077e like before the
# power failure
In the above example, the destination offset of the clone operation
corresponds to the size of the "bar" file minus 4Kb. So during the clone
operation, the extent map covering the range from 2572Kb to 2728Kb gets
trimmed so that it ends at offset 2724Kb, and a new extent map covering
the range from 2724Kb to 11724Kb is created. So at the end of the clone
operation when we ask to truncate the pages in the range from 2724Kb to
2724Kb + 15908Kb, the page invalidation callback ends up removing the new
extent map (through try_release_extent_mapping()) when the page at offset
2724Kb is passed to that callback.
Fix this by setting the bit BTRFS_INODE_NEEDS_FULL_SYNC whenever an extent
map is removed at try_release_extent_mapping(), forcing the next fsync to
search for modified extents in the fs/subvolume tree instead of relying on
the presence of extent maps in memory. This way we can continue doing a
"fast" fsync if the destination range of a clone operation does not
overlap with an existing range or if any of the criteria necessary to
remove an extent map at try_release_extent_mapping() is not met (file
size not bigger then 16Mb or gfp flags do not allow blocking).
CC: stable@vger.kernel.org # 3.16+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9f9e3e0d4dd3338b3f3dde080789f71901e1e4ff upstream.
Make sure to call reinit_completion() before dma is started to avoid race
condition where reinit_completion() is called after complete() and before
wait_for_completion_timeout().
Signed-off-by: Esben Haabendal <eha@deif.com>
Fixes: ce1a78840ff7 ("i2c: imx: add DMA support for freescale i2c driver")
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Cc: stable@kernel.org
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 73c8d8945505acdcbae137c2e00a1232e0be709f upstream.
Maintain the tracing on/off setting of the ring_buffer when switching
to the trace buffer snapshot.
Taking a snapshot is done by swapping the backup ring buffer
(max_tr_buffer). But since the tracing on/off setting is defined
by the ring buffer, when swapping it, the tracing on/off setting
can also be changed. This causes a strange result like below:
/sys/kernel/debug/tracing # cat tracing_on
1
/sys/kernel/debug/tracing # echo 0 > tracing_on
/sys/kernel/debug/tracing # cat tracing_on
0
/sys/kernel/debug/tracing # echo 1 > snapshot
/sys/kernel/debug/tracing # cat tracing_on
1
/sys/kernel/debug/tracing # echo 1 > snapshot
/sys/kernel/debug/tracing # cat tracing_on
0
We don't touch tracing_on, but snapshot changes tracing_on
setting each time. This is an anomaly, because user doesn't know
that each "ring_buffer" stores its own tracing-enable state and
the snapshot is done by swapping ring buffers.
Link: http://lkml.kernel.org/r/153149929558.11274.11730609978254724394.stgit@devbox
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Hiraku Toyooka <hiraku.toyooka@cybertrust.co.jp>
Cc: stable@vger.kernel.org
Fixes: debdd57f5145 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
[ Updated commit log and comment in the code ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a0040c0145945d3bd203df8fa97f6dfa819f3f7d upstream.
Hyper-V instances support PCI pass-through which is implemented through PV
pci-hyperv driver. When a device is passed through, a new root PCI bus is
created in the guest. The bus sits on top of VMBus and has no associated
information in ACPI. acpi_pci_add_bus() in this case proceeds all the way
to acpi_evaluate_dsm(), which reports
ACPI: \: failed to evaluate _DSM (0x1001)
While acpi_pci_slot_enumerate() and acpiphp_enumerate_slots() are protected
against ACPI_HANDLE() being NULL and do nothing, acpi_evaluate_dsm() is not
and gives us the error. It seems the correct fix is to not do anything in
acpi_pci_add_bus() in such cases.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sinan Kaya <okaya@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>