3eadd887db
4435 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
4f712ee0cb |
S390:
* Changes to FPU handling came in via the main s390 pull request * Only deliver to the guest the SCLP events that userspace has requested. * More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same). * Fix selftests undefined behavior. x86: * Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec. * Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests). * Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized. * Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest. * Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit. * Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code. * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support. * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot. * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels. * Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization. * Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives. * Fix the debugregs ABI for 32-bit KVM. * Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD. * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work. * Cleanup the logic for checking if the currently loaded vCPU is in-kernel. * Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel. x86 Xen emulation: * Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same. * When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation. * Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior). * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs. RISC-V: * Support exception and interrupt handling in selftests * New self test for RISC-V architectural timer (Sstc extension) * New extension support (Ztso, Zacas) * Support userspace emulation of random number seed CSRs. ARM: * Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it * Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path * Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register * Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: * Set reserved bits as zero in CPUCFG. * Start SW timer only when vcpu is blocking. * Do not restart SW timer when it is expired. * Remove unnecessary CSR register saving during enter guest. * Misc cleanups and fixes as usual. Generic: * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else. * Factor common "select" statements in common code instead of requiring each architecture to specify it * Remove thoroughly obsolete APIs from the uapi headers. * Move architecture-dependent stuff to uapi/asm/kvm.h * Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded. * Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker. Selftests: * Reduce boilerplate especially when utilize selftest TAP infrastructure. * Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory. * Fix benign bugs where tests neglect to close() guest_memfd files. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA== =mqOV -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ... |
||
Linus Torvalds
|
902861e34c |
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx TMNhHfyiHYDTx/GAV9NXW84tasJSDgA= =TG55 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ... |
||
Linus Torvalds
|
6d75c6f40a |
arm64 updates for 6.9:
* Reorganise the arm64 kernel VA space and add support for LPA2 (at stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address range with 4KB and 16KB pages * Enable Rust on arm64 * Support for the 2023 dpISA extensions (data processing ISA), host only * arm64 perf updates: - StarFive's StarLink (integrates one or more CPU cores with a shared L3 memory system) PMU support - Enable HiSilicon Erratum 162700402 quirk for HIP09 - Several updates for the HiSilicon PCIe PMU driver - Arm CoreSight PMU support - Convert all drivers under drivers/perf/ to use .remove_new() * Miscellaneous: - Don't enable workarounds for "rare" errata by default - Clean up the DAIF flags handling for EL0 returns (in preparation for NMI support) - Kselftest update for ptrace() - Update some of the sysreg field definitions - Slight improvement in the code generation for inline asm I/O accessors to permit offset addressing - kretprobes: acquire regs via a BRK exception (previously done via a trampoline handler) - SVE/SME cleanups, comment updates - Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously disabled due to gcc silently ignoring -falign-functions=N) -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmXxiSgACgkQa9axLQDI XvHd7hAAjQrQqxJogPT2ahM5/gxct8qTrXpIgX0B1Y7bb5R8ztvOUN9MJNuDyRsj 0s28SSZw387LReM5OUu+U6G/iahcuNAyP/8d9qeac32Tidd255fV3KPEh4C4eC+u 0HeOqLBZ+stmNoa71tBC2K6SmchizhYyYduvRnri8km8K4OMDawHWqWRTXl0PNRT RMVJvZTDJMPfMBFeD4+B7EnSFOoP14tKCw9MZvlbpT2PEV0kINjhCQiojW2jJgqv w36vm/dhwsg1avSzT1xhy3KE+m+7n28+IC/wr1HB7c1WumvYKv7Z84ieCp3PlO3Z owvVO7dKJC6X3RkoY6Kge5p2RHU6poDerDVHYiAvG+Zi57nrDmHyAubskThsGTGR AibSEeJ5nQ0yM6hx7zAIQa5XEo4l0svD1ZM7NynY+5JR44W9cdAH3SnEsvIBMGIf /ja+iZ1W4ZQnIESQXD5uDPSxILfqQ8Ebhdorpw+Qg3rB7OhdTdGSSGQCi6V2PcJH d/ErFO+i0lFRBPJtBbUAN4EEu3HJcVYEoEnVJYQahC+6KyNGLxO+7L6sH0YO7Pag P1LRa6h8ktuBMrbCrOPWdmJYNDYCbb5rRtmcCwO0ItZ4g5tYWp9djFc8pyctCaNB MZxxRrUCNwXTOcFTDiYzyk+JCvpf3EvXfvj8AH+P8BMjFWgqHqw= =KTD/ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The major features are support for LPA2 (52-bit VA/PA with 4K and 16K pages), the dpISA extension and Rust enabled on arm64. The changes are mostly contained within the usual arch/arm64/, drivers/perf, the arm64 Documentation and kselftests. The exception is the Rust support which touches some generic build files. Summary: - Reorganise the arm64 kernel VA space and add support for LPA2 (at stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address range with 4KB and 16KB pages - Enable Rust on arm64 - Support for the 2023 dpISA extensions (data processing ISA), host only - arm64 perf updates: - StarFive's StarLink (integrates one or more CPU cores with a shared L3 memory system) PMU support - Enable HiSilicon Erratum 162700402 quirk for HIP09 - Several updates for the HiSilicon PCIe PMU driver - Arm CoreSight PMU support - Convert all drivers under drivers/perf/ to use .remove_new() - Miscellaneous: - Don't enable workarounds for "rare" errata by default - Clean up the DAIF flags handling for EL0 returns (in preparation for NMI support) - Kselftest update for ptrace() - Update some of the sysreg field definitions - Slight improvement in the code generation for inline asm I/O accessors to permit offset addressing - kretprobes: acquire regs via a BRK exception (previously done via a trampoline handler) - SVE/SME cleanups, comment updates - Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously disabled due to gcc silently ignoring -falign-functions=N)" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (134 commits) Revert "mm: add arch hook to validate mmap() prot flags" Revert "arm64: mm: add support for WXN memory translation attribute" Revert "ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512" ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512 kselftest/arm64: Add 2023 DPISA hwcap test coverage kselftest/arm64: Add basic FPMR test kselftest/arm64: Handle FPMR context in generic signal frame parser arm64/hwcap: Define hwcaps for 2023 DPISA features arm64/ptrace: Expose FPMR via ptrace arm64/signal: Add FPMR signal handling arm64/fpsimd: Support FEAT_FPMR arm64/fpsimd: Enable host kernel access to FPMR arm64/cpufeature: Hook new identification registers up to cpufeature docs: perf: Fix build warning of hisi-pcie-pmu.rst perf: starfive: Only allow COMPILE_TEST for 64-bit architectures MAINTAINERS: Add entry for StarFive StarLink PMU docs: perf: Add description for StarFive's StarLink PMU dt-bindings: perf: starfive: Add JH8100 StarLink PMU perf: starfive: Add StarLink PMU support docs: perf: Update usage for target filter of hisi-pcie-pmu ... |
||
Catalin Marinas
|
69ebc01824 |
Revert "arm64: mm: add support for WXN memory translation attribute"
This reverts commit
|
||
Linus Torvalds
|
9187210eee |
Networking changes for 6.9.
Core & protocols ---------------- - Large effort by Eric to lower rtnl_lock pressure and remove locks: - Make commonly used parts of rtnetlink (address, route dumps etc.) lockless, protected by RCU instead of rtnl_lock. - Add a netns exit callback which already holds rtnl_lock, allowing netns exit to take rtnl_lock once in the core instead of once for each driver / callback. - Remove locks / serialization in the socket diag interface. - Remove 6 calls to synchronize_rcu() while holding rtnl_lock. - Remove the dev_base_lock, depend on RCU where necessary. - Support busy polling on a per-epoll context basis. Poll length and budget parameters can be set independently of system defaults. - Introduce struct net_hotdata, to make sure read-mostly global config variables fit in as few cache lines as possible. - Add optional per-nexthop statistics to ease monitoring / debug of ECMP imbalance problems. - Support TCP_NOTSENT_LOWAT in MPTCP. - Ensure that IPv6 temporary addresses' preferred lifetimes are long enough, compared to other configured lifetimes, and at least 2 sec. - Support forwarding of ICMP Error messages in IPSec, per RFC 4301. - Add support for the independent control state machine for bonding per IEEE 802.1AX-2008 5.4.15 in addition to the existing coupled control state machine. - Add "network ID" to MCTP socket APIs to support hosts with multiple disjoint MCTP networks. - Re-use the mono_delivery_time skbuff bit for packets which user space wants to be sent at a specified time. Maintain the timing information while traversing veth links, bridge etc. - Take advantage of MSG_SPLICE_PAGES for RxRPC DATA and ACK packets. - Simplify many places iterating over netdevs by using an xarray instead of a hash table walk (hash table remains in place, for use on fastpaths). - Speed up scanning for expired routes by keeping a dedicated list. - Speed up "generic" XDP by trying harder to avoid large allocations. - Support attaching arbitrary metadata to netconsole messages. Things we sprinkled into general kernel code -------------------------------------------- - Enforce VM_IOREMAP flag and range in ioremap_page_range and introduce VM_SPARSE kind and vm_area_[un]map_pages (used by bpf_arena). - Rework selftest harness to enable the use of the full range of ksft exit code (pass, fail, skip, xfail, xpass). Netfilter --------- - Allow userspace to define a table that is exclusively owned by a daemon (via netlink socket aliveness) without auto-removing this table when the userspace program exits. Such table gets marked as orphaned and a restarting management daemon can re-attach/regain ownership. - Speed up element insertions to nftables' concatenated-ranges set type. Compact a few related data structures. BPF --- - Add BPF token support for delegating a subset of BPF subsystem functionality from privileged system-wide daemons such as systemd through special mount options for userns-bound BPF fs to a trusted & unprivileged application. - Introduce bpf_arena which is sparse shared memory region between BPF program and user space where structures inside the arena can have pointers to other areas of the arena, and pointers work seamlessly for both user-space programs and BPF programs. - Introduce may_goto instruction that is a contract between the verifier and the program. The verifier allows the program to loop assuming it's behaving well, but reserves the right to terminate it. - Extend the BPF verifier to enable static subprog calls in spin lock critical sections. - Support registration of struct_ops types from modules which helps projects like fuse-bpf that seeks to implement a new struct_ops type. - Add support for retrieval of cookies for perf/kprobe multi links. - Support arbitrary TCP SYN cookie generation / validation in the TC layer with BPF to allow creating SYN flood handling in BPF firewalls. - Add code generation to inline the bpf_kptr_xchg() helper which improves performance when stashing/popping the allocated BPF objects. Wireless -------- - Add SPP (signaling and payload protected) AMSDU support. - Support wider bandwidth OFDMA, as required for EHT operation. Driver API ---------- - Major overhaul of the Energy Efficient Ethernet internals to support new link modes (2.5GE, 5GE), share more code between drivers (especially those using phylib), and encourage more uniform behavior. Convert and clean up drivers. - Define an API for querying per netdev queue statistics from drivers. - IPSec: account in global stats for fully offloaded sessions. - Create a concept of Ethernet PHY Packages at the Device Tree level, to allow parameterizing the existing PHY package code. - Enable Rx hashing (RSS) on GTP protocol fields. Misc ---- - Improvements and refactoring all over networking selftests. - Create uniform module aliases for TC classifiers, actions, and packet schedulers to simplify creating modprobe policies. - Address all missing MODULE_DESCRIPTION() warnings in networking. - Extend the Netlink descriptions in YAML to cover message encapsulation or "Netlink polymorphism", where interpretation of nested attributes depends on link type, classifier type or some other "class type". Drivers ------- - Ethernet high-speed NICs: - Add a new driver for Marvell's Octeon PCI Endpoint NIC VF. - Intel (100G, ice, idpf): - support E825-C devices - nVidia/Mellanox: - support devices with one port and multiple PCIe links - Broadcom (bnxt): - support n-tuple filters - support configuring the RSS key - Wangxun (ngbe/txgbe): - implement irq_domain for TXGBE's sub-interrupts - Pensando/AMD: - support XDP - optimize queue submission and wakeup handling (+17% bps) - optimize struct layout, saving 28% of memory on queues - Ethernet NICs embedded and virtual: - Google cloud vNIC: - refactor driver to perform memory allocations for new queue config before stopping and freeing the old queue memory - Synopsys (stmmac): - obey queueMaxSDU and implement counters required by 802.1Qbv - Renesas (ravb): - support packet checksum offload - suspend to RAM and runtime PM support - Ethernet switches: - nVidia/Mellanox: - support for nexthop group statistics - Microchip: - ksz8: implement PHY loopback - add support for KSZ8567, a 7-port 10/100Mbps switch - PTP: - New driver for RENESAS FemtoClock3 Wireless clock generator. - Support OCP PTP cards designed and built by Adva. - CAN: - Support recvmsg() flags for own, local and remote traffic on CAN BCM sockets. - Support for esd GmbH PCIe/402 CAN device family. - m_can: - Rx/Tx submission coalescing - wake on frame Rx - WiFi: - Intel (iwlwifi): - enable signaling and payload protected A-MSDUs - support wider-bandwidth OFDMA - support for new devices - bump FW API to 89 for AX devices; 90 for BZ/SC devices - MediaTek (mt76): - mt7915: newer ADIE version support - mt7925: radio temperature sensor support - Qualcomm (ath11k): - support 6 GHz station power modes: Low Power Indoor (LPI), Standard Power) SP and Very Low Power (VLP) - QCA6390 & WCN6855: support 2 concurrent station interfaces - QCA2066 support - Qualcomm (ath12k): - refactoring in preparation for Multi-Link Operation (MLO) support - 1024 Block Ack window size support - firmware-2.bin support - support having multiple identical PCI devices (firmware needs to have ATH12K_FW_FEATURE_MULTI_QRTR_ID) - QCN9274: support split-PHY devices - WCN7850: enable Power Save Mode in station mode - WCN7850: P2P support - RealTek: - rtw88: support for more rtw8811cu and rtw8821cu devices - rtw89: support SCAN_RANDOM_SN and SET_SCAN_DWELL - rtlwifi: speed up USB firmware initialization - rtwl8xxxu: - RTL8188F: concurrent interface support - Channel Switch Announcement (CSA) support in AP mode - Broadcom (brcmfmac): - per-vendor feature support - per-vendor SAE password setup - DMI nvram filename quirk for ACEPC W5 Pro Signed-off-by: Jakub Kicinski <kuba@kernel.org> -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmXv0mgACgkQMUZtbf5S IrtgMxAAuRd+WJW++SENr4KxIWhYO1q6Xcxnai43wrNkan9swD24icG8TYALt4f3 yoT6idQvWReAb5JNlh9rUQz8R7E0nJXlvEFn5MtJwcthx2C6wFo/XkJlddlRrT+j c2xGILwLjRhW65LaC0MZ2ECbEERkFz8xcGfK2SWzUgh6KYvPjcRfKFxugpM7xOQK P/Wnqhs4fVRS/Mj/bCcXcO+yhwC121Q3qVeQVjGS0AzEC65hAW87a/kc2BfgcegD EyI9R7mf6criQwX+0awubjfoIdr4oW/8oDVNvUDczkJkbaEVaLMQk9P5x/0XnnVS UHUchWXyI80Q8Rj12uN1/I0h3WtwNQnCRBuLSmtm6GLfCAwbLvp2nGWDnaXiqryW DVKUIHGvqPKjkOOMOVfSvfB3LvkS3xsFVVYiQBQCn0YSs/gtu4CoF2Nty9CiLPbK tTuxUnLdPDZDxU//l0VArZmP8p2JM7XQGJ+JH8GFH4SBTyBR23e0iyPSoyaxjnYn RReDnHMVsrS1i7GPhbqDJWn+uqMSs7N149i0XmmyeqwQHUVSJN3J2BApP2nCaDfy H2lTuYly5FfEezt61NvCE4qr/VsWeEjm1fYlFQ9dFn4pGn+HghyCpw+xD1ZN56DN lujemau5B3kk1UTtAT4ypPqvuqjkRFqpNV2LzsJSk/Js+hApw8Y= =oY52 -----END PGP SIGNATURE----- Merge tag 'net-next-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core & protocols: - Large effort by Eric to lower rtnl_lock pressure and remove locks: - Make commonly used parts of rtnetlink (address, route dumps etc) lockless, protected by RCU instead of rtnl_lock. - Add a netns exit callback which already holds rtnl_lock, allowing netns exit to take rtnl_lock once in the core instead of once for each driver / callback. - Remove locks / serialization in the socket diag interface. - Remove 6 calls to synchronize_rcu() while holding rtnl_lock. - Remove the dev_base_lock, depend on RCU where necessary. - Support busy polling on a per-epoll context basis. Poll length and budget parameters can be set independently of system defaults. - Introduce struct net_hotdata, to make sure read-mostly global config variables fit in as few cache lines as possible. - Add optional per-nexthop statistics to ease monitoring / debug of ECMP imbalance problems. - Support TCP_NOTSENT_LOWAT in MPTCP. - Ensure that IPv6 temporary addresses' preferred lifetimes are long enough, compared to other configured lifetimes, and at least 2 sec. - Support forwarding of ICMP Error messages in IPSec, per RFC 4301. - Add support for the independent control state machine for bonding per IEEE 802.1AX-2008 5.4.15 in addition to the existing coupled control state machine. - Add "network ID" to MCTP socket APIs to support hosts with multiple disjoint MCTP networks. - Re-use the mono_delivery_time skbuff bit for packets which user space wants to be sent at a specified time. Maintain the timing information while traversing veth links, bridge etc. - Take advantage of MSG_SPLICE_PAGES for RxRPC DATA and ACK packets. - Simplify many places iterating over netdevs by using an xarray instead of a hash table walk (hash table remains in place, for use on fastpaths). - Speed up scanning for expired routes by keeping a dedicated list. - Speed up "generic" XDP by trying harder to avoid large allocations. - Support attaching arbitrary metadata to netconsole messages. Things we sprinkled into general kernel code: - Enforce VM_IOREMAP flag and range in ioremap_page_range and introduce VM_SPARSE kind and vm_area_[un]map_pages (used by bpf_arena). - Rework selftest harness to enable the use of the full range of ksft exit code (pass, fail, skip, xfail, xpass). Netfilter: - Allow userspace to define a table that is exclusively owned by a daemon (via netlink socket aliveness) without auto-removing this table when the userspace program exits. Such table gets marked as orphaned and a restarting management daemon can re-attach/regain ownership. - Speed up element insertions to nftables' concatenated-ranges set type. Compact a few related data structures. BPF: - Add BPF token support for delegating a subset of BPF subsystem functionality from privileged system-wide daemons such as systemd through special mount options for userns-bound BPF fs to a trusted & unprivileged application. - Introduce bpf_arena which is sparse shared memory region between BPF program and user space where structures inside the arena can have pointers to other areas of the arena, and pointers work seamlessly for both user-space programs and BPF programs. - Introduce may_goto instruction that is a contract between the verifier and the program. The verifier allows the program to loop assuming it's behaving well, but reserves the right to terminate it. - Extend the BPF verifier to enable static subprog calls in spin lock critical sections. - Support registration of struct_ops types from modules which helps projects like fuse-bpf that seeks to implement a new struct_ops type. - Add support for retrieval of cookies for perf/kprobe multi links. - Support arbitrary TCP SYN cookie generation / validation in the TC layer with BPF to allow creating SYN flood handling in BPF firewalls. - Add code generation to inline the bpf_kptr_xchg() helper which improves performance when stashing/popping the allocated BPF objects. Wireless: - Add SPP (signaling and payload protected) AMSDU support. - Support wider bandwidth OFDMA, as required for EHT operation. Driver API: - Major overhaul of the Energy Efficient Ethernet internals to support new link modes (2.5GE, 5GE), share more code between drivers (especially those using phylib), and encourage more uniform behavior. Convert and clean up drivers. - Define an API for querying per netdev queue statistics from drivers. - IPSec: account in global stats for fully offloaded sessions. - Create a concept of Ethernet PHY Packages at the Device Tree level, to allow parameterizing the existing PHY package code. - Enable Rx hashing (RSS) on GTP protocol fields. Misc: - Improvements and refactoring all over networking selftests. - Create uniform module aliases for TC classifiers, actions, and packet schedulers to simplify creating modprobe policies. - Address all missing MODULE_DESCRIPTION() warnings in networking. - Extend the Netlink descriptions in YAML to cover message encapsulation or "Netlink polymorphism", where interpretation of nested attributes depends on link type, classifier type or some other "class type". Drivers: - Ethernet high-speed NICs: - Add a new driver for Marvell's Octeon PCI Endpoint NIC VF. - Intel (100G, ice, idpf): - support E825-C devices - nVidia/Mellanox: - support devices with one port and multiple PCIe links - Broadcom (bnxt): - support n-tuple filters - support configuring the RSS key - Wangxun (ngbe/txgbe): - implement irq_domain for TXGBE's sub-interrupts - Pensando/AMD: - support XDP - optimize queue submission and wakeup handling (+17% bps) - optimize struct layout, saving 28% of memory on queues - Ethernet NICs embedded and virtual: - Google cloud vNIC: - refactor driver to perform memory allocations for new queue config before stopping and freeing the old queue memory - Synopsys (stmmac): - obey queueMaxSDU and implement counters required by 802.1Qbv - Renesas (ravb): - support packet checksum offload - suspend to RAM and runtime PM support - Ethernet switches: - nVidia/Mellanox: - support for nexthop group statistics - Microchip: - ksz8: implement PHY loopback - add support for KSZ8567, a 7-port 10/100Mbps switch - PTP: - New driver for RENESAS FemtoClock3 Wireless clock generator. - Support OCP PTP cards designed and built by Adva. - CAN: - Support recvmsg() flags for own, local and remote traffic on CAN BCM sockets. - Support for esd GmbH PCIe/402 CAN device family. - m_can: - Rx/Tx submission coalescing - wake on frame Rx - WiFi: - Intel (iwlwifi): - enable signaling and payload protected A-MSDUs - support wider-bandwidth OFDMA - support for new devices - bump FW API to 89 for AX devices; 90 for BZ/SC devices - MediaTek (mt76): - mt7915: newer ADIE version support - mt7925: radio temperature sensor support - Qualcomm (ath11k): - support 6 GHz station power modes: Low Power Indoor (LPI), Standard Power) SP and Very Low Power (VLP) - QCA6390 & WCN6855: support 2 concurrent station interfaces - QCA2066 support - Qualcomm (ath12k): - refactoring in preparation for Multi-Link Operation (MLO) support - 1024 Block Ack window size support - firmware-2.bin support - support having multiple identical PCI devices (firmware needs to have ATH12K_FW_FEATURE_MULTI_QRTR_ID) - QCN9274: support split-PHY devices - WCN7850: enable Power Save Mode in station mode - WCN7850: P2P support - RealTek: - rtw88: support for more rtw8811cu and rtw8821cu devices - rtw89: support SCAN_RANDOM_SN and SET_SCAN_DWELL - rtlwifi: speed up USB firmware initialization - rtwl8xxxu: - RTL8188F: concurrent interface support - Channel Switch Announcement (CSA) support in AP mode - Broadcom (brcmfmac): - per-vendor feature support - per-vendor SAE password setup - DMI nvram filename quirk for ACEPC W5 Pro" * tag 'net-next-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2255 commits) nexthop: Fix splat with CONFIG_DEBUG_PREEMPT=y nexthop: Fix out-of-bounds access during attribute validation nexthop: Only parse NHA_OP_FLAGS for dump messages that require it nexthop: Only parse NHA_OP_FLAGS for get messages that require it bpf: move sleepable flag from bpf_prog_aux to bpf_prog bpf: hardcode BPF_PROG_PACK_SIZE to 2MB * num_possible_nodes() selftests/bpf: Add kprobe multi triggering benchmarks ptp: Move from simple ida to xarray vxlan: Remove generic .ndo_get_stats64 vxlan: Do not alloc tstats manually devlink: Add comments to use netlink gen tool nfp: flower: handle acti_netdevs allocation failure net/packet: Add getsockopt support for PACKET_COPY_THRESH net/netlink: Add getsockopt support for NETLINK_LISTEN_ALL_NSID selftests/bpf: Add bpf_arena_htab test. selftests/bpf: Add bpf_arena_list test. selftests/bpf: Add unit tests for bpf_arena_alloc/free_pages bpf: Add helper macro bpf_addr_space_cast() libbpf: Recognize __arena global variables. bpftool: Recognize arena map type ... |
||
Linus Torvalds
|
d08c407f71 |
A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model When timer wheel timers are armed they are placed into the timer wheel of a CPU which is likely to be busy at the time of expiry. This is done to avoid wakeups on potentially idle CPUs. This is wrong in several aspects: 1) The heuristics to select the target CPU are wrong by definition as the chance to get the prediction right is close to zero. 2) Due to #1 it is possible that timers are accumulated on a single target CPU 3) The required computation in the enqueue path is just overhead for dubious value especially under the consideration that the vast majority of timer wheel timers are either canceled or rearmed before they expire. The timer pull model avoids the above by removing the target computation on enqueue and queueing timers always on the CPU on which they get armed. This is achieved by having separate wheels for CPU pinned timers and global timers which do not care about where they expire. As long as a CPU is busy it handles both the pinned and the global timers which are queued on the CPU local timer wheels. When a CPU goes idle it evaluates its own timer wheels: - If the first expiring timer is a pinned timer, then the global timers can be ignored as the CPU will wake up before they expire. - If the first expiring timer is a global timer, then the expiry time is propagated into the timer pull hierarchy and the CPU makes sure to wake up for the first pinned timer. The timer pull hierarchy organizes CPUs in groups of eight at the lowest level and at the next levels groups of eight groups up to the point where no further aggregation of groups is required, i.e. the number of levels is log8(NR_CPUS). The magic number of eight has been established by experimention, but can be adjusted if needed. In each group one busy CPU acts as the migrator. It's only one CPU to avoid lock contention on remote timer wheels. The migrator CPU checks in its own timer wheel handling whether there are other CPUs in the group which have gone idle and have global timers to expire. If there are global timers to expire, the migrator locks the remote CPU timer wheel and handles the expiry. Depending on the group level in the hierarchy this handling can require to walk the hierarchy downwards to the CPU level. Special care is taken when the last CPU goes idle. At this point the CPU is the systemwide migrator at the top of the hierarchy and it therefore cannot delegate to the hierarchy. It needs to arm its own timer device to expire either at the first expiring timer in the hierarchy or at the first CPU local timer, which ever expires first. This completely removes the overhead from the enqueue path, which is e.g. for networking a true hotpath and trades it for a slightly more complex idle path. This has been in development for a couple of years and the final series has been extensively tested by various teams from silicon vendors and ran through extensive CI. There have been slight performance improvements observed on network centric workloads and an Intel team confirmed that this allows them to power down a die completely on a mult-die socket for the first time in a mostly idle scenario. There is only one outstanding ~1.5% regression on a specific overloaded netperf test which is currently investigated, but the rest is either positive or neutral performance wise and positive on the power management side. - Fixes for the timekeeping interpolation code for cross-timestamps: cross-timestamps are used for PTP to get snapshots from hardware timers and interpolated them back to clock MONOTONIC. The changes address a few corner cases in the interpolation code which got the math and logic wrong. - Simplifcation of the clocksource watchdog retry logic to automatically adjust to handle larger systems correctly instead of having more incomprehensible command line parameters. - Treewide consolidation of the VDSO data structures. - The usual small improvements and cleanups all over the place. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAN0THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoVKXEADIR45rjR1Xtz32js7B53Y65O4WNoOQ 6/ycWcswuGzg/h4QUpPSJ6gOGVmKSWwZi4n0P/VadCiXGSPPm0aUKsoRUt9DZsPY mtj2wjCSXKXiyhTl9OtrZME86ZAIGO1dQXa/sOHsiP5PCjgQkD0b5CYi1+B6eHDt 1/Uo2Tb9g8VAPppq20V5Uo93GrPf642oyi3FCFrR1M112Uuak5DmqHJYiDpreNcG D5SgI+ykSiaUaVyHifvqijoJk0rYXkqEC6evl02477lJ/X0vVo2/M8XPS95BxHST s5Iruo4rP+qeAy8QvhZpoPX59fO0m/AgA7cf77XXAtOpVdLH+bs4ILsEbouAIOtv lsmRkcYt+TpvrZFHPAxks+6g3afuROiDtxD5sXXpVWxvofi8FwWqubdlqdsbw9MP ZCTNyzNyKL47QeDwBfSynYUL1RSyqsphtIwk4oeQklH9rwMAnW21hi30z15hQ0pQ FOVkmcwi79JNvl/G+jRkDzw7r8/zcHshWdSjyUM04CDjjnCDjQOFWSIjEPwbQjjz S4HXpJKJW963dBgs9Z84/Ctw1GwoBk1qedDWDJE1257Qvmo/Wpe/7GddWcazOGnN RRFMzGPbOqBDbjtErOKGU+iCisgNEvz2XK+TI16uRjWde7DxZpiTVYgNDrZ+/Pyh rQ23UBms6ZRR+A== =iQlu -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A large set of updates and features for timers and timekeeping: - The hierarchical timer pull model When timer wheel timers are armed they are placed into the timer wheel of a CPU which is likely to be busy at the time of expiry. This is done to avoid wakeups on potentially idle CPUs. This is wrong in several aspects: 1) The heuristics to select the target CPU are wrong by definition as the chance to get the prediction right is close to zero. 2) Due to #1 it is possible that timers are accumulated on a single target CPU 3) The required computation in the enqueue path is just overhead for dubious value especially under the consideration that the vast majority of timer wheel timers are either canceled or rearmed before they expire. The timer pull model avoids the above by removing the target computation on enqueue and queueing timers always on the CPU on which they get armed. This is achieved by having separate wheels for CPU pinned timers and global timers which do not care about where they expire. As long as a CPU is busy it handles both the pinned and the global timers which are queued on the CPU local timer wheels. When a CPU goes idle it evaluates its own timer wheels: - If the first expiring timer is a pinned timer, then the global timers can be ignored as the CPU will wake up before they expire. - If the first expiring timer is a global timer, then the expiry time is propagated into the timer pull hierarchy and the CPU makes sure to wake up for the first pinned timer. The timer pull hierarchy organizes CPUs in groups of eight at the lowest level and at the next levels groups of eight groups up to the point where no further aggregation of groups is required, i.e. the number of levels is log8(NR_CPUS). The magic number of eight has been established by experimention, but can be adjusted if needed. In each group one busy CPU acts as the migrator. It's only one CPU to avoid lock contention on remote timer wheels. The migrator CPU checks in its own timer wheel handling whether there are other CPUs in the group which have gone idle and have global timers to expire. If there are global timers to expire, the migrator locks the remote CPU timer wheel and handles the expiry. Depending on the group level in the hierarchy this handling can require to walk the hierarchy downwards to the CPU level. Special care is taken when the last CPU goes idle. At this point the CPU is the systemwide migrator at the top of the hierarchy and it therefore cannot delegate to the hierarchy. It needs to arm its own timer device to expire either at the first expiring timer in the hierarchy or at the first CPU local timer, which ever expires first. This completely removes the overhead from the enqueue path, which is e.g. for networking a true hotpath and trades it for a slightly more complex idle path. This has been in development for a couple of years and the final series has been extensively tested by various teams from silicon vendors and ran through extensive CI. There have been slight performance improvements observed on network centric workloads and an Intel team confirmed that this allows them to power down a die completely on a mult-die socket for the first time in a mostly idle scenario. There is only one outstanding ~1.5% regression on a specific overloaded netperf test which is currently investigated, but the rest is either positive or neutral performance wise and positive on the power management side. - Fixes for the timekeeping interpolation code for cross-timestamps: cross-timestamps are used for PTP to get snapshots from hardware timers and interpolated them back to clock MONOTONIC. The changes address a few corner cases in the interpolation code which got the math and logic wrong. - Simplifcation of the clocksource watchdog retry logic to automatically adjust to handle larger systems correctly instead of having more incomprehensible command line parameters. - Treewide consolidation of the VDSO data structures. - The usual small improvements and cleanups all over the place" * tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits) timer/migration: Fix quick check reporting late expiry tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n vdso/datapage: Quick fix - use asm/page-def.h for ARM64 timers: Assert no next dyntick timer look-up while CPU is offline tick: Assume timekeeping is correctly handed over upon last offline idle call tick: Shut down low-res tick from dying CPU tick: Split nohz and highres features from nohz_mode tick: Move individual bit features to debuggable mask accesses tick: Move got_idle_tick away from common flags tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING tick: Move tick cancellation up to CPUHP_AP_TICK_DYING tick: Start centralizing tick related CPU hotplug operations tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick() tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick() tick: Use IS_ENABLED() whenever possible tick/sched: Remove useless oneshot ifdeffery tick/nohz: Remove duplicate between lowres and highres handlers tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer() hrtimer: Select housekeeping CPU during migration ... |
||
Paolo Bonzini
|
961e2bfcf3 |
KVM/arm64 updates for 6.9
- Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZepBjgAKCRCivnWIJHzd FnngAP93VxjCkJ+5qSmYpFNG6r0ECVIbLHFQ59nKn0+GgvbPEgEAwt8svdLdW06h njFTpdzvl4Po+aD/V9xHgqVz3kVvZwE= =1FbW -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.9' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.9 - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests |
||
Catalin Marinas
|
88f0912253 |
Merge branch 'for-next/stage1-lpa2' into for-next/core
* for-next/stage1-lpa2: (48 commits) : Add support for LPA2 and WXN and stage 1 arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed arm64/mm: Use generic __pud_free() helper in pud_free() implementation arm64: gitignore: ignore relacheck arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange arm64: mm: Make PUD folding check in set_pud() a runtime check arm64: mm: add support for WXN memory translation attribute mm: add arch hook to validate mmap() prot flags arm64: defconfig: Enable LPA2 support arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels arm64: ptdump: Deal with translation levels folded at runtime arm64: ptdump: Disregard unaddressable VA space arm64: mm: Add support for folding PUDs at runtime arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging arm64: mm: Add 5 level paging support to fixmap and swapper handling arm64: Enable LPA2 at boot if supported by the system arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion arm64: mm: Add definitions to support 5 levels of paging arm64: mm: Add LPA2 support to phys<->pte conversion routines arm64: mm: Wire up TCR.DS bit to PTE shareability fields ... |
||
Catalin Marinas
|
0c5ade742e |
Merge branches 'for-next/reorg-va-space', 'for-next/rust-for-arm64', 'for-next/misc', 'for-next/daif-cleanup', 'for-next/kselftest', 'for-next/documentation', 'for-next/sysreg' and 'for-next/dpisa', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: (39 commits) docs: perf: Fix build warning of hisi-pcie-pmu.rst perf: starfive: Only allow COMPILE_TEST for 64-bit architectures MAINTAINERS: Add entry for StarFive StarLink PMU docs: perf: Add description for StarFive's StarLink PMU dt-bindings: perf: starfive: Add JH8100 StarLink PMU perf: starfive: Add StarLink PMU support docs: perf: Update usage for target filter of hisi-pcie-pmu drivers/perf: hisi_pcie: Merge find_related_event() and get_event_idx() drivers/perf: hisi_pcie: Relax the check on related events drivers/perf: hisi_pcie: Check the target filter properly drivers/perf: hisi_pcie: Add more events for counting TLP bandwidth drivers/perf: hisi_pcie: Fix incorrect counting under metric mode drivers/perf: hisi_pcie: Introduce hisi_pcie_pmu_get_event_ctrl_val() drivers/perf: hisi_pcie: Rename hisi_pcie_pmu_{config,clear}_filter() drivers/perf: hisi: Enable HiSilicon Erratum 162700402 quirk for HIP09 perf/arm_cspmu: Add devicetree support dt-bindings/perf: Add Arm CoreSight PMU perf/arm_cspmu: Simplify counter reset perf/arm_cspmu: Simplify attribute groups perf/arm_cspmu: Simplify initialisation ... * for-next/reorg-va-space: : Reorganise the arm64 kernel VA space in preparation for LPA2 support : (52-bit VA/PA). arm64: kaslr: Adjust randomization range dynamically arm64: mm: Reclaim unused vmemmap region for vmalloc use arm64: vmemmap: Avoid base2 order of struct page size to dimension region arm64: ptdump: Discover start of vmemmap region at runtime arm64: ptdump: Allow all region boundaries to be defined at boot time arm64: mm: Move fixmap region above vmemmap region arm64: mm: Move PCI I/O emulation region above the vmemmap region * for-next/rust-for-arm64: : Enable Rust support for arm64 arm64: rust: Enable Rust support for AArch64 rust: Refactor the build target to allow the use of builtin targets * for-next/misc: : Miscellaneous arm64 patches ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512 arm64: Remove enable_daif macro arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exception arm64: cpufeatures: Clean up temporary variable to simplify code arm64: Update setup_arch() comment on interrupt masking arm64: remove unnecessary ifdefs around is_compat_task() arm64: ftrace: Don't forbid CALL_OPS+CC_OPTIMIZE_FOR_SIZE with Clang arm64/sme: Ensure that all fields in SMCR_EL1 are set to known values arm64/sve: Ensure that all fields in ZCR_EL1 are set to known values arm64/sve: Document that __SVE_VQ_MAX is much larger than needed arm64: make member of struct pt_regs and it's offset macro in the same order arm64: remove unneeded BUILD_BUG_ON assertion arm64: kretprobes: acquire the regs via a BRK exception arm64: io: permit offset addressing arm64: errata: Don't enable workarounds for "rare" errata by default * for-next/daif-cleanup: : Clean up DAIF handling for EL0 returns arm64: Unmask Debug + SError in do_notify_resume() arm64: Move do_notify_resume() to entry-common.c arm64: Simplify do_notify_resume() DAIF masking * for-next/kselftest: : Miscellaneous arm64 kselftest patches kselftest/arm64: Test that ptrace takes effect in the target process * for-next/documentation: : arm64 documentation patches arm64/sme: Remove spurious 'is' in SME documentation arm64/fp: Clarify effect of setting an unsupported system VL arm64/sme: Fix cut'n'paste in ABI document arm64/sve: Remove bitrotted comment about syscall behaviour * for-next/sysreg: : sysreg updates arm64/sysreg: Update ID_AA64DFR0_EL1 register arm64/sysreg: Update ID_DFR0_EL1 register fields arm64/sysreg: Add register fields for ID_AA64DFR1_EL1 * for-next/dpisa: : Support for 2023 dpISA extensions kselftest/arm64: Add 2023 DPISA hwcap test coverage kselftest/arm64: Add basic FPMR test kselftest/arm64: Handle FPMR context in generic signal frame parser arm64/hwcap: Define hwcaps for 2023 DPISA features arm64/ptrace: Expose FPMR via ptrace arm64/signal: Add FPMR signal handling arm64/fpsimd: Support FEAT_FPMR arm64/fpsimd: Enable host kernel access to FPMR arm64/cpufeature: Hook new identification registers up to cpufeature |
||
Mark Brown
|
c1932cac79 |
arm64/hwcap: Define hwcaps for 2023 DPISA features
The 2023 architecture extensions include a large number of floating point features, most of which simply add new instructions. Add hwcaps so that userspace can enumerate these features. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-6-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
4035c22ef7 |
arm64/ptrace: Expose FPMR via ptrace
Add a new regset to expose FPMR via ptrace. It is not added to the FPSIMD registers since that structure is exposed elsewhere without any allowance for extension we don't add there. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-5-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
8c46def444 |
arm64/signal: Add FPMR signal handling
Expose FPMR in the signal context on systems where it is supported. The kernel validates the exact size of the FPSIMD registers so we can't readily add it to fpsimd_context without disruption. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-4-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
203f2b95a8 |
arm64/fpsimd: Support FEAT_FPMR
FEAT_FPMR defines a new EL0 accessible register FPMR use to configure the FP8 related features added to the architecture at the same time. Detect support for this register and context switch it for EL0 when present. Due to the sharing of responsibility for saving floating point state between the host kernel and KVM FP8 support is not yet implemented in KVM and a stub similar to that used for SVCR is provided for FPMR in order to avoid bisection issues. To make it easier to share host state with the hypervisor we store FPMR as a hardened usercopy field in uw (along with some padding). Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-3-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
cc9f69a3da |
arm64/cpufeature: Hook new identification registers up to cpufeature
The 2023 architecture extensions have defined several new ID registers, hook them up to the cpufeature code so we can add feature checks and hwcaps based on their contents. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-1-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Puranjay Mohan
|
2c79bd34af |
arm64: prohibit probing on arch_kunwind_consume_entry()
Make arch_kunwind_consume_entry() as __always_inline otherwise the compiler might not inline it and allow attaching probes to it. Without this, just probing arch_kunwind_consume_entry() via <tracefs>/kprobe_events will crash the kernel on arm64. The crash can be reproduced using the following compiler and kernel combination: clang version 19.0.0git (https://github.com/llvm/llvm-project.git d68d29516102252f6bf6dc23fb22cef144ca1cb3) commit |
||
Jakub Kicinski
|
4b2765ae41 |
bpf-next-for-netdev
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZeEKVAAKCRDbK58LschI g7oYAQD5Jlv4fIVTvxvfZrTTZ2tU+OsPa75mc8SDKwpash3YygEA8kvESy8+t6pg D6QmSf1DIZdFoSp/bV+pfkNWMeR8gwg= =mTAj -----END PGP SIGNATURE----- Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== pull-request: bpf-next 2024-02-29 We've added 119 non-merge commits during the last 32 day(s) which contain a total of 150 files changed, 3589 insertions(+), 995 deletions(-). The main changes are: 1) Extend the BPF verifier to enable static subprog calls in spin lock critical sections, from Kumar Kartikeya Dwivedi. 2) Fix confusing and incorrect inference of PTR_TO_CTX argument type in BPF global subprogs, from Andrii Nakryiko. 3) Larger batch of riscv BPF JIT improvements and enabling inlining of the bpf_kptr_xchg() for RV64, from Pu Lehui. 4) Allow skeleton users to change the values of the fields in struct_ops maps at runtime, from Kui-Feng Lee. 5) Extend the verifier's capabilities of tracking scalars when they are spilled to stack, especially when the spill or fill is narrowing, from Maxim Mikityanskiy & Eduard Zingerman. 6) Various BPF selftest improvements to fix errors under gcc BPF backend, from Jose E. Marchesi. 7) Avoid module loading failure when the module trying to register a struct_ops has its BTF section stripped, from Geliang Tang. 8) Annotate all kfuncs in .BTF_ids section which eventually allows for automatic kfunc prototype generation from bpftool, from Daniel Xu. 9) Several updates to the instruction-set.rst IETF standardization document, from Dave Thaler. 10) Shrink the size of struct bpf_map resp. bpf_array, from Alexei Starovoitov. 11) Initial small subset of BPF verifier prepwork for sleepable bpf_timer, from Benjamin Tissoires. 12) Fix bpftool to be more portable to musl libc by using POSIX's basename(), from Arnaldo Carvalho de Melo. 13) Add libbpf support to gcc in CORE macro definitions, from Cupertino Miranda. 14) Remove a duplicate type check in perf_event_bpf_event, from Florian Lehner. 15) Fix bpf_spin_{un,}lock BPF helpers to actually annotate them with notrace correctly, from Yonghong Song. 16) Replace the deprecated bpf_lpm_trie_key 0-length array with flexible array to fix build warnings, from Kees Cook. 17) Fix resolve_btfids cross-compilation to non host-native endianness, from Viktor Malik. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (119 commits) selftests/bpf: Test if shadow types work correctly. bpftool: Add an example for struct_ops map and shadow type. bpftool: Generated shadow variables for struct_ops maps. libbpf: Convert st_ops->data to shadow type. libbpf: Set btf_value_type_id of struct bpf_map for struct_ops. bpf: Replace bpf_lpm_trie_key 0-length array with flexible array bpf, arm64: use bpf_prog_pack for memory management arm64: patching: implement text_poke API bpf, arm64: support exceptions arm64: stacktrace: Implement arch_bpf_stack_walk() for the BPF JIT bpf: add is_async_callback_calling_insn() helper bpf: introduce in_sleepable() helper bpf: allow more maps in sleepable bpf programs selftests/bpf: Test case for lacking CFI stub functions. bpf: Check cfi_stubs before registering a struct_ops type. bpf: Clarify batch lookup/lookup_and_delete semantics bpf, docs: specify which BPF_ABS and BPF_IND fields were zero bpf, docs: Fix typos in instruction-set.rst selftests/bpf: update tcp_custom_syncookie to use scalar packet offset bpf: Shrink size of struct bpf_map/bpf_array. ... ==================== Link: https://lore.kernel.org/r/20240301001625.8800-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Anshuman Khandual
|
9d6b6789c8 |
arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exception
Let's use existing ISS encoding for an watchpoint exception i.e ESR_ELx_WNR This represents an instruction's either writing to or reading from a memory location during an watchpoint exception. While here this drops non-standard macro AARCH64_ESR_ACCESS_MASK. Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240229083431.356578-1-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Liao Chang
|
622442666d |
arm64: cpufeatures: Clean up temporary variable to simplify code
Clean up one temporary variable to simplifiy code in capability detection. Signed-off-by: Liao Chang <liaochang1@huawei.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240229105208.456704-1-liaochang1@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Puranjay Mohan
|
451c3cab9a |
arm64: patching: implement text_poke API
The text_poke API is used to implement functions like memcpy() and memset() for instruction memory (RO+X). The implementation is similar to the x86 version. This will be used by the BPF JIT to write and modify BPF programs. There could be more users of this in the future. Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20240228141824.119877-2-puranjay12@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Ryo Takakura
|
6d1ce806e1 |
arm64: Update setup_arch() comment on interrupt masking
DAIF_PROCCTX_NOIRQ contains the FIQ bit. Update the comment as only asynchronous aborts are unmasked and FIQ is still masked. Signed-off-by: Ryo Takakura <takakura@valinux.co.jp> Link: https://lore.kernel.org/r/20240228022836.1756-1-takakura@valinux.co.jp Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Leonardo Bras
|
1984c80546 |
arm64: remove unnecessary ifdefs around is_compat_task()
Currently some parts of the codebase will test for CONFIG_COMPAT before testing is_compat_task(). is_compat_task() is a inlined function only present on CONFIG_COMPAT. On the other hand, for !CONFIG_COMPAT, we have in linux/compat.h: #define is_compat_task() (0) Since we have this define available in every usage of is_compat_task() for !CONFIG_COMPAT, it's unnecessary to keep the ifdefs, since the compiler is smart enough to optimize-out those snippets on CONFIG_COMPAT=n This requires some regset code as well as a few other defines to be made available on !CONFIG_COMPAT, so some symbols can get resolved before getting optimized-out. Signed-off-by: Leonardo Bras <leobras@redhat.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20240109034651.478462-2-leobras@redhat.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Puranjay Mohan
|
e74cb1b422 |
arm64: stacktrace: Implement arch_bpf_stack_walk() for the BPF JIT
This will be used by bpf_throw() to unwind till the program marked as exception boundary and run the callback with the stack of the main program. This is required for supporting BPF exceptions on ARM64. Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20240201125225.72796-2-puranjay12@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Baoquan He
|
40254101d8 |
arm64, crash: wrap crash dumping code into crash related ifdefs
Now crash codes under kernel/ folder has been split out from kexec code, crash dumping can be separated from kexec reboot in config items on arm64 with some adjustments. Here wrap up crash dumping codes with CONFIG_CRASH_DUMP ifdeffery. [bhe@redhat.com: fix building error in generic codes] Link: https://lkml.kernel.org/r/20240129135033.157195-2-bhe@redhat.com Link: https://lkml.kernel.org/r/20240124051254.67105-8-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Pingfan Liu <piliu@redhat.com> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Michael Kelley <mhklinux@outlook.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baoquan He
|
443cbaf9e2 |
crash: split vmcoreinfo exporting code out from crash_core.c
Now move the relevant codes into separate files: kernel/crash_reserve.c, include/linux/crash_reserve.h. And add config item CRASH_RESERVE to control its enabling. And also update the old ifdeffery of CONFIG_CRASH_CORE, including of <linux/crash_core.h> and config item dependency on CRASH_CORE accordingly. And also do renaming as follows: - arch/xxx/kernel/{crash_core.c => vmcore_info.c} because they are only related to vmcoreinfo exporting on x86, arm64, riscv. And also Remove config item CRASH_CORE, and rely on CONFIG_KEXEC_CORE to decide if build in crash_core.c. [yang.lee@linux.alibaba.com: remove duplicated include in vmcore_info.c] Link: https://lkml.kernel.org/r/20240126005744.16561-1-yang.lee@linux.alibaba.com Link: https://lkml.kernel.org/r/20240124051254.67105-3-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Yang Li <yang.lee@linux.alibaba.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Pingfan Liu <piliu@redhat.com> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Michael Kelley <mhklinux@outlook.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baoquan He
|
55c49fee57 |
mm/vmalloc: remove vmap_area_list
Earlier, vmap_area_list is exported to vmcoreinfo so that makedumpfile get the base address of vmalloc area. Now, vmap_area_list is empty, so export VMALLOC_START to vmcoreinfo instead, and remove vmap_area_list. [urezki@gmail.com: fix a warning in the crash_save_vmcoreinfo_init()] Link: https://lkml.kernel.org/r/20240111192329.449189-1-urezki@gmail.com Link: https://lkml.kernel.org/r/20240102184633.748113-6-urezki@gmail.com Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kazuhito Hagio <k-hagio-ab@nec.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com> Cc: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
5a00bfd6a5 |
arm64/mm: new ptep layer to manage contig bit
Create a new layer for the in-table PTE manipulation APIs. For now, The existing API is prefixed with double underscore to become the arch-private API and the public API is just a simple wrapper that calls the private API. The public API implementation will subsequently be used to transparently manipulate the contiguous bit where appropriate. But since there are already some contig-aware users (e.g. hugetlb, kernel mapper), we must first ensure those users use the private API directly so that the future contig-bit manipulations in the public API do not interfere with those existing uses. The following APIs are treated this way: - ptep_get - set_pte - set_ptes - pte_clear - ptep_get_and_clear - ptep_test_and_clear_young - ptep_clear_flush_young - ptep_set_wrprotect - ptep_set_access_flags Link: https://lkml.kernel.org/r/20240215103205.2607016-11-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
659e193027 |
arm64/mm: convert set_pte_at() to set_ptes(..., 1)
Since set_ptes() was introduced, set_pte_at() has been implemented as a generic macro around set_ptes(..., 1). So this change should continue to generate the same code. However, making this change prepares us for the transparent contpte support. It means we can reroute set_ptes() to __set_ptes(). Since set_pte_at() is a generic macro, there will be no equivalent __set_pte_at() to reroute to. Note that a couple of calls to set_pte_at() remain in the arch code. This is intentional, since those call sites are acting on behalf of core-mm and should continue to call into the public set_ptes() rather than the arch-private __set_ptes(). Link: https://lkml.kernel.org/r/20240215103205.2607016-9-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
532736558e |
arm64/mm: convert READ_ONCE(*ptep) to ptep_get(ptep)
There are a number of places in the arch code that read a pte by using the READ_ONCE() macro. Refactor these call sites to instead use the ptep_get() helper, which itself is a READ_ONCE(). Generated code should be the same. This will benefit us when we shortly introduce the transparent contpte support. In this case, ptep_get() will become more complex so we now have all the code abstracted through it. Link: https://lkml.kernel.org/r/20240215103205.2607016-8-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Bartosz Golaszewski
|
2758269149 |
arm64: gitignore: ignore relacheck
Add the generated executable for relacheck to the list of ignored files. Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org> Link: https://lore.kernel.org/r/20240222210441.33142-1-brgl@bgdev.pl Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
93576e3498 |
arm64/sme: Ensure that all fields in SMCR_EL1 are set to known values
At present nothing in our CPU initialisation code ever sets unknown fields in SMCR_EL1 to known values, all updates to SMCR_EL1 are read/modify/write sequences. All the unknown fields are RES0, explicitly initialise them as such to avoid future surprises. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240213-arm64-fp-init-vec-cr-v1-2-7e7c2d584f26@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Brown
|
2f0090549b |
arm64/sve: Ensure that all fields in ZCR_EL1 are set to known values
At present nothing in our CPU initialisation code ever sets unknown fields in ZCR_EL1 to known values, all updates to ZCR_EL1 are read/modify/write sequences for LEN. All the unknown fields are RES0, explicitly initialise them as such to avoid future surprises. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240213-arm64-fp-init-vec-cr-v1-1-7e7c2d584f26@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Kemeng Shi
|
58a0484eaf |
arm64: make member of struct pt_regs and it's offset macro in the same order
In struct pt_regs, member pstate is after member pc. Move offset macro of pstate after offset macro of pc to improve readability a little. Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240130175504.106364-1-shikemeng@huaweicloud.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Dawei Li
|
bce79b0c80 |
arm64: remove unneeded BUILD_BUG_ON assertion
Since commit
|
||
Anna-Maria Behnsen
|
d0fba04847 |
arm64: vdso: Use generic union vdso_data_store
There is already a generic union definition for vdso_data_store in vdso datapage header. Use this definition to prevent code duplication. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20240219153939.75719-6-anna-maria@linutronix.de |
||
Mark Rutland
|
253751233b |
arm64: kretprobes: acquire the regs via a BRK exception
On arm64, kprobes always take an exception and so create a struct pt_regs through the usual exception entry logic. Similarly kretprobes taskes and exception for function entry, but for function returns it uses a trampoline which attempts to create a struct pt_regs without taking an exception. This is problematic for a few reasons, including: 1) The kretprobes trampoline neither saves nor restores all of the portions of PSTATE. Before invoking the handler it saves a number of portions of PSTATE, and after returning from the handler it restores NZCV before returning to the original return address provided by the handler. 2) The kretprobe trampoline constructs the PSTATE value piecemeal from special purpose registers as it cannot read all of PSTATE atomically without taking an exception. This is somewhat fragile, and it's not possible to reliably recover PSTATE information which only exists on some physical CPUs (e.g. when SSBS support is mismatched). Today the kretprobes trampoline does not record: - BTYPE - SSBS - ALLINT - SS - PAN - UAO - DIT - TCO ... and this will only get worse with future architecture extensions which add more PSTATE bits. 3) The kretprobes trampoline doesn't store portions of struct pt_regs (e.g. the PMR value when using pseudo-NMIs). Due to this, helpers which operate on a struct pt_regs, such as interrupts_enabled(), may not work correctly. 4) The function entry and function exit handlers run in different contexts. The entry handler will always be run in a debug exception context (which is currently treated as an NMI), but the return will be treated as whatever context the instrumented function was executed in. The differences between these contexts are liable to cause problems (e.g. as the two can be differently interruptible or preemptible, adversely affecting synchronization between the handlers). 5) As the kretprobes trampoline runs in the same context as the code being probed, it is subject to the same single-stepping context, which may not be desirable if this is being driven by the kprobes handlers. Overall, this is fragile, painful to maintain, and gets in the way of supporting other things (e.g. RELIABLE_STACKTRACE, FEAT_NMI). This patch addresses these issues by replacing the kretprobes trampoline with a `BRK` instruction, and using an exception boundary to acquire and restore the regs, in the same way as the regular kprobes trampoline. Ive tested this atop v6.8-rc3: | KTAP version 1 | 1..1 | KTAP version 1 | # Subtest: kprobes_test | # module: test_kprobes | 1..7 | ok 1 test_kprobe | ok 2 test_kprobes | ok 3 test_kprobe_missed | ok 4 test_kretprobe | ok 5 test_kretprobes | ok 6 test_stacktrace_on_kretprobe | ok 7 test_stacktrace_on_nested_kretprobe | # kprobes_test: pass:7 fail:0 skip:0 total:7 | # Totals: pass:7 fail:0 skip:0 total:7 | ok 1 kprobes_test Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Florent Revest <revest@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Link: https://lore.kernel.org/r/20240208145916.2004154-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Mark Rutland
|
97d935faac |
arm64: Unmask Debug + SError in do_notify_resume()
When returning to a user context, the arm64 entry code masks all DAIF exceptions before handling pending work in exit_to_user_mode_prepare() and do_notify_resume(), where it will transiently unmask all DAIF exceptions. This is a holdover from the old entry assembly, which conservatively masked all DAIF exceptions, and it's only necessary to mask interrupts at this point during the exception return path, so long as we subsequently mask all DAIF exceptions before the actual exception return. While most DAIF manipulation follows a save...restore sequence, the manipulation in do_notify_resume() is the other way around, unmasking all DAIF exceptions before masking them again. This is unfortunate as we unnecessarily mask Debug and SError exceptions, and it would be nice to remove this special case to make DAIF manipulation simpler and most consistent. This patch changes exit_to_user_mode_prepare() and do_notify_resume() to only mask interrupts while handling pending work, masking other DAIF exceptions after this has completed. This removes the unusual DAIF manipulation and allows Debug and SError exceptions to be taken for a slightly longer window during the exception return path. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240206123848.1696480-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Itaru Kitayama <itaru.kitayama@linux.dev> |
||
Mark Rutland
|
997d79eb93 |
arm64: Move do_notify_resume() to entry-common.c
Currently do_notify_resume() lives in arch/arm64/kernel/signal.c, but it would make more sense for it to live in entry-common.c as it handles more than signals, and is coupled with the rest of the return-to-userspace sequence (e.g. with unusual DAIF masking that matches the exception return requirements). Move do_notify_resume() to entry-common.c. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240206123848.1696480-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Itaru Kitayama <itaru.kitayama@linux.dev> |
||
Mark Rutland
|
270de609ae |
arm64: Simplify do_notify_resume() DAIF masking
In do_notify_resume, we handle _TIF_NEED_RESCHED differently from all other flags, leaving IRQ+FIQ masked when calling into schedule(). This masking is a historical artifact, and it is not currently necessary to mask IRQ+FIQ when calling into schedule (as evidenced by the generic exit_to_user_mode_loop(), which unmasks IRQs before checking _TIF_NEED_RESCHED and calling schedule()). This patch removes the special case for _TIF_NEED_RESCHED, moving this check into the main loop such that schedule() will be called from a regular process context with IRQ+FIQ unmasked. This is a minor simplification to do_notify_resume() and brings it into line with the generic exit_to_user_mode_loop() logic. This will also aid subsequent rework of DAIF management. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240206123848.1696480-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Itaru Kitayama <itaru.kitayama@linux.dev> |
||
Mark Brown
|
d7b77a0d56 |
arm64/sme: Restore SMCR_EL1.EZT0 on exit from suspend
The fields in SMCR_EL1 reset to an architecturally UNKNOWN value. Since we
do not otherwise manage the traps configured in this register at runtime we
need to reconfigure them after a suspend in case nothing else was kind
enough to preserve them for us. Do so for SMCR_EL1.EZT0.
Fixes:
|
||
Mark Brown
|
9533864816 |
arm64/sme: Restore SME registers on exit from suspend
The fields in SMCR_EL1 and SMPRI_EL1 reset to an architecturally UNKNOWN
value. Since we do not otherwise manage the traps configured in this
register at runtime we need to reconfigure them after a suspend in case
nothing else was kind enough to preserve them for us.
The vector length will be restored as part of restoring the SME state for
the next SME using task.
Fixes:
|
||
Marc Zyngier
|
2aea7b77aa |
arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange
Open-coding the feature matching parameters for LVA/LVA2 leads to issues with upcoming changes to the cpufeature code. By making TGRAN{4,16,64} and VARange signed/unsigned as per the architecture, we can use the existing macros, making the feature match robust against those changes. Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
50e3ed0f93 |
arm64: mm: add support for WXN memory translation attribute
The AArch64 virtual memory system supports a global WXN control, which can be enabled to make all writable mappings implicitly no-exec. This is a useful hardening feature, as it prevents mistakes in managing page table permissions from being exploited to attack the system. When enabled at EL1, the restrictions apply to both EL1 and EL0. EL1 is completely under our control, and has been cleaned up to allow WXN to be enabled from boot onwards. EL0 is not under our control, but given that widely deployed security features such as selinux or PaX already limit the ability of user space to create mappings that are writable and executable at the same time, the impact of enabling this for EL0 is expected to be limited. (For this reason, common user space libraries that have a legitimate need for manipulating executable code already carry fallbacks such as [0].) If enabled at compile time, the feature can still be disabled at boot if needed, by passing arm64.nowxn on the kernel command line. [0] https://github.com/libffi/libffi/blob/master/src/closures.c#L440 Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20240214122845.2033971-88-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
352b0395b5 |
arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs
Update Kconfig to permit 4k and 16k granule configurations to be built with 52-bit virtual addressing, now that all the prerequisites are in place. While at it, update the feature description so it matches on the appropriate feature bits depending on the page size. For simplicity, let's just keep ARM64_HAS_VA52 as the feature name. Note that LPA2 based 52-bit virtual addressing requires 52-bit physical addressing support to be enabled as well, as programming TCR.TxSZ to values below 16 is not allowed unless TCR.DS is set, which is what activates the 52-bit physical addressing support. While supporting the converse (52-bit physical addressing without 52-bit virtual addressing) would be possible in principle, let's keep things simple, by only allowing these features to be enabled at the same time. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-85-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
0dd4f60a2c |
arm64: mm: Add support for folding PUDs at runtime
In order to support LPA2 on 16k pages in a way that permits non-LPA2 systems to run the same kernel image, we have to be able to fall back to at most 48 bits of virtual addressing. Falling back to 48 bits would result in a level 0 with only 2 entries, which is suboptimal in terms of TLB utilization. So instead, let's fall back to 47 bits in that case. This means we need to be able to fold PUDs dynamically, similar to how we fold P4Ds for 48 bit virtual addressing on LPA2 with 4k pages. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-81-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
9684ec186f |
arm64: Enable LPA2 at boot if supported by the system
Update the early kernel mapping code to take 52-bit virtual addressing into account based on the LPA2 feature. This is a bit more involved than LVA (which is supported with 64k pages only), given that some page table descriptor bits change meaning in this case. To keep the handling in asm to a minimum, the initial ID map is still created with 48-bit virtual addressing, which implies that the kernel image must be loaded into 48-bit addressable physical memory. This is currently required by the boot protocol, even though we happen to support placement outside of that for LVA/64k based configurations. Enabling LPA2 involves more than setting TCR.T1SZ to a lower value, there is also a DS bit in TCR that needs to be set, and which changes the meaning of bits [9:8] in all page table descriptors. Since we cannot enable DS and every live page table descriptor at the same time, let's pivot through another temporary mapping. This avoids the need to reintroduce manipulations of the page tables with the MMU and caches disabled. To permit the LPA2 feature to be overridden on the kernel command line, which may be necessary to work around silicon errata, or to deal with mismatched features on heterogeneous SoC designs, test for CPU feature overrides first, and only then enable LPA2. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-78-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
2b6c8f96cc |
arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion
Add support for 5 level paging in the G-to-nG routine that creates its own temporary page tables to traverse the swapper page tables. Also add support for running the 5 level configuration with the top level folded at runtime, to support CPUs that do not implement the LPA2 extension. While at it, wire up the level skipping logic so it will also trigger on 4 level configurations with LPA2 enabled at build time but not active at runtime, as we'll fall back to 3 level paging in that case. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-77-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
68aec33f8f |
arm64: mm: Add feature override support for LVA
Add support for overriding the VARange field of the MMFR2 CPU ID register. This permits the associated LVA feature to be overridden early enough for the boot code that creates the kernel mapping to take it into account. Given that LPA2 implies LVA, disabling the latter should disable the former as well. So override the ID_AA64MMFR0.TGran field of the current page size as well if it advertises support for 52-bit addressing. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-71-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
9cce9c6c2c |
arm64: mm: Handle LVA support as a CPU feature
Currently, we detect CPU support for 52-bit virtual addressing (LVA) extremely early, before creating the kernel page tables or enabling the MMU. We cannot override the feature this early, and so large virtual addressing is always enabled on CPUs that implement support for it if the software support for it was enabled at build time. It also means we rely on non-trivial code in asm to deal with this feature. Given that both the ID map and the TTBR1 mapping of the kernel image are guaranteed to be 48-bit addressable, it is not actually necessary to enable support this early, and instead, we can model it as a CPU feature. That way, we can rely on code patching to get the correct TCR.T1SZ values programmed on secondary boot and resume from suspend. On the primary boot path, we simply enable the MMU with 48-bit virtual addressing initially, and update TCR.T1SZ if LVA is supported from C code, right before creating the kernel mapping. Given that TTBR1 still points to reserved_pg_dir at this point, updating TCR.T1SZ should be safe without the need for explicit TLB maintenance. Since this gets rid of all accesses to the vabits_actual variable from asm code that occurred before TCR.T1SZ had been programmed, we no longer have a need for this variable, and we can replace it with a C expression that produces the correct value directly, based on the value of TCR.T1SZ. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
ba5b0333a8 |
arm64: mm: omit redundant remap of kernel image
Now that the early kernel mapping is created with all the right attributes and segment boundaries, there is no longer a need to recreate it and switch to it. This also means we no longer have to copy the kasan shadow or some parts of the fixmap from one set of page tables to the other. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-68-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Ard Biesheuvel
|
84b04d3e6b |
arm64: kernel: Create initial ID map from C code
The asm code that creates the initial ID map is rather intricate and hard to follow. This is problematic because it makes adding support for things like LPA2 or WXN more difficult than necessary. Also, it is parameterized like the rest of the MM code to run with a configurable number of levels, which is rather pointless, given that all AArch64 CPUs implement support for 48-bit virtual addressing, and that many systems exist with DRAM located outside of the 39-bit addressable range, which is the only smaller VA size that is widely used, and we need additional tricks to make things work in that combination. So let's bite the bullet, and rip out all the asm macros, and fiddly code, and replace it with a C implementation based on the newly added routines for creating the early kernel VA mappings. And while at it, create the initial ID map based on 48-bit virtual addressing as well, regardless of the number of configured levels for the kernel proper. Note that this code may execute with the MMU and caches disabled, and is therefore not permitted to make unaligned accesses. This shouldn't generally happen in any case for the algorithm as implemented, but to be sure, let's pass -mstrict-align to the compiler just in case. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-66-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |