IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
API:
- Make proc files report fips module name and version.
Algorithms:
- Move generic SHA1 code into lib/crypto.
- Implement Chinese Remainder Theorem for RSA.
- Remove blake2s.
- Add XCTR with x86/arm64 acceleration.
- Add POLYVAL with x86/arm64 acceleration.
- Add HCTR2.
- Add ARIA.
Drivers:
- Add support for new CCP/PSP device ID in ccp.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmLosAAACgkQxycdCkmx
i6dvgxAAzcw0cKMuq3dbQamzeVu1bDW8rPb7yHnpXal3ao5ewa15+hFjsKhdh/s3
cjM5Lu7Qx4lnqtsh2JVSU5o2SgEpptxXNfxAngcn46ld5EgV/G4DYNKuXsatMZ2A
erCzXqG9dDxJmREat+5XgVfD1RFVsglmEA/Nv4Rvn+9O4O6PfwRa8GyUzeKC+byG
qs/1JyiPqpyApgzCvlQFAdTF4PM7ruDtg3mnMy2EKAzqj4JUseXRi1i81vLVlfBL
T40WESG/CnOwIF5MROhziAtkJMS4Y4v2VQ2++1p0gwG6pDCnq4w7u9cKPXYfNgZK
fMVCxrNlxIH3W99VfVXbXwqDSN6qEZtQvhnliwj9aEbEltIoH+B02wNfS/BDsTec
im+5NCnNQ6olMPyL0yHrMKisKd+DwTrEfYT5H2kFhcdcYZncQ9C6el57kimnJRzp
4ymPRudCKm/8weWGTtmjFMi+PFP4LgvCoR+VMUd+gVe91F9ZMAO0K7b5z5FVDyDf
wmsNBvsEnTdm/r7YceVzGwdKQaP9sE5wq8iD/yySD1PjlmzZos1CtCrqAIT/v2RK
pQdZCIkT8qCB+Jm03eEd4pwjEDnbZdQmpKt4cTy0HWIeLJVG1sXPNpgwPCaBEV4U
g0nctILtypChlSDmuGhTCyuElfMg6CXt4cgSZJTBikT+QcyWOm4=
=rfWK
-----END PGP SIGNATURE-----
Merge tag 'v5.20-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Make proc files report fips module name and version
Algorithms:
- Move generic SHA1 code into lib/crypto
- Implement Chinese Remainder Theorem for RSA
- Remove blake2s
- Add XCTR with x86/arm64 acceleration
- Add POLYVAL with x86/arm64 acceleration
- Add HCTR2
- Add ARIA
Drivers:
- Add support for new CCP/PSP device ID in ccp"
* tag 'v5.20-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (89 commits)
crypto: tcrypt - Remove the static variable initialisations to NULL
crypto: arm64/poly1305 - fix a read out-of-bound
crypto: hisilicon/zip - Use the bitmap API to allocate bitmaps
crypto: hisilicon/sec - fix auth key size error
crypto: ccree - Remove a useless dma_supported() call
crypto: ccp - Add support for new CCP/PSP device ID
crypto: inside-secure - Add missing MODULE_DEVICE_TABLE for of
crypto: hisilicon/hpre - don't use GFP_KERNEL to alloc mem during softirq
crypto: testmgr - some more fixes to RSA test vectors
cyrpto: powerpc/aes - delete the rebundant word "block" in comments
hwrng: via - Fix comment typo
crypto: twofish - Fix comment typo
crypto: rmd160 - fix Kconfig "its" grammar
crypto: keembay-ocs-ecc - Drop if with an always false condition
Documentation: qat: rewrite description
Documentation: qat: Use code block for qat sysfs example
crypto: lib - add module license to libsha1
crypto: lib - make the sha1 library optional
crypto: lib - move lib/sha1.c into lib/crypto/
crypto: fips - make proc files report fips module name and version
...
Add helper function to determine if a given key-agreement protocol
primitive is supported.
Signed-off-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add helper function to determine if a given synchronous hash is supported.
Signed-off-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Initialise global and static variable to NULL is always unnecessary.
Remove the unnecessary initialisations.
Signed-off-by: Jason Wang <wangborong@cdjrlc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Two more fixes:
* some test vectors in commit 79e6e2f3f3 ("crypto: testmgr - populate
RSA CRT parameters in RSA test vectors") had misplaced commas, which
break the test and trigger KASAN warnings at least on x86-64
* pkcs1pad test vector did not have its CRT parameters
Fixes: 79e6e2f3f3 ("crypto: testmgr - populate RSA CRT parameters in RSA test vectors")
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The double `that' is duplicated in line 301, remove one.
Signed-off-by: Jason Wang <wangborong@cdjrlc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use the possessive "its" instead of the contraction "it's"
where appropriate.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since the Linux RNG no longer uses sha1_transform(), the SHA-1 library
is no longer needed unconditionally. Make it possible to build the
Linux kernel without the SHA-1 library by putting it behind a kconfig
option, and selecting this new option from the kconfig options that gate
the remaining users: CRYPTO_SHA1 for crypto/sha1_generic.c, BPF for
kernel/bpf/core.c, and IPV6 for net/ipv6/addrconf.c.
Unfortunately, since BPF is selected by NET, for now this can only make
a difference for kernels built without networking support.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
FIPS 140-3 introduced a requirement for the FIPS module to return
information about itself, specifically a name and a version. These
values must match the values reported on FIPS certificates.
This patch adds two files to read a name and a version from:
/proc/sys/crypto/fips_name
/proc/sys/crypto/fips_version
v2: removed redundant parentheses in config entries.
v3: move FIPS_MODULE_* defines to fips.c where they are used.
v4: return utsrelease.h inclusion
Signed-off-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
It contains ARIA ecb(aria), cbc(aria), cfb(aria), ctr(aria), and gcm(aria).
ecb testvector is from RFC standard.
cbc, cfb, and ctr testvectors are from KISA[1], who developed ARIA
algorithm.
gcm(aria) is from openssl test vector.
[1] https://seed.kisa.or.kr/kisa/kcmvp/EgovVerification.do (Korean)
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ARIA(RFC 5794) is a symmetric block cipher algorithm.
This algorithm is being used widely in South Korea as a standard cipher
algorithm.
This code is written based on the ARIA implementation of OpenSSL.
The OpenSSL code is based on the distributed source code[1] by KISA.
ARIA has three key sizes and corresponding rounds.
ARIA128: 12 rounds.
ARIA192: 14 rounds.
ARIA245: 16 rounds.
[1] https://seed.kisa.or.kr/kisa/Board/19/detailView.do (Korean)
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Changes from v1:
* replace some accidental spaces with tabs
In commit f145d411a6 ("crypto: rsa - implement Chinese Remainder Theorem
for faster private key operations") we have started to use the additional
primes and coefficients for RSA private key operations. However, these
additional parameters are not present (defined as 0 integers) in the RSA
test vectors.
Some parameters were borrowed from OpenSSL, so I was able to find the
source. I could not find the public source for 1 vector though, so had to
recover the parameters by implementing Appendix C from [1].
[1]: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
Fixes: f145d411a6 ("crypto: rsa - implement Chinese Remainder Theorem for faster private key operations")
Reported-by: Tasmiya Nalatwad <tasmiya@linux.vnet.ibm.com>
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Various accelerated software implementation Kconfig values for S390 were
mistakenly placed into drivers/crypto/Kconfig, even though they're
mainly just SIMD code and live in arch/s390/crypto/ like usual. This
gives them the very unusual dependency on CRYPTO_HW, which leads to
problems elsewhere.
This patch fixes the issue by moving the Kconfig values for non-hardware
drivers into the usual place in crypto/Kconfig.
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
According to PKCS#1 standard, the 'otherPrimeInfos' field contains
the information for the additional primes r_3, ..., r_u, in order.
It shall be omitted if the version is 0 and shall contain at least
one instance of OtherPrimeInfo if the version is 1, see:
https://www.rfc-editor.org/rfc/rfc3447#page-44
Replace the version number '1' with 0, otherwise, some drivers may
not pass the run-time tests.
Signed-off-by: lei he <helei.sig11@bytedance.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmKx3toACgkQ+7dXa6fL
C2sI+Q//cT5eOtYkkEZF8NR53sfjKKyrwNwPVYrYHniaaYnVtiq1ThyEQ9o0ws3f
wuvJu30qthm2rCz9zfTtyoqsv0k5ifGfCiR5fGeQEGgHEA4hGiF7XQoagDsVeR7j
dk7hF3veca5fUb2ZOG2v/gJ6jo19/afw5A4s4QnLK+74oiCvoIZyV5gM9LlQx/1f
U1YJXfdR7TFaIiNcZYVt6v7nWrpJ2fptIRvml+VGC86JXll6oct6dJ7yO2D5zzCm
XU0fgRDk4RJ+e1FkketQu2z1m+YjvJQyxrVH2kuXBmzt2Fl5Ds//+8OlPY6/PX2c
8+lkm0yEOMbfEi1Uht9h2Lfdfqx6BLgsi0BkaLWQJWRHjI8SNcNofVKfsl704wAI
fOzqUGTFAY4i+kM6koXSBr8bUuT3tTie+OygwlZPMQnSmr0NM5G1YMm7EjBUJVQk
TfCh81mEVmaKiQKBWatysxWyS/ZzCaMwFvlcNW1mvpLNIJ3kWcIeiGw54y49JWbW
2mR4cVMGf62KnAmFEmLuXp4wLh6HmXbdKFvPKrPo9lzatFeYFWfw5AVobOp+KpKY
lTpvv6Q6WPwk0wQ4QjyLjw7X52Q5qRmh6oWSUvYDxHxDIcKr0ivtin5aAk48+plv
t5hQOT7JYVwEW0B1Y6OUno0YbP+8lkack0BMEHVT3WjoqbzUyIY=
=bAcJ
-----END PGP SIGNATURE-----
Merge tag 'certs-20220621' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull signature checking selftest from David Howells:
"The signature checking code, as used by module signing, kexec, etc.,
is non-FIPS compliant as there is no selftest.
For a kernel to be FIPS-compliant, signature checking would have to be
tested before being used, and the box would need to panic if it's not
available (probably reasonable as simply disabling signature checking
would prevent you from loading any driver modules).
Deal with this by adding a minimal test.
This is split into two patches: the first moves load_certificate_list()
to the same place as the X.509 code to make it more accessible
internally; the second adds a selftest"
* tag 'certs-20220621' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
certs: Add FIPS selftests
certs: Move load_certificate_list() to be with the asymmetric keys code
Add some selftests for signature checking when FIPS mode is enabled. These
need to be done before we start actually using the signature checking for
things and must panic the kernel upon failure.
Note that the tests must not check the blacklist lest this provide a way to
prevent a kernel from booting by installing a hash of a test key in the
appropriate UEFI table.
Reported-by: Simo Sorce <simo@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Herbert Xu <herbert@gondor.apana.org.au>
cc: keyrings@vger.kernel.org
cc: linux-crypto@vger.kernel.org
Link: https://lore.kernel.org/r/165515742832.1554877.2073456606206090838.stgit@warthog.procyon.org.uk/
Move load_certificate_list(), which loads a series of binary X.509
certificates from a blob and inserts them as keys into a keyring, to be
with the asymmetric keys code that it drives.
This makes it easier to add FIPS selftest code in which we need to load up
a private keyring for the tests to use.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Herbert Xu <herbert@gondor.apana.org.au>
cc: keyrings@vger.kernel.org
cc: linux-crypto@vger.kernel.org
Link: https://lore.kernel.org/r/165515742145.1554877.13488098107542537203.stgit@warthog.procyon.org.uk/
This is used by code that doesn't need CONFIG_CRYPTO, so move this into
lib/ with a Kconfig option so that it can be selected by whatever needs
it.
This fixes a linker error Zheng pointed out when
CRYPTO_MANAGER_DISABLE_TESTS!=y and CRYPTO=m:
lib/crypto/curve25519-selftest.o: In function `curve25519_selftest':
curve25519-selftest.c:(.init.text+0x60): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0xec): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0x114): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0x154): undefined reference to `__crypto_memneq'
Reported-by: Zheng Bin <zhengbin13@huawei.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: stable@vger.kernel.org
Fixes: aa127963f1 ("crypto: lib/curve25519 - re-add selftests")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
BLAKE2s has no currently known use as an shash. Just remove all of this
unnecessary plumbing. Removing this shash was something we talked about
back when we were making BLAKE2s a built-in, but I simply never got
around to doing it. So this completes that project.
Importantly, this fixs a bug in which the lib code depends on
crypto_simd_disabled_for_test, causing linker errors.
Also add more alignment tests to the selftests and compare SIMD and
non-SIMD compression functions, to make up for what we lose from
testmgr.c.
Reported-by: gaochao <gaochao49@huawei.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 6048fdcc5f ("lib/crypto: blake2s: include as built-in")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is used by code that doesn't need CONFIG_CRYPTO, so move this into
lib/ with a Kconfig option so that it can be selected by whatever needs
it.
This fixes a linker error Zheng pointed out when
CRYPTO_MANAGER_DISABLE_TESTS!=y and CRYPTO=m:
lib/crypto/curve25519-selftest.o: In function `curve25519_selftest':
curve25519-selftest.c:(.init.text+0x60): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0xec): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0x114): undefined reference to `__crypto_memneq'
curve25519-selftest.c:(.init.text+0x154): undefined reference to `__crypto_memneq'
Reported-by: Zheng Bin <zhengbin13@huawei.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: stable@vger.kernel.org
Fixes: aa127963f1 ("crypto: lib/curve25519 - re-add selftests")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add hardware accelerated version of POLYVAL for x86-64 CPUs with
PCLMULQDQ support.
This implementation is accelerated using PCLMULQDQ instructions to
perform the finite field computations. For added efficiency, 8 blocks
of the message are processed simultaneously by precomputing the first
8 powers of the key.
Schoolbook multiplication is used instead of Karatsuba multiplication
because it was found to be slightly faster on x86-64 machines.
Montgomery reduction must be used instead of Barrett reduction due to
the difference in modulus between POLYVAL's field and other finite
fields.
More information on POLYVAL can be found in the HCTR2 paper:
"Length-preserving encryption with HCTR2":
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add hardware accelerated version of XCTR for x86-64 CPUs with AESNI
support.
More information on XCTR can be found in the HCTR2 paper:
"Length-preserving encryption with HCTR2":
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for HCTR2 as a template. HCTR2 is a length-preserving
encryption mode that is efficient on processors with instructions to
accelerate AES and carryless multiplication, e.g. x86 processors with
AES-NI and CLMUL, and ARM processors with the ARMv8 Crypto Extensions.
As a length-preserving encryption mode, HCTR2 is suitable for
applications such as storage encryption where ciphertext expansion is
not possible, and thus authenticated encryption cannot be used.
Currently, such applications usually use XTS, or in some cases Adiantum.
XTS has the disadvantage that it is a narrow-block mode: a bitflip will
only change 16 bytes in the resulting ciphertext or plaintext. This
reveals more information to an attacker than necessary.
HCTR2 is a wide-block mode, so it provides a stronger security property:
a bitflip will change the entire message. HCTR2 is somewhat similar to
Adiantum, which is also a wide-block mode. However, HCTR2 is designed
to take advantage of existing crypto instructions, while Adiantum
targets devices without such hardware support. Adiantum is also
designed with longer messages in mind, while HCTR2 is designed to be
efficient even on short messages.
HCTR2 requires POLYVAL and XCTR as components. More information on
HCTR2 can be found here: "Length-preserving encryption with HCTR2":
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for POLYVAL, an ε-Δ-universal hash function similar to
GHASH. This patch only uses POLYVAL as a component to implement HCTR2
mode. It should be noted that POLYVAL was originally specified for use
in AES-GCM-SIV (RFC 8452), but the kernel does not currently support
this mode.
POLYVAL is implemented as an shash algorithm. The implementation is
modified from ghash-generic.c.
For more information on POLYVAL see:
Length-preserving encryption with HCTR2:
https://eprint.iacr.org/2021/1441.pdf
AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption:
https://datatracker.ietf.org/doc/html/rfc8452
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a generic implementation of XCTR mode as a template. XCTR is a
blockcipher mode similar to CTR mode. XCTR uses XORs and little-endian
addition rather than big-endian arithmetic which has two advantages: It
is slightly faster on little-endian CPUs and it is less likely to be
implemented incorrect since integer overflows are not possible on
practical input sizes. XCTR is used as a component to implement HCTR2.
More information on XCTR mode can be found in the HCTR2 paper:
https://eprint.iacr.org/2021/1441.pdf
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
API:
- Test in-place en/decryption with two sglists in testmgr.
- Fix process vs. softirq race in cryptd.
Algorithms:
- Add arm64 acceleration for sm4.
- Add s390 acceleration for chacha20.
Drivers:
- Add polarfire soc hwrng support in mpsf.
- Add support for TI SoC AM62x in sa2ul.
- Add support for ATSHA204 cryptochip in atmel-sha204a.
- Add support for PRNG in caam.
- Restore support for storage encryption in qat.
- Restore support for storage encryption in hisilicon/sec.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmKQs9cACgkQxycdCkmx
i6deOA//bwX9JvxI+SiwEK/1u5GX9VHtCpAa1rMOqhfl8UrBfo0516M/CeUDjW0J
t1yoq0JUoIfYrEbSJqxXTnfG6+fJ1WsQtT3jd1/64nrwVk+w6OdMBTt48B9GF0R5
ZjWG7zmjKZcspZqSwib/gxbehJ+IX7dYdUsrlUQq3q64qpQEqxTgqsfyiY3LP24N
lng6weLudrFA5Xa8pVCmrCnOH3J7kPGA4iGqTGNV8Qx3ud9CUWSc8BT4VdqU8t2f
opaYL3s9oKc+xtS4yrOnfV+Wa/A8K6AuBYeODFtLe41FSpGYgaPslcGqEGwAHNpL
0HjqQdC+4auimGJxyVcef7QVMCpGqIfKqYu7sYXuNROylPjqMNa/DRL64csaDxDn
WiheV9RSc1zfchxHC4IjnfwE7nNDVYnYrZ1awyvQ9xvAoh7bldiEe6k/UlWi3L0F
nejJRFPXOSZ2GfJjrVNsv5lSWZCNWRBzOehN4D6EMJjEfM/G3/30Q0qwif39QWVj
r1gYQWmZuCa9mL7enga1XavebQ6cLXggR4sTxEmV7Sta6AJ+RqNqOnrPecEF5Avr
eSYQLxor+jvhaepcKhyDOF4dKGGJIWaEi00GC83yZ8hApVbfWoVh8Nfxmp8TUEzH
UUJFvrFLNTBOwRoz3fIT57vaFxksQREZwlcQ77xVAeg8S+BOB4o=
=oVRe
-----END PGP SIGNATURE-----
Merge tag 'v5.19-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Test in-place en/decryption with two sglists in testmgr
- Fix process vs softirq race in cryptd
Algorithms:
- Add arm64 acceleration for sm4
- Add s390 acceleration for chacha20
Drivers:
- Add polarfire soc hwrng support in mpsf
- Add support for TI SoC AM62x in sa2ul
- Add support for ATSHA204 cryptochip in atmel-sha204a
- Add support for PRNG in caam
- Restore support for storage encryption in qat
- Restore support for storage encryption in hisilicon/sec"
* tag 'v5.19-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (116 commits)
hwrng: omap3-rom - fix using wrong clk_disable() in omap_rom_rng_runtime_resume()
crypto: hisilicon/sec - delete the flag CRYPTO_ALG_ALLOCATES_MEMORY
crypto: qat - add support for 401xx devices
crypto: qat - re-enable registration of algorithms
crypto: qat - honor CRYPTO_TFM_REQ_MAY_SLEEP flag
crypto: qat - add param check for DH
crypto: qat - add param check for RSA
crypto: qat - remove dma_free_coherent() for DH
crypto: qat - remove dma_free_coherent() for RSA
crypto: qat - fix memory leak in RSA
crypto: qat - add backlog mechanism
crypto: qat - refactor submission logic
crypto: qat - use pre-allocated buffers in datapath
crypto: qat - set to zero DH parameters before free
crypto: s390 - add crypto library interface for ChaCha20
crypto: talitos - Uniform coding style with defined variable
crypto: octeontx2 - simplify the return expression of otx2_cpt_aead_cbc_aes_sha_setkey()
crypto: cryptd - Protect per-CPU resource by disabling BH.
crypto: sun8i-ce - do not fallback if cryptlen is less than sg length
crypto: sun8i-ce - rework debugging
...
Factor out the blacklist hash creation with the get_raw_hash() helper.
This also centralize the "tbs" and "bin" prefixes and make them private,
which help to manage them consistently.
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com>
Link: https://lore.kernel.org/r/20210712170313.884724-5-mic@digikod.net
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
The access to cryptd_queue::cpu_queue is synchronized by disabling
preemption in cryptd_enqueue_request() and disabling BH in
cryptd_queue_worker(). This implies that access is allowed from BH.
If cryptd_enqueue_request() is invoked from preemptible context _and_
soft interrupt then this can lead to list corruption since
cryptd_enqueue_request() is not protected against access from
soft interrupt.
Replace get_cpu() in cryptd_enqueue_request() with local_bh_disable()
to ensure BH is always disabled.
Remove preempt_disable() from cryptd_queue_worker() since it is not
needed because local_bh_disable() ensures synchronisation.
Fixes: 254eff7714 ("crypto: cryptd - Per-CPU thread implementation...")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As was established in the thread
https://lore.kernel.org/linux-crypto/20220223080400.139367-1-gilad@benyossef.com/T/#u,
many crypto API users doing in-place en/decryption don't use the same
scatterlist pointers for the source and destination, but rather use
separate scatterlists that point to the same memory. This case isn't
tested by the self-tests, resulting in bugs.
This is the natural usage of the crypto API in some cases, so requiring
API users to avoid this usage is not reasonable.
Therefore, update the self-tests to start testing this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the description of @need_pump in crypto_transfer_request() kernel-doc
comment to remove warning found by running scripts/kernel-doc, which is
caused by using 'make W=1'.
crypto/crypto_engine.c:260: warning: Function parameter or member
'need_pump' not described in 'crypto_transfer_request'
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Export the constant arrays fk, ck, sbox of the SM4 algorithm, and
add the 'crypto_sm4_' prefix, where sbox is used in the SM4 NEON
implementation for the tbl/tbx instruction to replace the S-BOX,
and the fk, ck arrays are used in the SM4 CE implementation. Use
the sm4ekey instruction to speed up key expansion operations.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The lib/crypto libraries live in lib because they are used by various
drivers of the kernel. In contrast, the various helper functions in
crypto are there because they're used exclusively by the crypto API. The
SM3 and SM4 helper functions were erroniously moved into lib/crypto/
instead of crypto/, even though there are no in-kernel users outside of
the crypto API of those functions. This commit moves them into crypto/.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI92rYQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpkAJD/9PvRN61YnNRjjAiHgslwMc2fy9lkxwYF4j
+DYqFwnhHgiADO/3Y3wsqHxmDJrhq7vxHM3btxUzkKxg2mVoOI/Bm6rhqEPhNkok
nlpMWHXR+9Jvl85IO5jHg9GHZ/PZfaDMn9naVXVpHVgycdJ06tr7T1tMtoAtsEzA
atEkwpc+r8E2NlxkcTPAQhJzmkrHVdxgtWxlKL/RkmivmBXu3/fj2pLHYyPcvqm1
8LxDn1DIoUHlpce10Qf7r+hf1sXiKNv+nltl9aWxdoSOM8OYHjQcp4K1qe+VYVzC
XbXqg3ZWaGKSnieyawN2yXtFkZSzgyCy+TCTHnf8NwGfgYYk86twh2clP5t6lE58
/TC8CmrBHIy8+79BvpSlTh7LlGip0snY3IVbZhR5EHJV3nDVtg/vdDwiSSQ6VdCM
FM3tkY7KvZDb42IvKzD/NKmAzKv/XMri1MmQB2f/VvbwN3OK5EQOJT1DYFdiohUQ
1YIb81HiGvlogB783HFXXAcHu/qQNZGDK4EDjNFHThPtmYqtLuOixIo0KG6BJnuV
sl/YhtDSe3FRnvcDZ4xki9CpBqHFG7vK85H05NXXdC1ddBdQ+N+yLS1/jONUlkGc
vJphI6FPr+DcPX8o/QuapQpNfg+HXY/h4u83jFJ8VRAyraxSarZ/19at0DM2wdvR
IhKlNfOHlA==
=RAVX
-----END PGP SIGNATURE-----
Merge tag 'for-5.18/64bit-pi-2022-03-25' of git://git.kernel.dk/linux-block
Pull block layer 64-bit data integrity support from Jens Axboe:
"This adds support for 64-bit data integrity in the block layer and in
NVMe"
* tag 'for-5.18/64bit-pi-2022-03-25' of git://git.kernel.dk/linux-block:
crypto: fix crc64 testmgr digest byte order
nvme: add support for enhanced metadata
block: add pi for extended integrity
crypto: add rocksoft 64b crc guard tag framework
lib: add rocksoft model crc64
linux/kernel: introduce lower_48_bits function
asm-generic: introduce be48 unaligned accessors
nvme: allow integrity on extended metadata formats
block: support pi with extended metadata
The result is set in little endian, so the expected digest needs to
be consistent for big endian machines.
Fixes: f3813f4b28 ("crypto: add rocksoft 64b crc guard tag framework")
Reported-by: Vasily Gorbik <gor@linux.ibm.com>
Reported-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20220322142107.4581-1-kbusch@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is insecure to allow arbitrary hash algorithms and signature
encodings to be used with arbitrary signature algorithms. Notably,
ECDSA, ECRDSA, and SM2 all sign/verify raw hash values and don't
disambiguate between different hash algorithms like RSA PKCS#1 v1.5
padding does. Therefore, they need to be restricted to certain sets of
hash algorithms (ideally just one, but in practice small sets are used).
Additionally, the encoding is an integral part of modern signature
algorithms, and is not supposed to vary.
Therefore, tighten the checks of hash_algo and encoding done by
software_key_determine_akcipher().
Also rearrange the parameters to software_key_determine_akcipher() to
put the public_key first, as this is the most important parameter and it
often determines everything else.
Fixes: 299f561a66 ("x509: Add support for parsing x509 certs with ECDSA keys")
Fixes: 2155256396 ("X.509: support OSCCA SM2-with-SM3 certificate verification")
Fixes: 0d7a78643f ("crypto: ecrdsa - add EC-RDSA (GOST 34.10) algorithm")
Cc: stable@vger.kernel.org
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Tested-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Most callers of public_key_verify_signature(), including most indirect
callers via verify_signature() as well as pkcs7_verify_sig_chain(),
don't check that public_key_signature::pkey_algo matches
public_key::pkey_algo. These should always match. However, a malicious
signature could intentionally declare an unintended algorithm. It is
essential that such signatures be rejected outright, or that the
algorithm of the *key* be used -- not the algorithm of the signature as
that would allow attackers to choose the algorithm used.
Currently, public_key_verify_signature() correctly uses the key's
algorithm when deciding which akcipher to allocate. That's good.
However, it uses the signature's algorithm when deciding whether to do
the first step of SM2, which is incorrect. Also, v4.19 and older
kernels used the signature's algorithm for the entire process.
Prevent such errors by making public_key_verify_signature() enforce that
the signature's algorithm (if given) matches the key's algorithm.
Also remove two checks of this done by callers, which are now redundant.
Cc: stable@vger.kernel.org
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Tested-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
asym_tpm keys are tied to TPM v1.2, which uses outdated crypto and has
been deprecated in favor of TPM v2.0 for over 7 years. A very quick
look at this code also immediately found some memory safety bugs
(https://lore.kernel.org/r/20220113235440.90439-2-ebiggers@kernel.org).
Note that this code is reachable by unprivileged users.
According to Jarkko (one of the keyrings subsystem maintainers), this
code has no practical use cases, and he isn't willing to maintain it
(https://lore.kernel.org/r/YfFZPbKkgYJGWu1Q@iki.fi).
Therefore, let's remove it.
Note that this feature didn't have any documentation or tests, so we
don't need to worry about removing those.
Cc: David Howells <dhowells@redhat.com>
Cc: Denis Kenzior <denkenz@gmail.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
The X.509 parser always sets cert->sig->pkey_algo and
cert->sig->hash_algo on success, since x509_note_sig_algo() is a
mandatory action in the X.509 ASN.1 grammar, and it returns an error if
the signature's algorithm is unknown. Thus, remove the dead code which
handled these fields being NULL.
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
The X.509 parser always sets cert->pub->pkey_algo on success, since
x509_extract_key_data() is a mandatory action in the X.509 ASN.1
grammar, and it returns an error if the algorithm is unknown. Thus,
remove the dead code which handled this field being NULL. This results
in the ->unsupported_key flag never being set, so remove that too.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Remove unused fields from struct x509_parse_context.
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
An X.509 certificate has two, potentially different public key
algorithms: the one used by the certificate's key, and the one that was
used to sign the certificate. Some of the naming made it unclear which
algorithm was meant. Rename things appropriately:
- x509_note_pkey_algo() => x509_note_sig_algo()
- algo_oid => sig_algo
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Hardware specific features may be able to calculate a crc64, so provide
a framework for drivers to register their implementation. If nothing is
registered, fallback to the generic table lookup implementation. The
implementation is modeled after the crct10dif equivalent.
Signed-off-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20220303201312.3255347-7-kbusch@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dereferencing a misaligned pointer is undefined behavior in C, and may
result in codegen on architectures such as ARM that trigger alignments
traps and expensive fixups in software.
Instead, use the get_aligned()/put_aligned() accessors, which are cheap
or even completely free when CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y.
In the converse case, the prior alignment checks ensure that the casts
are safe, and so no unaligned accessors are necessary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For spdx
/* */ for *.h, // for *.c
Space before spdx tag
Replacements
paramenters to parameters
aymmetric to asymmetric
sigature to signature
boudary to boundary
compliled to compiled
eninges to engines
explicity to explicitly
Signed-off-by: Tom Rix <trix@redhat.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As the ->q in struct dh_ctx gets never set anywhere, the code in
dh_is_pubkey_valid() for doing the full public key validation in accordance
to SP800-56Arev3 is effectively dead.
However, for safe-prime groups Q = (P - 1)/2 by definition and
as the safe-prime groups are the only possible groups in FIPS mode (via
those ffdheXYZ() templates), this enables dh_is_pubkey_valid() to calculate
Q on the fly for these.
Implement this.
With this change, the last code accessing struct dh_ctx's ->q is now gone.
Remove this member from struct dh_ctx.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SP800-56Arev3, sec. 5.5.2 ("Assurance of Domain-Parameter Validity")
asserts that an implementation needs to verify domain paramtere validity,
which boils down to either
- the domain parameters corresponding to some known safe-prime group
explicitly listed to be approved in the document or
- for parameters conforming to a "FIPS 186-type parameter-size set",
that the implementation needs to perform an explicit domain parameter
verification, which would require access to the "seed" and "counter"
values used in their generation.
The latter is not easily feasible and moreover, SP800-56Arev3 states that
safe-prime groups are preferred and that FIPS 186-type parameter sets
should only be supported for backward compatibility, if it all.
Mark "dh" as not fips_allowed in testmgr. Note that the safe-prime
ffdheXYZ(dh) wrappers are not affected by this change: as these enforce
some approved safe-prime group each, their usage is still allowed in FIPS
mode.
This change will effectively render the keyctl(KEYCTL_DH_COMPUTE) syscall
unusable in FIPS mode, but it has been brought up that this might even be
a good thing ([1]).
[1] https://lore.kernel.org/r/20211217055227.GA20698@gondor.apana.org.au
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently we do not distinguish between algorithms that fail on
the self-test vs. those which are disabled in FIPS mode (not allowed).
Both are marked as having failed the self-test.
Recently the need arose to allow the usage of certain algorithms only
as arguments to specific template instantiations in FIPS mode. For
example, standalone "dh" must be blocked, but e.g. "ffdhe2048(dh)" is
allowed. Other potential use cases include "cbcmac(aes)", which must
only be used with ccm(), or "ghash", which must be used only for
gcm().
This patch allows this scenario by adding a new flag FIPS_INTERNAL to
indicate those algorithms that are not FIPS-allowed. They can then be
used as template arguments only, i.e. when looked up via
crypto_grab_spawn() to be more specific. The FIPS_INTERNAL bit gets
propagated upwards recursively into the surrounding template
instances, until the construction eventually matches an explicit
testmgr entry with ->fips_allowed being set, if any.
The behaviour to skip !->fips_allowed self-test executions in FIPS
mode will be retained. Note that this effectively means that
FIPS_INTERNAL algorithms are handled very similarly to the INTERNAL
ones in this regard. It is expected that the FIPS_INTERNAL algorithms
will receive sufficient testing when the larger constructions they're
a part of, if any, get exercised by testmgr.
Note that as a side-effect of this patch algorithms which are not
FIPS-allowed will now return ENOENT instead of ELIBBAD. Hopefully
this is not an issue as some people were relying on this already.
Link: https://lore.kernel.org/r/YeEVSaMEVJb3cQkq@gondor.apana.org.au
Originally-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Ephemeral key generation can be requested from any of the ffdheXYZ(dh)
variants' common ->set_secret() by passing it an (encoded) struct dh
with the key parameter being unset, i.e. with ->key_size == 0. As the
whole purpose of the ffdheXYZ(dh) templates is to fill in the group
parameters as appropriate, they expect ->p and ->g to be unset in any
input struct dh as well. This means that a user would have to encode an
all-zeroes struct dh instance via crypto_dh_encode_key() when requesting
ephemeral key generation from a ffdheXYZ(dh) instance, which is kind of
pointless.
Make dh_safe_prime_set_secret() to decode a struct dh from the supplied
buffer only if the latter is non-NULL and initialize it with all zeroes
otherwise.
That is, it is now possible to call
crypto_kpp_set_secret(tfm, NULL, 0);
on any ffdheXYZ(dh) tfm for requesting ephemeral key generation.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the ffdheXYZ(dh) templates support ephemeral key generation, add
->keygen = 1 TVs for each of them to the testmgr.c.
In order to facilitate string merging by the compiler, set party B's secret
and public keys to the ones specified for party A in the respective
existing known answer test. With GCC 7.5 on x86_64, this leads to an
increase of testmgr.o size by less than half a kB.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The support for NVME in-band authentication currently in the works ([1])
needs to generate ephemeral DH keys for use with the RFC 7919 safe-prime
FFDHE groups.
In analogy to ECDH and its ecc_gen_privkey(), implement a
dh_safe_prime_gen_privkey() and invoke it from the ffdheXYZ(dh) templates'
common ->set_secret(), i.e. dh_safe_prime_set_secret(), in case the input
->key_size is zero.
As the RFC 7919 FFDHE groups are classified as approved safe-prime groups
by SP800-56Arev3, it's worthwhile to make the new
dh_safe_prime_gen_privkey() to follow the approach specified in
SP800-56Arev3, sec. 5.6.1.1.3 ("Key-Pair Generation Using Extra Random
Bits") in order to achieve conformance.
SP800-56Arev3 specifies a lower as well as an upper bound on the generated
key's length:
- it must be >= two times the maximum supported security strength of
the group in question and
- it must be <= the length of the domain parameter Q.
For any safe-prime group Q = (P - 1)/2 by definition and the individual
maximum supported security strengths as specified by SP800-56Arev3 have
been made available as part of the FFDHE dh_safe_prime definitions
introduced with a previous patch. Make dh_safe_prime_gen_privkey() pick
twice the maximum supported strength rounded up to the next power of two
for the output key size. This choice respects both, the lower and upper
bounds given by SP800-90Arev3 for any of the approved safe-prime groups and
is also in line with the NVME base spec 2.0, which requires the key size to
be >= 256bits.
[1] https://lore.kernel.org/r/20211202152358.60116-1-hare@suse.de
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add known answer tests for the ffdhe2048(dh), ffdhe3072(dh), ffdhe4096(dh),
ffdhe6144(dh) and ffdhe8192(dh) templates introduced with the previous
patch to the testmgr. All TVs have been generated with OpenSSL.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Current work on NVME in-band authentication support ([1]) needs to invoke
DH with the FFDHE safe-prime group parameters specified in RFC 7919.
Introduce a new CRYPTO_DH_RFC7919_GROUPS Kconfig option. If enabled, make
dh_generic register a couple of ffdheXYZ(dh) templates, one for each group:
ffdhe2048(dh), ffdhe3072(dh), ffdhe4096(dh), ffdhe6144(dh) and
ffdhe8192(dh). Their respective ->set_secret() expects a (serialized)
struct dh, just like the underlying "dh" implementation does, but with the
P and G values unset so that the safe-prime constants for the given group
can be filled in by the wrapping template.
Internally, a struct dh_safe_prime instance is being defined for each of
the ffdheXYZ(dh) templates as appropriate. In order to prepare for future
key generation, fill in the maximum security strength values as specified
by SP800-56Arev3 on the go, even though they're not needed at this point
yet.
Implement the respective ffdheXYZ(dh) crypto_template's ->create() by
simply forwarding any calls to the __dh_safe_prime_create() helper
introduced with the previous commit, passing the associated dh_safe_prime
in addition to the received ->create() arguments.
[1] https://lore.kernel.org/r/20211202152358.60116-1-hare@suse.de
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Recent work on NVME in-band authentication support ([1]) needs to invoke
the "dh" KPP with the FFDHE safe-prime group parameters as specified in
RFC 7919 and generate ephemeral keys suitable for the respective group. By
coincidence, the requirements from NIST SP800-56Arev3,
sec. 5.5.2 ("Assurance of Domain-Parameter Validity") basically boil down
to disallowing any group parameters not among the approved safe-prime
groups specified in either RFC 7919 or RFC 3526 in FIPS mode. Furthermore,
SP800-56Arev3 specifies the respective security strength for each of the
approved safe-prime groups, which has a direct impact on the minimum key
lengths.
In this light, it's desirable to introduce built-in support for the
RFC 7919 safe-prime groups to the kernel's DH implementation, provide a
SP800-56Arev3 conforming key generation primitive for those and render
non-approved group parameters unusable in FIPS mode on the way.
As suggested ([2]) in the course of discussion to previous iterations of
this patchset, the built-in support for ffdhe groups would be best made
available in the form of templates wrapping the existing "dh"
implementation, one for each group specified by RFC 7919: ffdhe2048(dh),
ffdhe3072(dh), ffdhe4096(dh), ffdhe6144(dh) and ffdhe8192(dh). As these
templates differ only in the safe-prime constants they'd configure the
inner "dh" transforms with, they can share almost all of their
"dh"-wrapping template implementation code.
Introduce this common code to dh_generic. The actual dump of the RFC 7919
safe-prime constants will be deferred to the next patch in order to
facilitate review. The ephemeral key generation primitive mentioned above
likewise deserves a patch on its own, as does the mechanism by which
unapproved groups are rendered unusable in FIPS mode.
Define a struct dh_safe_prime container for specifying the individual
templates' associated safe-prime group constants. All ffdheXYZ(dh) template
instances will store a pointer to such a dh_safe_prime in their context
areas each. Implement the common __dh_safe_prime_create() template
instantiation helper. The intention is that the individual ffdheXYZ(dh)
crypto_templates' ->create() implementations will simply forward any calls
to __dh_safe_prime_create(), passing a suitable dh_safe_prime in addition
to the received ->create() arguments. __dh_safe_prime_create() would then
create and register a kpp_instance as appropriate, storing the given
dh_safe_prime pointer alongside a crypto_kpp_spawn for the inner "dh"
kpp_alg in the context area.
As the ffdheXYZ(dh) kpp_instances are supposed to act as proxies to the
inner "dh" kpp_alg, make each of their associated crypto_kpp transforms to
in turn own an inner "dh" transform, a pointer to which gets stored in the
context area. Setup and teardown are getting handled from the outer
->init_tfm() and ->exit_tfm() respectively.
In order to achieve the overall goal and let the ffdheXYZ(dh) kpp_instances
configure the inner "dh" transforms with the respective group parameters,
make their common ->set_secret(), the new dh_safe_prime_set_secret(), fill
in the P and G values before forwarding the call to the inner "dh"'s
->set_secret(). Note that the outer ->set_secret() can obtain the P value
associated with the given ffdheXYZ(dh) kpp_instance by means of the
dh_safe_prime referenced from the latter's context. The value of G OTOH
always equals constant 2 for the safe-prime groups.
Finally, make the remaining two kpp_alg primitives both operating on
kpp_requests, i.e. ->generate_public_key() and ->compute_shared_secret(),
to merely forward any request to the inner "dh" implementation. However, a
kpp_request instance received from the outside cannot get simply passed
on as-is, because its associated transform (crypto_kpp_reqtfm()) will have
been set to the outer ffdheXYZ(dh) one. In order to handle this, reserve
some space in the outer ffdheXYZ(dh) kpp_requests' context areas for in
turn storing an inner kpp_request suitable for "dh" each. Make the outer
->generate_public_key() and ->compute_shared_secret() respectively to setup
this inner kpp_request by means of the new dh_safe_prime_prepare_dh_req()
helper before handing it over to the "dh" implementation for further
processing. dh_safe_prime_prepare_dh_req() basically copies the outer
kpp_request received from the outside over to the inner one, but installs
the inner transform and its own ->complete() proxy callback therein. This
completion callback, the new dh_safe_prime_complete_req(), doesn't do
anything beyond completing the outer request. Note that there exist some
examples in crypto/, which would simply install the completion handler
from the outer request at the inner one in similar setups, e.g. seqiv.
However, this would mean that the user-provided completion handler won't
get called with the address of the outer kpp_request initially submitted
and the handler might not be prepared for this. Users could certainly work
around this by setting the callback ->data properly, but IMO it's cleaner
this way. Furthermore, it might make sense to extend
dh_safe_prime_complete_req() in the future and move e.g. those
post-computation FIPS checks from the generic "dh" implementation to the
ffdheXYZ(dh) templates.
[1] https://lore.kernel.org/r/20211202152358.60116-1-hare@suse.de
[2] https://lore.kernel.org/r/20211217055227.GA20698@gondor.apana.org.au
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A subsequent commit will introduce "dh" wrapping templates of the form
"ffdhe2048(dh)", "ffdhe3072(dh)" and so on in order to provide built-in
support for the well-known safe-prime ffdhe group parameters specified in
RFC 7919.
Those templates' ->set_secret() will wrap the inner "dh" implementation's
->set_secret() and set the ->p and ->g group parameters as appropriate on
the way inwards. More specifically,
- A ffdheXYZ(dh) user would call crypto_dh_encode() on a struct dh instance
having ->p == ->g == NULL as well as ->p_size == ->g_size == 0 and pass
the resulting buffer to the outer ->set_secret().
- This outer ->set_secret() would then decode the struct dh via
crypto_dh_decode_key(), set ->p, ->g, ->p_size as well as ->g_size as
appropriate for the group in question and encode the struct dh again
before passing it further down to the inner "dh"'s ->set_secret().
The problem is that crypto_dh_decode_key() implements some basic checks
which would reject parameter sets with ->p_size == 0 and thus, the ffdheXYZ
templates' ->set_secret() cannot use it as-is for decoding the passed
buffer. As the inner "dh"'s ->set_secret() will eventually conduct said
checks on the final parameter set anyway, the outer ->set_secret() really
only needs the decoding functionality.
Split out the pure struct dh decoding part from crypto_dh_decode_key() into
the new __crypto_dh_decode_key().
__crypto_dh_decode_key() gets defined in crypto/dh_helper.c, but will have
to get called from crypto/dh.c and thus, its declaration must be somehow
made available to the latter. Strictly speaking, __crypto_dh_decode_key()
is internal to the dh_generic module, yet it would be a bit over the top
to introduce a new header like e.g. include/crypto/internal/dh.h
containing just a single prototype. Add the __crypto_dh_decode_key()
declaration to include/crypto/dh.h instead.
Provide a proper kernel-doc annotation, even though
__crypto_dh_decode_key() is purposedly not on the function list specified
in Documentation/crypto/api-kpp.rst.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The only current user of the DH KPP algorithm, the
keyctl(KEYCTL_DH_COMPUTE) syscall, doesn't set the domain parameter ->q
in struct dh. Remove it and any associated (de)serialization code in
crypto_dh_encode_key() and crypto_dh_decode_key. Adjust the encoded
->secret values in testmgr's DH test vectors accordingly.
Note that the dh-generic implementation would have initialized its
struct dh_ctx's ->q from the decoded struct dh's ->q, if present. If this
struct dh_ctx's ->q would ever have been non-NULL, it would have enabled a
full key validation as specified in NIST SP800-56A in dh_is_pubkey_valid().
However, as outlined above, ->q is always NULL in practice and the full key
validation code is effectively dead. A later patch will make
dh_is_pubkey_valid() to calculate Q from P on the fly, if possible, so
don't remove struct dh_ctx's ->q now, but leave it there until that has
happened.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The upcoming support for the RFC 7919 ffdhe group parameters will be
made available in the form of templates like "ffdhe2048(dh)",
"ffdhe3072(dh)" and so on. Template instantiations thereof would wrap the
inner "dh" kpp_alg and also provide kpp_alg services to the outside again.
The primitves needed for providing kpp_alg services from template instances
have been introduced with the previous patch. Continue this work now and
implement everything needed for enabling template instances to make use
of inner KPP algorithms like "dh".
More specifically, define a struct crypto_kpp_spawn in close analogy to
crypto_skcipher_spawn, crypto_shash_spawn and alike. Implement a
crypto_grab_kpp() and crypto_drop_kpp() pair for binding such a spawn to
some inner kpp_alg and for releasing it respectively. Template
implementations can instantiate transforms from the underlying kpp_alg by
means of the new crypto_spawn_kpp(). Finally, provide the
crypto_spawn_kpp_alg() helper for accessing a spawn's underlying kpp_alg
during template instantiation.
Annotate everything with proper kernel-doc comments, even though
include/crypto/internal/kpp.h is not considered for the generated docs.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The upcoming support for the RFC 7919 ffdhe group parameters will be
made available in the form of templates like "ffdhe2048(dh)",
"ffdhe3072(dh)" and so on. Template instantiations thereof would wrap the
inner "dh" kpp_alg and also provide kpp_alg services to the outside again.
Furthermore, it might be perhaps be desirable to provide KDF templates in
the future, which would similarly wrap an inner kpp_alg and present
themselves to the outside as another kpp_alg, transforming the shared
secret on its way out.
Introduce the bits needed for supporting KPP template instances. Everything
related to inner kpp_alg spawns potentially being held by such template
instances will be deferred to a subsequent patch in order to facilitate
review.
Define struct struct kpp_instance in close analogy to the already existing
skcipher_instance, shash_instance and alike, but wrapping a struct kpp_alg.
Implement the new kpp_register_instance() template instance registration
primitive. Provide some helper functions for
- going back and forth between a generic struct crypto_instance and the new
struct kpp_instance,
- obtaining the instantiating kpp_instance from a crypto_kpp transform and
- for accessing a given kpp_instance's implementation specific context
data.
Annotate everything with proper kernel-doc comments, even though
include/crypto/internal/kpp.h is not considered for the generated docs.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When doing iperf over ipsec with crypto hardware sun8i-ce, I hit some
spinlock recursion bug.
This is due to completion function called with enabled BH.
Add check a to detect this.
Fixes: 735d37b542 ("crypto: engine - Introduce the block request crypto engine framework")
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The lrw template relies on ecb to work. So we need to declare
a Kconfig dependency as well as a module softdep on it.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The xts module needs ecb to be present as it's meant to work
on top of ecb. This patch adds a softdep so ecb can be included
automatically into the initramfs.
Reported-by: rftc <rftc@gmx.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
FIPS 140 requires a minimum security strength of 112 bits. This implies
that the HMAC key must not be smaller than 112 in FIPS mode.
This restriction implies that the test vectors for HMAC that have a key
that is smaller than 112 bits must be disabled when FIPS support is
compiled.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
By adding the support for the flag fips_skip, hash / HMAC test vectors
may be marked to be not applicable in FIPS mode. Such vectors are
silently skipped in FIPS mode.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto fixes from Herbert Xu:
"Fix two regressions:
- Potential boot failure due to missing cryptomgr on initramfs
- Stack overflow in octeontx2"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: api - Move cryptomgr soft dependency into algapi
crypto: octeontx2 - Avoid stack variable overflow
The multibuffer algorithms was removed already in 2018, so it is
necessary to clear the test code left by tcrypt.
Suggested-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The soft dependency on cryptomgr is only needed in algapi because
if algapi isn't present then no algorithms can be loaded. This
also fixes the case where api is built-in but algapi is built as
a module as the soft dependency would otherwise get lost.
Fixes: 8ab23d547f ("crypto: api - Add softdep on cryptomgr")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
blake2s_compress_generic is weakly aliased by blake2s_compress. The
current harness for function selection uses a function pointer, which is
ordinarily inlined and resolved at compile time. But when Clang's CFI is
enabled, CFI still triggers when making an indirect call via a weak
symbol. This seems like a bug in Clang's CFI, as though it's bucketing
weak symbols and strong symbols differently. It also only seems to
trigger when "full LTO" mode is used, rather than "thin LTO".
[ 0.000000][ T0] Kernel panic - not syncing: CFI failure (target: blake2s_compress_generic+0x0/0x1444)
[ 0.000000][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-mainline-06981-g076c855b846e #1
[ 0.000000][ T0] Hardware name: MT6873 (DT)
[ 0.000000][ T0] Call trace:
[ 0.000000][ T0] dump_backtrace+0xfc/0x1dc
[ 0.000000][ T0] dump_stack_lvl+0xa8/0x11c
[ 0.000000][ T0] panic+0x194/0x464
[ 0.000000][ T0] __cfi_check_fail+0x54/0x58
[ 0.000000][ T0] __cfi_slowpath_diag+0x354/0x4b0
[ 0.000000][ T0] blake2s_update+0x14c/0x178
[ 0.000000][ T0] _extract_entropy+0xf4/0x29c
[ 0.000000][ T0] crng_initialize_primary+0x24/0x94
[ 0.000000][ T0] rand_initialize+0x2c/0x6c
[ 0.000000][ T0] start_kernel+0x2f8/0x65c
[ 0.000000][ T0] __primary_switched+0xc4/0x7be4
[ 0.000000][ T0] Rebooting in 5 seconds..
Nonetheless, the function pointer method isn't so terrific anyway, so
this patch replaces it with a simple boolean, which also gets inlined
away. This successfully works around the Clang bug.
In general, I'm not too keen on all of the indirection involved here; it
clearly does more harm than good. Hopefully the whole thing can get
cleaned up down the road when lib/crypto is overhauled more
comprehensively. But for now, we go with a simple bandaid.
Fixes: 6048fdcc5f ("lib/crypto: blake2s: include as built-in")
Link: https://github.com/ClangBuiltLinux/linux/issues/1567
Reported-by: Miles Chen <miles.chen@mediatek.com>
Tested-by: Miles Chen <miles.chen@mediatek.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: John Stultz <john.stultz@linaro.org>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The C standard does not support dereferencing pointers that are not
aligned with respect to the pointed-to type, and doing so is technically
undefined behavior, even if the underlying hardware supports it.
This means that conditionally dereferencing such pointers based on
whether CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y is not the right thing
to do, and actually results in alignment faults on ARM, which are fixed
up on a slow path. Instead, we should use the unaligned accessors in
such cases: on architectures that don't care about alignment, they will
result in identical codegen whereas, e.g., codegen on ARM will avoid
doubleword loads and stores but use ordinary ones, which are able to
tolerate misalignment.
Link: https://lore.kernel.org/linux-crypto/CAHk-=wiKkdYLY0bv+nXrcJz3NH9mAqPAafX7PpW5EwVtxsEu7Q@mail.gmail.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The function crypto_authenc_decrypt_tail discards its flags
argument and always relies on the flags from the original request
when starting its sub-request.
This is clearly wrong as it may cause the SLEEPABLE flag to be
set when it shouldn't.
Fixes: 92d95ba917 ("crypto: authenc - Convert to new AEAD interface")
Reported-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The new convention for akcipher_alg::verify makes it unclear which
values are the lengths of the signature and digest. Add local variables
to make it clearer what is going on.
Also rename the digest_size variable in pkcs1pad_sign(), as it is
actually the digest *info* size, not the digest size which is different.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Before checking whether the expected digest_info is present, we need to
check that there are enough bytes remaining.
Fixes: a49de377e0 ("crypto: Add hash param to pkcs1pad")
Cc: <stable@vger.kernel.org> # v4.6+
Cc: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
RSA PKCS#1 v1.5 signatures are required to be the same length as the RSA
key size. RFC8017 specifically requires the verifier to check this
(https://datatracker.ietf.org/doc/html/rfc8017#section-8.2.2).
Commit a49de377e0 ("crypto: Add hash param to pkcs1pad") changed the
kernel to allow longer signatures, but didn't explain this part of the
change; it seems to be unrelated to the rest of the commit.
Revert this change, since it doesn't appear to be correct.
We can be pretty sure that no one is relying on overly-long signatures
(which would have to be front-padded with zeroes) being supported, given
that they would have been broken since commit c7381b0128
("crypto: akcipher - new verify API for public key algorithms").
Fixes: a49de377e0 ("crypto: Add hash param to pkcs1pad")
Cc: <stable@vger.kernel.org> # v4.6+
Cc: Tadeusz Struk <tadeusz.struk@linaro.org>
Suggested-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit c7381b0128 ("crypto: akcipher - new verify API for public key
algorithms") changed akcipher_alg::verify to take in both the signature
and the actual hash and do the signature verification, rather than just
return the hash expected by the signature as was the case before. To do
this, it implemented a hack where the signature and hash are
concatenated with each other in one scatterlist.
Obviously, for this to work correctly, akcipher_alg::verify needs to
correctly extract the two items from the scatterlist it is given.
Unfortunately, it doesn't correctly extract the hash in the case where
the signature is longer than the RSA key size, as it assumes that the
signature's length is equal to the RSA key size. This causes a prefix
of the hash, or even the entire hash, to be taken from the *signature*.
(Note, the case of a signature longer than the RSA key size should not
be allowed in the first place; a separate patch will fix that.)
It is unclear whether the resulting scheme has any useful security
properties.
Fix this by correctly extracting the hash from the scatterlist.
Fixes: c7381b0128 ("crypto: akcipher - new verify API for public key algorithms")
Cc: <stable@vger.kernel.org> # v5.2+
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The pkcs1pad template can be instantiated with an arbitrary akcipher
algorithm, which doesn't make sense; it is specifically an RSA padding
scheme. Make it check that the underlying algorithm really is RSA.
Fixes: 3d5b1ecdea ("crypto: rsa - RSA padding algorithm")
Cc: <stable@vger.kernel.org> # v4.5+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In addition to sha256 we must also enable hmac for the kdf self-test
to work.
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 304b4acee2 ("crypto: kdf - select SHA-256 required...")
Fixes: 026a733e66 ("crypto: kdf - add SP800-108 counter key...")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As testmgr is part of cryptomgr which was designed to be unloadable
as a module, it shouldn't export any symbols for other crypto
modules to use as that would prevent it from being unloaded. All
its functionality is meant to be accessed through notifiers.
The symbol crypto_simd_disabled_for_test was added to testmgr
which caused it to be pinned as a module if its users were also
loaded. This patch moves it out of testmgr and into crypto/algapi.c
so cryptomgr can again be unloaded and replaced on demand.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
tcrypt supports testing of SM3 hash algorithms that use AVX
instruction acceleration.
In order to add the sm3 asynchronous test to the appropriate
position, shift the testcase sequence number of the multi buffer
backward and start from 450.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds AVX assembly accelerated implementation of SM3 secure
hash algorithm. From the benchmark data, compared to pure software
implementation sm3-generic, the performance increase is up to 38%.
The main algorithm implementation based on SM3 AES/BMI2 accelerated
work by libgcrypt at:
https://gnupg.org/software/libgcrypt/index.html
Benchmark on Intel i5-6200U 2.30GHz, performance data of two
implementations, pure software sm3-generic and sm3-avx acceleration.
The data comes from the 326 mode and 422 mode of tcrypt. The abscissas
are different lengths of per update. The data is tabulated and the
unit is Mb/s:
update-size | 16 64 256 1024 2048 4096 8192
------------+-------------------------------------------------------
sm3-generic | 105.97 129.60 182.12 189.62 188.06 193.66 194.88
sm3-avx | 119.87 163.05 244.44 260.92 257.60 264.87 265.88
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SM3 generic library is stand-alone implementation, it is necessary
making the sm3-generic implementation to depends on SM3 library.
The functions crypto_sm3_*() provided by sm3_generic is no longer
exported.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SM3 generic library is stand-alone implementation, it is necessary
for the calculation of sm2 z digest to depends on SM3 library
instead of sm3-generic.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 6048fdcc5f ("lib/crypto: blake2s: include as built-in") took
away a number of prompt texts from other crypto libraries. This makes
values flip from built-in to module when oldconfig runs, and causes
problems when these crypto libs need to be built in for thingslike
BIG_KEYS.
Fixes: 6048fdcc5f ("lib/crypto: blake2s: include as built-in")
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Justin M. Forbes <jforbes@fedoraproject.org>
[Jason: - moved menu into submenu of lib/ instead of root menu
- fixed chacha sub-dependencies for CONFIG_CRYPTO]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
-----BEGIN PGP SIGNATURE-----
iIgEABYIADAWIQRE6pSOnaBC00OEHEIaerohdGur0gUCYdzf7hIcamFya2tvQGtl
cm5lbC5vcmcACgkQGnq6IXRrq9IA/AEA2sX9fNNYSYnUwvi/Ju+Y8BgW4pA+GvA0
L8iSuUkWdssA/iQFdQ3vyDK0CI56G1jerKMyT7o8QEuJmUYogTRV7+oA
=7q7g
-----END PGP SIGNATURE-----
Merge tag 'tpmdd-next-v5.17-fixed' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd
Pull TPM updates from Jarkko Sakkinen:
"Other than bug fixes for TPM, this includes a patch for asymmetric
keys to allow to look up and verify with self-signed certificates
(keys without so called AKID - Authority Key Identifier) using a new
"dn:" prefix in the query"
* tag 'tpmdd-next-v5.17-fixed' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd:
lib: remove redundant assignment to variable ret
tpm: fix NPE on probe for missing device
tpm: fix potential NULL pointer access in tpm_del_char_device
tpm: Add Upgrade/Reduced mode support for TPM2 modules
char: tpm: cr50: Set TPM_FIRMWARE_POWER_MANAGED based on device property
keys: X.509 public key issuer lookup without AKID
tpm_tis: Fix an error handling path in 'tpm_tis_core_init()'
tpm: tpm_tis_spi_cr50: Add default RNG quality
tpm/st33zp24: drop unneeded over-commenting
tpm: add request_locality before write TPM_INT_ENABLE
Pull crypto updates from Herbert Xu:
"Algorithms:
- Drop alignment requirement for data in aesni
- Use synchronous seeding from the /dev/random in DRBG
- Reseed nopr DRBGs every 5 minutes from /dev/random
- Add KDF algorithms currently used by security/DH
- Fix lack of entropy on some AMD CPUs with jitter RNG
Drivers:
- Add support for the D1 variant in sun8i-ce
- Add SEV_INIT_EX support in ccp
- PFVF support for GEN4 host driver in qat
- Compression support for GEN4 devices in qat
- Add cn10k random number generator support"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (145 commits)
crypto: af_alg - rewrite NULL pointer check
lib/mpi: Add the return value check of kcalloc()
crypto: qat - fix definition of ring reset results
crypto: hisilicon - cleanup warning in qm_get_qos_value()
crypto: kdf - select SHA-256 required for self-test
crypto: x86/aesni - don't require alignment of data
crypto: ccp - remove unneeded semicolon
crypto: stm32/crc32 - Fix kernel BUG triggered in probe()
crypto: s390/sha512 - Use macros instead of direct IV numbers
crypto: sparc/sha - remove duplicate hash init function
crypto: powerpc/sha - remove duplicate hash init function
crypto: mips/sha - remove duplicate hash init function
crypto: sha256 - remove duplicate generic hash init function
crypto: jitter - add oversampling of noise source
MAINTAINERS: update SEC2 driver maintainers list
crypto: ux500 - Use platform_get_irq() to get the interrupt
crypto: hisilicon/qm - disable qm clock-gating
crypto: omap-aes - Fix broken pm_runtime_and_get() usage
MAINTAINERS: update caam crypto driver maintainers list
crypto: octeontx2 - prevent underflow in get_cores_bmap()
...
There are non-root X.509 v3 certificates in use out there that contain
no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For
trust verification purposes the kernel asymmetric key type keeps two
struct asymmetric_key_id instances that the key can be looked up by,
and another two to look up the key's issuer. The x509 public key type
and the PKCS7 type generate them from the SKID and AKID extensions in
the certificate. In effect current code has no way to look up the
issuer certificate for verification without the AKID.
To remedy this, add a third asymmetric_key_id blob to the arrays in
both asymmetric_key_id's (for certficate subject) and in the
public_keys_signature's auth_ids (for issuer lookup), using just raw
subject and issuer DNs from the certificate. Adapt
asymmetric_key_ids() and its callers to use the third ID for lookups
when none of the other two are available. Attempt to keep the logic
intact when they are, to minimise behaviour changes. Adapt the
restrict functions' NULL-checks to include that ID too. Do not modify
the lookup logic in pkcs7_verify.c, the AKID extensions are still
required there.
Internally use a new "dn:" prefix to the search specifier string
generated for the key lookup in find_asymmetric_key(). This tells
asymmetric_key_match_preparse to only match the data against the raw
DN in the third ID and shouldn't conflict with search specifiers
already in use.
In effect implement what (2) in the struct asymmetric_key_id comment
(include/keys/asymmetric-type.h) is probably talking about already, so
do not modify that comment. It is also how "openssl verify" looks up
issuer certificates without the AKID available. Lookups by the raw
DN are unambiguous only provided that the CAs respect the condition in
RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses
a single signing key.
The following is an example of two things that this change enables.
A self-signed ceritficate is generated following the example from
https://letsencrypt.org/docs/certificates-for-localhost/, and can be
looked up by an identifier and verified against itself by linking to a
restricted keyring -- both things not possible before due to the missing
AKID extension:
$ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \
-newkey rsa:2048 -nodes -sha256 \
-subj '/CN=localhost' -extensions EXT -config <( \
echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \
"subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \
"extendedKeyUsage=serverAuth")
$ keyring=`keyctl newring test @u`
$ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \
echo $trusted
39726322
$ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374
39726322
$ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted
$ keyctl padd asymmetric verified $keyring < localhost.crt
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Because of the possible alloc failure of the alloc_page(), it could
return NULL pointer.
And there is a check below the sg_assign_page().
But it will be more logical to move the NULL check before the
sg_assign_page().
Signed-off-by: Jiasheng Jiang <jiasheng@iscas.ac.cn>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation for using blake2s in the RNG, we change the way that it
is wired-in to the build system. Instead of using ifdefs to select the
right symbol, we use weak symbols. And because ARM doesn't need the
generic implementation, we make the generic one default only if an arch
library doesn't need it already, and then have arch libraries that do
need it opt-in. So that the arch libraries can remain tristate rather
than bool, we then split the shash part from the glue code.
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: linux-kbuild@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The self test of the KDF is based on SHA-256. Thus, this algorithm must
be present as otherwise a warning is issued.
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
crypto_sha256_init() and sha256_base_init() are the same repeated
implementations, remove the crypto_sha256_init() in generic
implementation, sha224 is the same process.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The output n bits can receive more than n bits of min entropy, of course,
but the fixed output of the conditioning function can only asymptotically
approach the output size bits of min entropy, not attain that bound.
Random maps will tend to have output collisions, which reduces the
creditable output entropy (that is what SP 800-90B Section 3.1.5.1.2
attempts to bound).
The value "64" is justified in Appendix A.4 of the current 90C draft,
and aligns with NIST's in "epsilon" definition in this document, which is
that a string can be considered "full entropy" if you can bound the min
entropy in each bit of output to at least 1-epsilon, where epsilon is
required to be <= 2^(-32).
Note, this patch causes the Jitter RNG to cut its performance in half in
FIPS mode because the conditioning function of the LFSR produces 64 bits
of entropy in one block. The oversampling requires that additionally 64
bits of entropy are sampled from the noise source. If the conditioner is
changed, such as using SHA-256, the impact of the oversampling is only
one fourth, because for the 256 bit block of the conditioner, only 64
additional bits from the noise source must be sampled.
This patch is derived from the user space jitterentropy-library.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Update module_put_and_exit to call kthread_exit instead of do_exit.
Change the name to reflect this change in functionality. All of the
users of module_put_and_exit are causing the current kthread to exit
so this change makes it clear what is happening. There is no
functional change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The jitterentropy collection loop in jent_gen_entropy() can in principle
run indefinitely without making any progress if it only receives stuck
measurements as determined by jent_stuck(). After 31 consecutive stuck
samples, the Repetition Count Test (RCT) would fail anyway and the
jitterentropy RNG instances moved into ->health_failure == 1 state.
jent_gen_entropy()'s caller, jent_read_entropy() would then check for
this ->health_failure condition and return an error if found set. It
follows that there's absolutely no point in continuing the collection loop
in jent_gen_entropy() once the RCT has failed.
Make the jitterentropy collection loop more robust by terminating it upon
jent_health_failure() so that it won't continue to run indefinitely without
making any progress.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The jitterentropy's Repetition Count Test (RCT) as well as the Adaptive
Proportion Test (APT) are run unconditionally on any collected samples.
However, their result, i.e. ->health_failure, will only get checked if
fips_enabled is set, c.f. the jent_health_failure() wrapper.
I would argue that a RCT or APT failure indicates that something's
seriously off and that this should always be reported as an error,
independently of whether FIPS mode is enabled or not: it should be up to
callers whether or not and how to handle jitterentropy failures.
Make jent_health_failure() to unconditionally return ->health_failure,
independent of whether fips_enabled is set.
Note that fips_enabled isn't accessed from the jitterentropy code anymore
now. Remove the linux/fips.h include as well as the jent_fips_enabled()
wrapper.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A subsequent patch will make the jitterentropy RNG to unconditionally
report health test errors back to callers, independent of whether
fips_enabled is set or not. The DRBG needs access to a functional
jitterentropy instance only in FIPS mode (because it's the only SP800-90B
compliant entropy source as it currently stands). Thus, it is perfectly
fine for the DRBGs to obtain entropy from the jitterentropy source only
on a best effort basis if fips_enabled is off.
Make the DRBGs to ignore jitterentropy failures if fips_enabled is not set.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On Dec 31 2023 NIST sunsets TDES for FIPS use. To prevent FIPS
validations to be completed in the future to be affected by the TDES
sunsetting, disallow TDES already now. Otherwise a FIPS validation would
need to be "touched again" end 2023 to handle TDES accordingly.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
FIPS disallows DH with keys < 2048 bits. Thus, the kernel should
consider the enforcement of this limit.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
FIPS disallows RSA with keys < 2048 bits. Thus, the kernel should
consider the enforcement of this limit.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The APT compares the current time stamp with a pre-set value. The
current code only considered the 4 LSB only. Yet, after reviews by
mathematicians of the user space Jitter RNG version >= 3.1.0, it was
concluded that the APT can be calculated on the 32 LSB of the time
delta. Thi change is applied to the kernel.
This fixes a bug where an AMD EPYC fails this test as its RDTSC value
contains zeros in the LSB. The most appropriate fix would have been to
apply a GCD calculation and divide the time stamp by the GCD. Yet, this
is a significant code change that will be considered for a future
update. Note, tests showed that constantly the GCD always was 32 on
these systems, i.e. the 5 LSB were always zero (thus failing the APT
since it only considered the 4 LSB for its calculation).
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SP800-108 defines three KDFs - this patch provides the counter KDF
implementation.
The KDF is implemented as a service function where the caller has to
maintain the hash / HMAC state. Apart from this hash/HMAC state, no
additional state is required to be maintained by either the caller or
the KDF implementation.
The key for the KDF is set with the crypto_kdf108_setkey function which
is intended to be invoked before the caller requests a key derivation
operation via crypto_kdf108_ctr_generate.
SP800-108 allows the use of either a HMAC or a hash as crypto primitive
for the KDF. When a HMAC primtive is intended to be used,
crypto_kdf108_setkey must be used to set the HMAC key. Otherwise, for a
hash crypto primitve crypto_kdf108_ctr_generate can be used immediately
after allocating the hash handle.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In contrast to the fully prediction resistant 'pr' DRBGs, the 'nopr'
variants get seeded once at boot and reseeded only rarely thereafter,
namely only after 2^20 requests have been served each. AFAICT, this
reseeding based on the number of requests served is primarily motivated
by information theoretic considerations, c.f. NIST SP800-90Ar1,
sec. 8.6.8 ("Reseeding").
However, given the relatively large seed lifetime of 2^20 requests, the
'nopr' DRBGs can hardly be considered to provide any prediction resistance
whatsoever, i.e. to protect against threats like side channel leaks of the
internal DRBG state (think e.g. leaked VM snapshots). This is expected and
completely in line with the 'nopr' naming, but as e.g. the
"drbg_nopr_hmac_sha512" implementation is potentially being used for
providing the "stdrng" and thus, the crypto_default_rng serving the
in-kernel crypto, it would certainly be desirable to achieve at least the
same level of prediction resistance as get_random_bytes() does.
Note that the chacha20 rngs underlying get_random_bytes() get reseeded
every CRNG_RESEED_INTERVAL == 5min: the secondary, per-NUMA node rngs from
the primary one and the primary rng in turn from the entropy pool, provided
sufficient entropy is available.
The 'nopr' DRBGs do draw randomness from get_random_bytes() for their
initial seed already, so making them to reseed themselves periodically from
get_random_bytes() in order to let them benefit from the latter's
prediction resistance is not such a big change conceptually.
In principle, it would have been also possible to make the 'nopr' DRBGs to
periodically invoke a full reseeding operation, i.e. to also consider the
jitterentropy source (if enabled) in addition to get_random_bytes() for the
seed value. However, get_random_bytes() is relatively lightweight as
compared to the jitterentropy generation process and thus, even though the
'nopr' reseeding is supposed to get invoked infrequently, it's IMO still
worthwhile to avoid occasional latency spikes for drbg_generate() and
stick to get_random_bytes() only. As an additional remark, note that
drawing randomness from the non-SP800-90B-conforming get_random_bytes()
only won't adversely affect SP800-90A conformance either: the very same is
being done during boot via drbg_seed_from_random() already once
rng_is_initialized() flips to true and it follows that if the DRBG
implementation does conform to SP800-90A now, it will continue to do so.
Make the 'nopr' DRBGs to reseed themselves periodically from
get_random_bytes() every CRNG_RESEED_INTERVAL == 5min.
More specifically, introduce a new member ->last_seed_time to struct
drbg_state for recording in units of jiffies when the last seeding
operation had taken place. Make __drbg_seed() maintain it and let
drbg_generate() invoke a reseed from get_random_bytes() via
drbg_seed_from_random() if more than 5min have passed by since the last
seeding operation. Be careful to not to reseed if in testing mode though,
or otherwise the drbg related tests in crypto/testmgr.c would fail to
reproduce the expected output.
In order to keep the formatting clean in drbg_generate() wrap the logic
for deciding whether or not a reseed is due in a new helper,
drbg_nopr_reseed_interval_elapsed().
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that drbg_prepare_hrng() doesn't do anything but to instantiate a
jitterentropy crypto_rng instance, it looks a little odd to have the
related error handling at its only caller, drbg_instantiate().
Move the handling of jitterentropy allocation failures from
drbg_instantiate() close to the allocation itself in drbg_prepare_hrng().
There is no change in behaviour.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
get_random_bytes() usually hasn't full entropy available by the time DRBG
instances are first getting seeded from it during boot. Thus, the DRBG
implementation registers random_ready_callbacks which would in turn
schedule some work for reseeding the DRBGs once get_random_bytes() has
sufficient entropy available.
For reference, the relevant history around handling DRBG (re)seeding in
the context of a not yet fully seeded get_random_bytes() is:
commit 16b369a91d ("random: Blocking API for accessing
nonblocking_pool")
commit 4c7879907e ("crypto: drbg - add async seeding operation")
commit 205a525c33 ("random: Add callback API for random pool
readiness")
commit 57225e6797 ("crypto: drbg - Use callback API for random
readiness")
commit c2719503f5 ("random: Remove kernel blocking API")
However, some time later, the initialization state of get_random_bytes()
has been made queryable via rng_is_initialized() introduced with commit
9a47249d44 ("random: Make crng state queryable"). This primitive now
allows for streamlining the DRBG reseeding from get_random_bytes() by
replacing that aforementioned asynchronous work scheduling from
random_ready_callbacks with some simpler, synchronous code in
drbg_generate() next to the related logic already present therein. Apart
from improving overall code readability, this change will also enable DRBG
users to rely on wait_for_random_bytes() for ensuring that the initial
seeding has completed, if desired.
The previous patches already laid the grounds by making drbg_seed() to
record at each DRBG instance whether it was being seeded at a time when
rng_is_initialized() still had been false as indicated by
->seeded == DRBG_SEED_STATE_PARTIAL.
All that remains to be done now is to make drbg_generate() check for this
condition, determine whether rng_is_initialized() has flipped to true in
the meanwhile and invoke a reseed from get_random_bytes() if so.
Make this move:
- rename the former drbg_async_seed() work handler, i.e. the one in charge
of reseeding a DRBG instance from get_random_bytes(), to
"drbg_seed_from_random()",
- change its signature as appropriate, i.e. make it take a struct
drbg_state rather than a work_struct and change its return type from
"void" to "int" in order to allow for passing error information from
e.g. its __drbg_seed() invocation onwards to callers,
- make drbg_generate() invoke this drbg_seed_from_random() once it
encounters a DRBG instance with ->seeded == DRBG_SEED_STATE_PARTIAL by
the time rng_is_initialized() has flipped to true and
- prune everything related to the former, random_ready_callback based
mechanism.
As drbg_seed_from_random() is now getting invoked from drbg_generate() with
the ->drbg_mutex being held, it must not attempt to recursively grab it
once again. Remove the corresponding mutex operations from what is now
drbg_seed_from_random(). Furthermore, as drbg_seed_from_random() can now
report errors directly to its caller, there's no need for it to temporarily
switch the DRBG's ->seeded state to DRBG_SEED_STATE_UNSEEDED so that a
failure of the subsequently invoked __drbg_seed() will get signaled to
drbg_generate(). Don't do it then.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since commit 42ea507fae ("crypto: drbg - reseed often if seedsource is
degraded"), the maximum seed lifetime represented by ->reseed_threshold
gets temporarily lowered if the get_random_bytes() source cannot provide
sufficient entropy yet, as is common during boot, and restored back to
the original value again once that has changed.
More specifically, if the add_random_ready_callback() invoked from
drbg_prepare_hrng() in the course of DRBG instantiation does not return
-EALREADY, that is, if get_random_bytes() has not been fully initialized
at this point yet, drbg_prepare_hrng() will lower ->reseed_threshold
to a value of 50. The drbg_async_seed() scheduled from said
random_ready_callback will eventually restore the original value.
A future patch will replace the random_ready_callback based notification
mechanism and thus, there will be no add_random_ready_callback() return
value anymore which could get compared to -EALREADY.
However, there's __drbg_seed() which gets invoked in the course of both,
the DRBG instantiation as well as the eventual reseeding from
get_random_bytes() in aforementioned drbg_async_seed(), if any. Moreover,
it knows about the get_random_bytes() initialization state by the time the
seed data had been obtained from it: the new_seed_state argument introduced
with the previous patch would get set to DRBG_SEED_STATE_PARTIAL in case
get_random_bytes() had not been fully initialized yet and to
DRBG_SEED_STATE_FULL otherwise. Thus, __drbg_seed() provides a convenient
alternative for managing that ->reseed_threshold lowering and restoring at
a central place.
Move all ->reseed_threshold adjustment code from drbg_prepare_hrng() and
drbg_async_seed() respectively to __drbg_seed(). Make __drbg_seed()
lower the ->reseed_threshold to 50 in case its new_seed_state argument
equals DRBG_SEED_STATE_PARTIAL and let it restore the original value
otherwise.
There is no change in behaviour.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, the DRBG implementation schedules asynchronous works from
random_ready_callbacks for reseeding the DRBG instances with output from
get_random_bytes() once the latter has sufficient entropy available.
However, as the get_random_bytes() initialization state can get queried by
means of rng_is_initialized() now, there is no real need for this
asynchronous reseeding logic anymore and it's better to keep things simple
by doing it synchronously when needed instead, i.e. from drbg_generate()
once rng_is_initialized() has flipped to true.
Of course, for this to work, drbg_generate() would need some means by which
it can tell whether or not rng_is_initialized() has flipped to true since
the last seeding from get_random_bytes(). Or equivalently, whether or not
the last seed from get_random_bytes() has happened when
rng_is_initialized() was still evaluating to false.
As it currently stands, enum drbg_seed_state allows for the representation
of two different DRBG seeding states: DRBG_SEED_STATE_UNSEEDED and
DRBG_SEED_STATE_FULL. The former makes drbg_generate() to invoke a full
reseeding operation involving both, the rather expensive jitterentropy as
well as the get_random_bytes() randomness sources. The DRBG_SEED_STATE_FULL
state on the other hand implies that no reseeding at all is required for a
!->pr DRBG variant.
Introduce the new DRBG_SEED_STATE_PARTIAL state to enum drbg_seed_state for
representing the condition that a DRBG was being seeded when
rng_is_initialized() had still been false. In particular, this new state
implies that
- the given DRBG instance has been fully seeded from the jitterentropy
source (if enabled)
- and drbg_generate() is supposed to reseed from get_random_bytes()
*only* once rng_is_initialized() turns to true.
Up to now, the __drbg_seed() helper used to set the given DRBG instance's
->seeded state to constant DRBG_SEED_STATE_FULL. Introduce a new argument
allowing for the specification of the to be written ->seeded value instead.
Make the first of its two callers, drbg_seed(), determine the appropriate
value based on rng_is_initialized(). The remaining caller,
drbg_async_seed(), is known to get invoked only once rng_is_initialized()
is true, hence let it pass constant DRBG_SEED_STATE_FULL for the new
argument to __drbg_seed().
There is no change in behaviour, except for that the pr_devel() in
drbg_generate() would now report "unseeded" for ->pr DRBG instances which
had last been seeded when rng_is_initialized() was still evaluating to
false.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are two different randomness sources the DRBGs are getting seeded
from, namely the jitterentropy source (if enabled) and get_random_bytes().
At initial DRBG seeding time during boot, the latter might not have
collected sufficient entropy for seeding itself yet and thus, the DRBG
implementation schedules a reseed work from a random_ready_callback once
that has happened. This is particularly important for the !->pr DRBG
instances, for which (almost) no further reseeds are getting triggered
during their lifetime.
Because collecting data from the jitterentropy source is a rather expensive
operation, the aforementioned asynchronously scheduled reseed work
restricts itself to get_random_bytes() only. That is, it in some sense
amends the initial DRBG seed derived from jitterentropy output at full
(estimated) entropy with fresh randomness obtained from get_random_bytes()
once that has been seeded with sufficient entropy itself.
With the advent of rng_is_initialized(), there is no real need for doing
the reseed operation from an asynchronously scheduled work anymore and a
subsequent patch will make it synchronous by moving it next to related
logic already present in drbg_generate().
However, for tracking whether a full reseed including the jitterentropy
source is required or a "partial" reseed involving only get_random_bytes()
would be sufficient already, the boolean struct drbg_state's ->seeded
member must become a tristate value.
Prepare for this by introducing the new enum drbg_seed_state and change
struct drbg_state's ->seeded member's type from bool to that type.
For facilitating review, enum drbg_seed_state is made to only contain
two members corresponding to the former ->seeded values of false and true
resp. at this point: DRBG_SEED_STATE_UNSEEDED and DRBG_SEED_STATE_FULL. A
third one for tracking the intermediate state of "seeded from jitterentropy
only" will be introduced with a subsequent patch.
There is no change in behaviour at this point.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
According to the BER encoding rules, integer value should be encoded
as two's complement, and if the highest bit of a positive integer
is 1, should add a leading zero-octet.
The kernel's built-in RSA algorithm cannot recognize negative numbers
when parsing keys, so it can pass this test case.
Export the key to file and run the following command to verify the
fix result:
openssl asn1parse -inform DER -in /path/to/key/file
Signed-off-by: Lei He <helei.sig11@bytedance.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This PR includes 5 commits that update the zstd library version:
1. Adds a new kernel-style wrapper around zstd. This wrapper API
is functionally equivalent to the subset of the current zstd API that is
currently used. The wrapper API changes to be kernel style so that the symbols
don't collide with zstd's symbols. The update to zstd-1.4.10 maintains the same
API and preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are zero
functional changes.
2. Adds an indirection for `lib/decompress_unzstd.c` so it
doesn't depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
3. Imports the zstd-1.4.10 source code. This commit is automatically generated
from upstream zstd (https://github.com/facebook/zstd).
4. Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
5. Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've included a
FAQ-style summary of the history of the patchset, and why we are taking this
approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is was released
August 20, 2017. Since then zstd has seen many bug fixes and performance
improvements. And, importantly, upstream zstd is continuously fuzzed by OSS-Fuzz,
and bug fixes aren't backported to older versions. So the only way to sanely get
these fixes is to keep up to date with upstream zstd. There are no known security
issues that affect the kernel, but we need to be able to update in case there
are. And while there are no known security issues, there are relevant bug fixes.
For example the problem with large kernel decompression has been fixed upstream
for over 2 years https://lkml.org/lkml/2020/9/29/27.
Additionally the performance improvements for kernel use cases are significant.
Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming down the
line in the next zstd release, and the new automated update patch generation
will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version. Then the
3rd patch in the series imports upstream zstd into the kernel. This patch is
automatically generated from upstream. A script makes the necessary changes and
imports it into the kernel. The changes are:
- Replace all libc dependencies with kernel replacements and rewrite includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous integration.
When we cut a new zstd release, we will submit a patch to the kernel to update
the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd up to
date. The current zstd in the kernel shares the guts of the code, but has a lot
of API and minor changes to work in the kernel. This is because at the time
upstream zstd was not ready to be used in the kernel envrionment as-is. But,
since then upstream zstd has evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is restructuring
the code, so it both deletes the existing zstd, and re-adds the new structure.
Future updates will be directly proportional to the changes in upstream zstd
since the last import. They will admittidly be large, as zstd is an actively
developed project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is not feasible
for several reasons:
- There are over 3500 upstream commits since the zstd version in the kernel.
- The automation to automatically generate the kernel update was only added recently,
so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have bugs that were
fixed before a release.
Another option to reduce the patch size would be to first reorganize to the new
file structure, and then apply the patch. However, the current kernel zstd is formatted
with clang-format to be more "kernel-like". But, the new method imports zstd as-is,
without additional formatting, to allow for closer correlation with upstream, and
easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit going
forward. Upstream zstd doesn't support production use cases running of the
development branch. We have a lot of post-commit fuzzing that catches many bugs,
so indiviudal commits may be buggy, but fixed before a release. So going forward,
I intend to import every (important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously, there was no tree
for zstd patches. Because of that, there were several patches that either got ignored,
or took a long time to merge, since it wasn't clear which tree should pick them up.
I'm officially stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the kernel zstd get
ported upstream, so they aren't erased when the next version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS, Kernel,
InitRAMFS). I also tested Kernel & InitRAMFS on i386 and aarch64. I checked both
performance and correctness.
Also, thanks to many people in the community who have tested these patches locally.
If you have tested the patches, please reply with a Tested-By so I can collect them
for the PR I will send to Linus.
Lastly, this code will bake in linux-next before being merged into v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the latest
release when it was created. Since the update patch is automatically generated
from upstream, I could generate it from zstd-1.5.0. However, there were some
large stack usage regressions in zstd-1.5.0, and are only fixed in the latest
development branch. And the latest development branch contains some new code that
needs to bake in the fuzzer before I would feel comfortable releasing to the
kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we can update
the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release is an
artifical release based off of zstd-1.4.9, with some fixes for the kernel
backported from the development branch. I will tag the zstd-1.4.10 release after
this patchset is merged, so the Linux Kernel is running a known version of zstd
that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the upstream zstd
API. It first added a shim API that supported the new upstream API with the old
code, then updated callers to use the new shim API, then transitioned to the
new code and deleted the shim API. However, Cristoph Hellwig suggested that we
transition to a kernel style API, and hide zstd's upstream API behind that.
This is because zstd's upstream API is supports many other use cases, and does
not follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set.
The largest changes in the design of the patchset are driven by the discussions
in V11, V5, and V1. Sorry for the mix of links, I couldn't find most of the the
threads on lkml.org.
V12: https://www.spinics.net/lists/linux-crypto/msg58189.html
V11: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/
V10: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/
V9: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/
V8: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/
V7: https://lkml.org/lkml/2020/12/3/1195
V6: https://lkml.org/lkml/2020/12/2/1245
V5: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/
V4: https://www.spinics.net/lists/linux-btrfs/msg105783.html
V3: https://lkml.org/lkml/2020/9/23/1074
V2: https://www.spinics.net/lists/linux-btrfs/msg105505.html
V1: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEmIwAqlFIzbQodPwyuzRpqaNEqPUFAmGJyKIACgkQuzRpqaNE
qPXnmw/+PKyCn6LvRQqNfdpF5f59j/B1Fab15tkpVyz3UWnCw+EKaPZOoTfIsjRf
7TMUVm4iGsm+6xBO/YrGdRl4IxocNgXzsgnJ1lTGDbvfRC1tG+YNwuv+EEXwKYq5
Yz3DRwDotgsrV0Kg05b+VIgkmAuY3ukmu2n09LnAdKkxoIgmHw3MIDCdVZW2Br4c
sjJmYI+fiJd7nAlbDa42VOrdTiLzkl/2BsjWBqTv6zbiQ5uuJGsKb7P3kpcybWzD
5C118pyE3qlVyvFz+UFu8WbN0NSf47DP22KV/3IrhNX7CVQxYBe+9/oVuPWTgRx0
4Vl0G6u7rzh4wDZuGqTC3LYWwH9GfycI0fnVC0URP2XMOcGfPlGd3L0PEmmAeTmR
fEbaGAN4dr0jNO3lmbyAGe/G8tvtXQx/4ZjS9Pa3TlQP24GARU/f78/blbKR87Vz
BGMndmSi92AscgXb9buO3bCwAY1YtH5WiFaZT1XVk42cj4MiOLvPTvP4UMzDDxcZ
56ahmAP/84kd6H+cv9LmgEMqcIBmxdUcO1nuAItJ4wdrMUgw3+lrbxwFkH9xPV7I
okC1K0TIVEobADbxbdMylxClAylbuW+37Pko97NmAlnzNCPNE38f3s3gtXRrUTaR
IP8jv5UQ7q3dFiWnNLLodx5KM6s32GVBKRLRnn/6SJB7QzlyHXU=
=Xb18
-----END PGP SIGNATURE-----
Merge tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux
Pull zstd update from Nick Terrell:
"Update to zstd-1.4.10.
Add myself as the maintainer of zstd and update the zstd version in
the kernel, which is now 4 years out of date, to a much more recent
zstd release. This includes bug fixes, much more extensive fuzzing,
and performance improvements. And generates the kernel zstd
automatically from upstream zstd, so it is easier to keep the zstd
verison up to date, and we don't fall so far out of date again.
This includes 5 commits that update the zstd library version:
- Adds a new kernel-style wrapper around zstd.
This wrapper API is functionally equivalent to the subset of the
current zstd API that is currently used. The wrapper API changes to
be kernel style so that the symbols don't collide with zstd's
symbols. The update to zstd-1.4.10 maintains the same API and
preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are
zero functional changes.
- Adds an indirection for `lib/decompress_unzstd.c` so it doesn't
depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
- Imports the zstd-1.4.10 source code. This commit is automatically
generated from upstream zstd (https://github.com/facebook/zstd).
- Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
- Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've
included a FAQ-style summary of the history of the patchset, and why
we are taking this approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is
was released August 20, 2017. Since then zstd has seen many bug fixes
and performance improvements. And, importantly, upstream zstd is
continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to
older versions. So the only way to sanely get these fixes is to keep
up to date with upstream zstd.
There are no known security issues that affect the kernel, but we need
to be able to update in case there are. And while there are no known
security issues, there are relevant bug fixes. For example the problem
with large kernel decompression has been fixed upstream for over 2
years [1]
Additionally the performance improvements for kernel use cases are
significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming
down the line in the next zstd release, and the new automated update
patch generation will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version.
Then the 3rd patch in the series imports upstream zstd into the
kernel. This patch is automatically generated from upstream. A script
makes the necessary changes and imports it into the kernel. The
changes are:
- Replace all libc dependencies with kernel replacements and rewrite
includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous
integration. When we cut a new zstd release, we will submit a patch to
the kernel to update the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd
up to date. The current zstd in the kernel shares the guts of the
code, but has a lot of API and minor changes to work in the kernel.
This is because at the time upstream zstd was not ready to be used in
the kernel envrionment as-is. But, since then upstream zstd has
evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is
restructuring the code, so it both deletes the existing zstd, and
re-adds the new structure. Future updates will be directly
proportional to the changes in upstream zstd since the last import.
They will admittidly be large, as zstd is an actively developed
project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is
not feasible for several reasons:
- There are over 3500 upstream commits since the zstd version in the
kernel.
- The automation to automatically generate the kernel update was only
added recently, so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have
bugs that were fixed before a release.
Another option to reduce the patch size would be to first reorganize
to the new file structure, and then apply the patch. However, the
current kernel zstd is formatted with clang-format to be more
"kernel-like". But, the new method imports zstd as-is, without
additional formatting, to allow for closer correlation with upstream,
and easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit
going forward. Upstream zstd doesn't support production use cases
running of the development branch. We have a lot of post-commit
fuzzing that catches many bugs, so indiviudal commits may be buggy,
but fixed before a release. So going forward, I intend to import every
(important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch
I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously,
there was no tree for zstd patches. Because of that, there were
several patches that either got ignored, or took a long time to merge,
since it wasn't clear which tree should pick them up. I'm officially
stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the
kernel zstd get ported upstream, so they aren't erased when the next
version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS,
Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and
aarch64. I checked both performance and correctness.
Also, thanks to many people in the community who have tested these
patches locally.
Lastly, this code will bake in linux-next before being merged into
v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the
latest release when it was created. Since the update patch is
automatically generated from upstream, I could generate it from
zstd-1.5.0.
However, there were some large stack usage regressions in zstd-1.5.0,
and are only fixed in the latest development branch. And the latest
development branch contains some new code that needs to bake in the
fuzzer before I would feel comfortable releasing to the kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we
can update the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release
is an artifical release based off of zstd-1.4.9, with some fixes for
the kernel backported from the development branch. I will tag the
zstd-1.4.10 release after this patchset is merged, so the Linux Kernel
is running a known version of zstd that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the
upstream zstd API. It first added a shim API that supported the new
upstream API with the old code, then updated callers to use the new
shim API, then transitioned to the new code and deleted the shim API.
However, Cristoph Hellwig suggested that we transition to a kernel
style API, and hide zstd's upstream API behind that. This is because
zstd's upstream API is supports many other use cases, and does not
follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set
below. The largest changes in the design of the patchset are driven by
the discussions in v11, v5, and v1. Sorry for the mix of links, I
couldn't find most of the the threads on lkml.org"
Link: https://lkml.org/lkml/2020/9/29/27 [1]
Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12]
Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11]
Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10]
Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9]
Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8]
Link: https://lkml.org/lkml/2020/12/3/1195 [v7]
Link: https://lkml.org/lkml/2020/12/2/1245 [v6]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5]
Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4]
Link: https://lkml.org/lkml/2020/9/23/1074 [v3]
Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1]
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
* tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux:
lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical
MAINTAINERS: Add maintainer entry for zstd
lib: zstd: Upgrade to latest upstream zstd version 1.4.10
lib: zstd: Add decompress_sources.h for decompress_unzstd
lib: zstd: Add kernel-specific API
Pull crypto fix from Herbert Xu:
"This fixes a boot crash regression"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: api - Fix boot-up crash when crypto manager is disabled
When the crypto manager is disabled, we need to explicitly set
the crypto algorithms' tested status so that they can be used.
Fixes: cad439fc04 ("crypto: api - Do not create test larvals if...")
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Ido Schimmel <idosch@idosch.org>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Ido Schimmel <idosch@nvidia.com>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch:
- Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h`
- Updates modified zstd headers to yearless copyright
- Adds a new API in `include/linux/zstd.h` that is functionally
equivalent to the in-use subset of the current API. Functions are
renamed to avoid symbol collisions with zstd, to make it clear it is
not the upstream zstd API, and to follow the kernel style guide.
- Updates all callers to use the new API.
There are no functional changes in this patch. Since there are no
functional change, I felt it was okay to update all the callers in a
single patch. Once the API is approved, the callers are mechanically
changed.
This patch is preparing for the 3rd patch in this series, which updates
zstd to version 1.4.10. Since the upstream zstd API is no longer exposed
to callers, the update can happen transparently.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
- Remove the global -isystem compiler flag, which was made possible by
the introduction of <linux/stdarg.h>
- Improve the Kconfig help to print the location in the top menu level
- Fix "FORCE prerequisite is missing" build warning for sparc
- Add new build targets, tarzst-pkg and perf-tarzst-src-pkg, which generate
a zstd-compressed tarball
- Prevent gen_init_cpio tool from generating a corrupted cpio when
KBUILD_BUILD_TIMESTAMP is set to 2106-02-07 or later
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmGGkysVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGgZkQAIX4i9Tt6pyl/2xGDGkzUqjprfoH
QUIo1DoUclLUygoakrrrX3EnZLWrslgPTKjQxdiV6RA6xHfe4cYgNTSq8zM9lsPT
lu+B4nEDqoXQ5gyLxMlnjS3FRQTNYIeBZEhSAIiW8TENdLKlKc+NYdoj7th50dO0
SkXRa2dpWHa6t7ZRqHIHMpUWA7gm0w22ZbgQmyUv1CDGO4IHPLqe2b2PMsrzhSZ1
yypP1l6aQVKuP0hN9aytbTRqDxUd0uOzBf00PK5zx23hjdwZ9wmZrFTKDf9fAu/+
nR7gBsa5YoYNQh3UkayZXjR5dClmgsCXZ25OXI7YucQp/8OJ5fadfn1NFpJHsw56
n5cckbHIXgnFUcel5YlkR6qTHjpzdr9vHm90MmiuX99b3oy9czl6pY3qkNfRkllQ
v7ME5L1qlw3P3ia1KA+H4zW/LIJ8p5cbKBwaY22m3kY3bTx7PiOfMlep4UVqxXSb
0/OqxSsmYg5LlmwEQ0SSsx45hE0o9nG/cdjkHu1jUOUHxYfpt1T4MTILeGUwmjzd
TydJym5MZyXBawu4NVB3QLoKm5Jt2BXtyaWOtq74VSrs77roNCdYuQWJ+1aBf2Pg
0s4CVC2cC7KlxJDImoqswZATGXPMfbiVDcuVSSukYRgBMeCBPUzRhB8YP36BZyD3
9vFYmqSujtUU7nWb
=ATFN
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Remove the global -isystem compiler flag, which was made possible by
the introduction of <linux/stdarg.h>
- Improve the Kconfig help to print the location in the top menu level
- Fix "FORCE prerequisite is missing" build warning for sparc
- Add new build targets, tarzst-pkg and perf-tarzst-src-pkg, which
generate a zstd-compressed tarball
- Prevent gen_init_cpio tool from generating a corrupted cpio when
KBUILD_BUILD_TIMESTAMP is set to 2106-02-07 or later
- Misc cleanups
* tag 'kbuild-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (28 commits)
kbuild: use more subdir- for visiting subdirectories while cleaning
sh: remove meaningless archclean line
initramfs: Check timestamp to prevent broken cpio archive
kbuild: split DEBUG_CFLAGS out to scripts/Makefile.debug
gen_init_cpio: add static const qualifiers
kbuild: Add make tarzst-pkg build option
scripts: update the comments of kallsyms support
sparc: Add missing "FORCE" target when using if_changed
kconfig: refactor conf_touch_dep()
kconfig: refactor conf_write_dep()
kconfig: refactor conf_write_autoconf()
kconfig: add conf_get_autoheader_name()
kconfig: move sym_escape_string_value() to confdata.c
kconfig: refactor listnewconfig code
kconfig: refactor conf_write_symbol()
kconfig: refactor conf_write_heading()
kconfig: remove 'const' from the return type of sym_escape_string_value()
kconfig: rename a variable in the lexer to a clearer name
kconfig: narrow the scope of variables in the lexer
kconfig: Create links to main menu items in search
...
Pull crypto updates from Herbert Xu:
"API:
- Delay boot-up self-test for built-in algorithms
Algorithms:
- Remove fallback path on arm64 as SIMD now runs with softirq off
Drivers:
- Add Keem Bay OCS ECC Driver"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (61 commits)
crypto: testmgr - fix wrong key length for pkcs1pad
crypto: pcrypt - Delay write to padata->info
crypto: ccp - Make use of the helper macro kthread_run()
crypto: sa2ul - Use the defined variable to clean code
crypto: s5p-sss - Add error handling in s5p_aes_probe()
crypto: keembay-ocs-ecc - Add Keem Bay OCS ECC Driver
dt-bindings: crypto: Add Keem Bay ECC bindings
crypto: ecc - Export additional helper functions
crypto: ecc - Move ecc.h to include/crypto/internal
crypto: engine - Add KPP Support to Crypto Engine
crypto: api - Do not create test larvals if manager is disabled
crypto: tcrypt - fix skcipher multi-buffer tests for 1420B blocks
hwrng: s390 - replace snprintf in show functions with sysfs_emit
crypto: octeontx2 - set assoclen in aead_do_fallback()
crypto: ccp - Fix whitespace in sev_cmd_buffer_len()
hwrng: mtk - Force runtime pm ops for sleep ops
crypto: testmgr - Only disable migration in crypto_disable_simd_for_test()
crypto: qat - share adf_enable_pf2vf_comms() from adf_pf2vf_msg.c
crypto: qat - extract send and wait from adf_vf2pf_request_version()
crypto: qat - add VF and PF wrappers to common send function
...
Fix wrong test data at testmgr.h, it seems to be caused
by ignoring the last '\0' when calling sizeof.
Signed-off-by: Lei He <helei.sig11@bytedance.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These three events can race when pcrypt is used multiple times in a
template ("pcrypt(pcrypt(...))"):
1. [taskA] The caller makes the crypto request via crypto_aead_encrypt()
2. [kworkerB] padata serializes the inner pcrypt request
3. [kworkerC] padata serializes the outer pcrypt request
3 might finish before the call to crypto_aead_encrypt() returns in 1,
resulting in two possible issues.
First, a use-after-free of the crypto request's memory when, for
example, taskA writes to the outer pcrypt request's padata->info in
pcrypt_aead_enc() after kworkerC completes the request.
Second, the outer pcrypt request overwrites the inner pcrypt request's
return code with -EINPROGRESS, making a successful request appear to
fail. For instance, kworkerB writes the outer pcrypt request's
padata->info in pcrypt_aead_done() and then taskA overwrites it
in pcrypt_aead_enc().
Avoid both situations by delaying the write of padata->info until after
the inner crypto request's return code is checked. This prevents the
use-after-free by not touching the crypto request's memory after the
next-inner crypto request is made, and stops padata->info from being
overwritten.
Fixes: 5068c7a883 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper")
Reported-by: syzbot+b187b77c8474f9648fae@syzkaller.appspotmail.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Export the following additional ECC helper functions:
- ecc_alloc_point()
- ecc_free_point()
- vli_num_bits()
- ecc_point_is_zero()
This is done to allow future ECC device drivers to re-use existing code,
thus simplifying their implementation.
Functions are exported using EXPORT_SYMBOL() (instead of
EXPORT_SYMBOL_GPL()) to be consistent with the functions already
exported by crypto/ecc.c.
Exported functions are documented in include/crypto/internal/ecc.h.
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move ecc.h header file to 'include/crypto/internal' so that it can be
easily imported from everywhere in the kernel tree.
This change is done to allow crypto device drivers to re-use the symbols
exported by 'crypto/ecc.c', thus avoiding code duplication.
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add KPP support to the crypto engine queue manager, so that it can be
used to simplify the logic of KPP device drivers as done for other
crypto drivers.
Signed-off-by: Prabhjot Khurana <prabhjot.khurana@intel.com>
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The delayed boot-time testing patch created a dependency loop
between api.c and algapi.c because it added a crypto_alg_tested
call to the former when the crypto manager is disabled.
We could instead avoid creating the test larvals if the crypto
manager is disabled. This avoids the dependency loop as well
as saving some unnecessary work, albeit in a very unlikely case.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: adad556efc ("crypto: api - Fix built-in testing dependency failures")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The second argument was only used by the USB gadget code, yet everyone
pays the overhead of passing a zero to be passed into aio, where it
ends up being part of the aio res2 value.
Now that everybody is passing in zero, kill off the extra argument.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit ad6d66bcac ("crypto: tcrypt - include 1420 byte blocks in aead and skcipher benchmarks")
mentions:
> power-of-2 block size. So let's add 1420 bytes explicitly, and round
> it up to the next blocksize multiple of the algo in question if it
> does not support 1420 byte blocks.
but misses updating skcipher multi-buffer tests.
Fix this by using the proper (rounded) input size.
Fixes: ad6d66bcac ("crypto: tcrypt - include 1420 byte blocks in aead and skcipher benchmarks")
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
crypto_disable_simd_for_test() disables preemption in order to receive a
stable per-CPU variable which it needs to modify in order to alter
crypto_simd_usable() results.
This can also be achived by migrate_disable() which forbidds CPU
migrations but allows the task to be preempted. The latter is important
for PREEMPT_RT since operation like skcipher_walk_first() may allocate
memory which must not happen with disabled preemption on PREEMPT_RT.
Use migrate_disable() in crypto_disable_simd_for_test() to achieve a
stable per-CPU pointer.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We need to export crypto_boot_test_finished in case api.c is
built-in while algapi.c is built as a module.
Fixes: adad556efc ("crypto: api - Fix built-in testing dependency failures")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au> # ppc32 build
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The ecc.c file started out as part of the ECDH algorithm but got
moved out into a standalone module later. It does not build without
CRYPTO_DEFAULT_RNG, so now that other modules are using it as well we
can run into this link error:
aarch64-linux-ld: ecc.c:(.text+0xfc8): undefined reference to `crypto_default_rng'
aarch64-linux-ld: ecc.c:(.text+0xff4): undefined reference to `crypto_put_default_rng'
Move the 'select CRYPTO_DEFAULT_RNG' statement into the correct symbol.
Fixes: 0d7a78643f ("crypto: ecrdsa - add EC-RDSA (GOST 34.10) algorithm")
Fixes: 4e6602916b ("crypto: ecdsa - Add support for ECDSA signature verification")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When complex algorithms that depend on other algorithms are built
into the kernel, the order of registration must be done such that
the underlying algorithms are ready before the ones on top are
registered. As otherwise they would fail during the self-test
which is required during registration.
In the past we have used subsystem initialisation ordering to
guarantee this. The number of such precedence levels are limited
and they may cause ripple effects in other subsystems.
This patch solves this problem by delaying all self-tests during
boot-up for built-in algorithms. They will be tested either when
something else in the kernel requests for them, or when we have
finished registering all built-in algorithms, whichever comes
earlier.
Reported-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Coverity warns uf an unused value:
CID 44865 (#2 of 2): Unused value (UNUSED_VALUE)
assigned_value: Assigning value -14 to ret here, but that stored value is
overwritten before it can be used.
2006 int ret = -EFAULT;
...
value_overwrite: Overwriting previous write to ret with value from drbg_seed(drbg, &addtl, false).
2052 ret = drbg_seed(drbg, &addtl, false);
Fix this by removing the variable initializer.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Drop "begin kernel-doc (/**)" entries in jitterentropy.c
since they are not in kernel-doc format and they cause
many complaints (warnings) from scripts/kernel-doc.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Stephan Mueller <smueller@chronox.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"Algorithms:
- Add AES-NI/AVX/x86_64 implementation of SM4.
Drivers:
- Add Arm SMCCC TRNG based driver"
[ And obviously a lot of random fixes and updates - Linus]
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (84 commits)
crypto: sha512 - remove imaginary and mystifying clearing of variables
crypto: aesni - xts_crypt() return if walk.nbytes is 0
padata: Remove repeated verbose license text
crypto: ccp - Add support for new CCP/PSP device ID
crypto: x86/sm4 - add AES-NI/AVX2/x86_64 implementation
crypto: x86/sm4 - export reusable AESNI/AVX functions
crypto: rmd320 - remove rmd320 in Makefile
crypto: skcipher - in_irq() cleanup
crypto: hisilicon - check _PS0 and _PR0 method
crypto: hisilicon - change parameter passing of debugfs function
crypto: hisilicon - support runtime PM for accelerator device
crypto: hisilicon - add runtime PM ops
crypto: hisilicon - using 'debugfs_create_file' instead of 'debugfs_create_regset32'
crypto: tcrypt - add GCM/CCM mode test for SM4 algorithm
crypto: testmgr - Add GCM/CCM mode test of SM4 algorithm
crypto: tcrypt - Fix missing return value check
crypto: hisilicon/sec - modify the hardware endian configuration
crypto: hisilicon/sec - fix the abnormal exiting process
crypto: qat - store vf.compatible flag
crypto: qat - do not export adf_iov_putmsg()
...
The function sha512_transform() assigns all local variables to 0 before
returning to its caller with the intent to erase sensitive data.
However, make clang-analyzer warns that all these assignments are dead
stores, and as commit 7a4295f6c9 ("crypto: lib/sha256 - Don't clear
temporary variables") already points out for sha256_transform():
The assignments to clear a through h and t1/t2 are optimized out by the
compiler because they are unused after the assignments.
Clearing individual scalar variables is unlikely to be useful, as they
may have been assigned to registers, and even if stack spilling was
required, there may be compiler-generated temporaries that are
impossible to clear in any case.
This applies here again as well. Drop meaningless clearing of local
variables and avoid this way that the code suggests that data is erased,
which simply does not happen.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Like the implementation of AESNI/AVX, this patch adds an accelerated
implementation of AESNI/AVX2. In terms of code implementation, by
reusing AESNI/AVX mode-related codes, the amount of code is greatly
reduced. From the benchmark data, it can be seen that when the block
size is 1024, compared to AVX acceleration, the performance achieved
by AVX2 has increased by about 70%, it is also 7.7 times of the pure
software implementation of sm4-generic.
The main algorithm implementation comes from SM4 AES-NI work by
libgcrypt and Markku-Juhani O. Saarinen at:
https://github.com/mjosaarinen/sm4ni
This optimization supports the four modes of SM4, ECB, CBC, CFB,
and CTR. Since CBC and CFB do not support multiple block parallel
encryption, the optimization effect is not obvious.
Benchmark on Intel i5-6200U 2.30GHz, performance data of three
implementation methods, pure software sm4-generic, aesni/avx
acceleration, and aesni/avx2 acceleration, the data comes from
the 218 mode and 518 mode of tcrypt. The abscissas are blocks of
different lengths. The data is tabulated and the unit is Mb/s:
block-size | 16 64 128 256 1024 1420 4096
sm4-generic
ECB enc | 60.94 70.41 72.27 73.02 73.87 73.58 73.59
ECB dec | 61.87 70.53 72.15 73.09 73.89 73.92 73.86
CBC enc | 56.71 66.31 68.05 69.84 70.02 70.12 70.24
CBC dec | 54.54 65.91 68.22 69.51 70.63 70.79 70.82
CFB enc | 57.21 67.24 69.10 70.25 70.73 70.52 71.42
CFB dec | 57.22 64.74 66.31 67.24 67.40 67.64 67.58
CTR enc | 59.47 68.64 69.91 71.02 71.86 71.61 71.95
CTR dec | 59.94 68.77 69.95 71.00 71.84 71.55 71.95
sm4-aesni-avx
ECB enc | 44.95 177.35 292.06 316.98 339.48 322.27 330.59
ECB dec | 45.28 178.66 292.31 317.52 339.59 322.52 331.16
CBC enc | 57.75 67.68 69.72 70.60 71.48 71.63 71.74
CBC dec | 44.32 176.83 284.32 307.24 328.61 312.61 325.82
CFB enc | 57.81 67.64 69.63 70.55 71.40 71.35 71.70
CFB dec | 43.14 167.78 282.03 307.20 328.35 318.24 325.95
CTR enc | 42.35 163.32 279.11 302.93 320.86 310.56 317.93
CTR dec | 42.39 162.81 278.49 302.37 321.11 310.33 318.37
sm4-aesni-avx2
ECB enc | 45.19 177.41 292.42 316.12 339.90 322.53 330.54
ECB dec | 44.83 178.90 291.45 317.31 339.85 322.55 331.07
CBC enc | 57.66 67.62 69.73 70.55 71.58 71.66 71.77
CBC dec | 44.34 176.86 286.10 501.68 559.58 483.87 527.46
CFB enc | 57.43 67.60 69.61 70.52 71.43 71.28 71.65
CFB dec | 43.12 167.75 268.09 499.33 558.35 490.36 524.73
CTR enc | 42.42 163.39 256.17 493.95 552.45 481.58 517.19
CTR dec | 42.49 163.11 256.36 493.34 552.62 481.49 516.83
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for using elliptic curve keys for signing modules. It uses
a NIST P384 (secp384r1) key if the user chooses an elliptic curve key
and will have ECDSA support built into the kernel.
Note: A developer choosing an ECDSA key for signing modules should still
delete the signing key (rm certs/signing_key.*) when building an older
version of a kernel that only supports RSA keys. Unless kbuild automati-
cally detects and generates a new kernel module key, ECDSA-signed kernel
modules will fail signature verification.
Cc: David Howells <dhowells@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Replace the obsolete and ambiguos macro in_irq() with new
macro in_hardirq().
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
tcrypt supports GCM/CCM mode, CMAC, CBCMAC, and speed test of
SM4 algorithm.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The GCM/CCM mode of the SM4 algorithm is defined in the rfc 8998
specification, and the test case data also comes from rfc 8998.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are several places where the return value check of crypto_aead_setkey
and crypto_aead_setauthsize were lost. It is necessary to add these checks.
At the same time, move the crypto_aead_setauthsize() call out of the loop,
and only need to call it once after load transform.
Fixee: 53f52d7aec ("crypto: tcrypt - Added speed tests for AEAD crypto alogrithms in tcrypt test suite")
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Don't use "/**" to begin a comment that is not kernel-doc notation.
crypto/wp512.c:779: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* The core Whirlpool transform.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ecdsa_set_pub_key() makes an u64 pointer at 1 byte offset of the key.
This results in an unaligned u64 pointer. This pointer is passed to
ecc_swap_digits() which assumes natural alignment.
This causes a kernel crash on an armv7 platform:
[ 0.409022] Unhandled fault: alignment exception (0x001) at 0xc2a0a6a9
...
[ 0.416982] PC is at ecdsa_set_pub_key+0xdc/0x120
...
[ 0.491492] Backtrace:
[ 0.492059] [<c07c266c>] (ecdsa_set_pub_key) from [<c07c75d4>] (test_akcipher_one+0xf4/0x6c0)
Handle unaligned input buffer in ecc_swap_digits() by replacing
be64_to_cpu() to get_unaligned_be64(). Change type of in pointer to
void to reflect it doesn’t necessarily need to be aligned.
Fixes: 4e6602916b ("crypto: ecdsa - Add support for ECDSA signature verification")
Reported-by: Guillaume Gardet <guillaume.gardet@arm.com>
Suggested-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Mian Yousaf Kaukab <ykaukab@suse.de>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
tcrypt supports testing of SM4 cipher algorithms that use avx
instruction set acceleration. The implementation of sm4 instruction
set acceleration supports up to 8 blocks in parallel encryption and
decryption, which is 128 bytes. Therefore, the 128-byte block size
is also added to block_sizes.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds AES-NI/AVX/x86_64 assembler implementation of SM4
block cipher. Through two affine transforms, we can use the AES S-Box
to simulate the SM4 S-Box to achieve the effect of instruction
acceleration.
The main algorithm implementation comes from SM4 AES-NI work by
libgcrypt and Markku-Juhani O. Saarinen at:
https://github.com/mjosaarinen/sm4ni
This optimization supports the four modes of SM4, ECB, CBC, CFB, and
CTR. Since CBC and CFB do not support multiple block parallel
encryption, the optimization effect is not obvious.
Benchmark on Intel Xeon Cascadelake, the data comes from the 218 mode
and 518 mode of tcrypt. The abscissas are blocks of different lengths.
The data is tabulated and the unit is Mb/s:
sm4-generic | 16 64 128 256 1024 1420 4096
ECB enc | 40.99 46.50 48.05 48.41 49.20 49.25 49.28
ECB dec | 41.07 46.99 48.15 48.67 49.20 49.25 49.29
CBC enc | 37.71 45.28 46.77 47.60 48.32 48.37 48.40
CBC dec | 36.48 44.82 46.43 47.45 48.23 48.30 48.36
CFB enc | 37.94 44.84 46.12 46.94 47.57 47.46 47.68
CFB dec | 37.50 42.84 43.74 44.37 44.85 44.80 44.96
CTR enc | 39.20 45.63 46.75 47.49 48.09 47.85 48.08
CTR dec | 39.64 45.70 46.72 47.47 47.98 47.88 48.06
sm4-aesni-avx
ECB enc | 33.75 134.47 221.64 243.43 264.05 251.58 258.13
ECB dec | 34.02 134.92 223.11 245.14 264.12 251.04 258.33
CBC enc | 38.85 46.18 47.67 48.34 49.00 48.96 49.14
CBC dec | 33.54 131.29 223.88 245.27 265.50 252.41 263.78
CFB enc | 38.70 46.10 47.58 48.29 49.01 48.94 49.19
CFB dec | 32.79 128.40 223.23 244.87 265.77 253.31 262.79
CTR enc | 32.58 122.23 220.29 241.16 259.57 248.32 256.69
CTR dec | 32.81 122.47 218.99 241.54 258.42 248.58 256.61
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SM4 library is abstracted from sm4-generic algorithm, sm4-ce can depend on
the SM4 library instead of sm4-generic, and some functions in sm4-generic
do not need to be exported.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
With the swtich to use HMAC(SHA-512) as the default DRBG type, the
configuration must now also select SHA-512.
Fixes: 9b7b94683a "crypto: DRBG - switch to HMAC SHA512 DRBG as default
DRBG"
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Stephan Mueller <smueller@chronox.com>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto fixes from Herbert Xu:
- Regression fix in drbg due to missing self-test for new default
algorithm
- Add ratelimit on user-triggerable message in qat
- Fix build failure due to missing dependency in sl3516
- Remove obsolete PageSlab checks
- Fix bogus hardware register writes on Kunpeng920 in hisilicon/sec
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: hisilicon/sec - fix the process of disabling sva prefetching
crypto: sl3516 - Add dependency on ARCH_GEMINI
crypto: sl3516 - Typo s/Stormlink/Storlink/
crypto: drbg - self test for HMAC(SHA-512)
crypto: omap - Drop obsolete PageSlab check
crypto: scatterwalk - Remove obsolete PageSlab check
crypto: qat - ratelimit invalid ioctl message and print the invalid cmd
Pull crypto updates from Herbert Xu:
"Algorithms:
- Fix rmmod crash with x86/curve25519
- Add ECDH NIST P384
- Generate assembly files at build-time with perl scripts on arm
- Switch to HMAC SHA512 DRBG as default DRBG
Drivers:
- Add sl3516 crypto engine
- Add ECDH NIST P384 support in hisilicon/hpre
- Add {ofb,cfb,ctr} over {aes,sm4} in hisilicon/sec
- Add {ccm,gcm} over {aes,sm4} in hisilicon/sec
- Enable omap hwrng driver for TI K3 family
- Add support for AEAD algorithms in qce"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (142 commits)
crypto: sl3516 - depends on HAS_IOMEM
crypto: hisilicon/qm - implement for querying hardware tasks status.
crypto: sl3516 - Fix build warning without CONFIG_PM
MAINTAINERS: update caam crypto driver maintainers list
crypto: nx - Fix numerous sparse byte-order warnings
crypto: nx - Fix RCU warning in nx842_OF_upd_status
crypto: api - Move crypto attr definitions out of crypto.h
crypto: nx - Fix memcpy() over-reading in nonce
crypto: hisilicon/sec - Fix spelling mistake "fallbcak" -> "fallback"
crypto: sa2ul - Remove unused auth_len variable
crypto: sl3516 - fix duplicated inclusion
crypto: hisilicon/zip - adds the max shaper type rate
crypto: hisilicon/hpre - adds the max shaper type rate
crypto: hisilicon/sec - adds the max shaper type rate
crypto: hisilicon/qm - supports to inquiry each function's QoS
crypto: hisilicon/qm - add pf ping single vf function
crypto: hisilicon/qm - merges the work initialization process into a single function
crypto: hisilicon/qm - add the "alg_qos" file node
crypto: hisilicon/qm - supports writing QoS int the host
crypto: api - remove CRYPTOA_U32 and related functions
...