IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
__create_hyp_mappings() performs some kind of address validation before
creating the mapping, by verifying that the start address is above
PAGE_OFFSET.
This check is not completely correct for kernel memory (the upper
boundary has to be checked as well so we do not end up with highmem
pages), and wrong for IO mappings (the mapping must exist in the vmalloc
region).
Fix this by using the proper predicates (virt_addr_valid and
is_vmalloc_addr), which also work correctly on ARM64 (where the vmalloc
region is below PAGE_OFFSET).
Also change the BUG_ON() into a less agressive error return.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
arm64 cannot represent the kernel VAs in HYP mode, because of the lack
of TTBR1 at EL2. A way to cope with this situation is to have HYP VAs
to be an offset from the kernel VAs.
Introduce macros to convert a kernel VA to a HYP VA, make the HYP
mapping functions use these conversion macros. Also change the
documentation to reflect the existence of the offset.
On ARM, where we can have an identity mapping between kernel and HYP,
the macros are without any effect.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to keep the VFP allocation code common, use an abstract type
for the VFP containers. Maps onto struct vfp_hard_struct on ARM.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make the split of the pgd_ptr an implementation specific thing
by moving the init call to an inline function.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move low level MMU-related operations to kvm_mmu.h. This makes
the MMU code reusable by the arm64 port.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This one got lost in the move to handle_exit, so let's reintroduce it
using an accessor to the immediate value field like the other ones.
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
The exit handler selection code cannot be shared with arm64
(two different modes, more exception classes...).
Move it to a separate file (handle_exit.c).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Bit 8 is cache maintenance, bit 9 is external abort.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Instead of directly accessing the fault registers, use proper accessors
so the core code can be shared.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On 32bit ARM, unsigned long is guaranteed to be a 32bit quantity.
On 64bit ARM, it is a 64bit quantity.
In order to be able to share code between the two architectures,
convert the registers to be unsigned long, so the core code can
be oblivious of the change.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
hyp_hvc vector offset is 0x14 and hyp_svc vector offset is 0x8.
Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
This was replaced with prepare/commit long before:
commit f7784b8ec9b6a041fa828cfbe9012fe51933f5ac
KVM: split kvm_arch_set_memory_region into prepare and commit
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch makes the parameter old a const pointer to the old memory
slot and adds a new parameter named change to know the change being
requested: the former is for removing extra copying and the latter is
for cleaning up the code.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch drops the parameter old, a copy of the old memory slot, and
adds a new parameter named change to know the change being requested.
This not only cleans up the code but also removes extra copying of the
memory slot structure.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
X86 does not use this any more. The remaining user, s390's !user_alloc
check, can be simply removed since KVM_SET_MEMORY_REGION ioctl is no
longer supported.
Note: fixed powerpc's indentations with spaces to suppress checkpatch
errors.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Commit 7a905b1 (KVM: Remove user_alloc from struct kvm_memory_slot)
broke KVM/ARM by removing the user_alloc field from a public structure.
As we only used this field to alert the user that we didn't support
this operation mode, there is no harm in discarding this bit of code
without any remorse.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Commit f82a8cfe9 (KVM: struct kvm_memory_slot.user_alloc -> bool)
broke the ARM KVM port by changing the prototype of two global
functions.
Apply the same change to fix the compilation breakage.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Now that the maintenance interrupt handling is actually out of the
handler itself, the code becomes quite racy as we can get preempted
while we process the state.
Wrapping this code around the distributor lock ensures that we're not
preempted and relatively race-free.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The VGIC doesn't guarantee that an EOIed LR that has been configured
to generate a maintenance interrupt will appear as empty.
While the code recovers from this situation, it is better to clean
the LR and flag it as empty so it can be quickly recycled.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
It is now possible to select CONFIG_KVM_ARM_TIMER to enable the
KVM architected timer support.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Do the necessary save/restore dance for the timers in the world
switch code. In the process, allow the guest to read the physical
counter, which is useful for its own clock_event_device.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add some the architected timer related infrastructure, and support timer
interrupt injection, which can happen as a resultof three possible
events:
- The virtual timer interrupt has fired while we were still
executing the guest
- The timer interrupt hasn't fired, but it expired while we
were doing the world switch
- A hrtimer we programmed earlier has fired
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
It is now possible to select the VGIC configuration option.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add the init code for the hypervisor, the virtual machine, and
the virtual CPUs.
An interrupt handler is also wired to allow the VGIC maintenance
interrupts, used to deal with level triggered interrupts and LR
underflows.
A CPU hotplug notifier is registered to disable/enable the interrupt
as requested.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Enable the VGIC control interface to be save-restored on world switch.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Plug the interrupt injection code. Interrupts can now be generated
from user space.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
An interrupt may have been disabled after being made pending on the
CPU interface (the classic case is a timer running while we're
rebooting the guest - the interrupt would kick as soon as the CPU
interface gets enabled, with deadly consequences).
The solution is to examine already active LRs, and check the
interrupt is still enabled. If not, just retire it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add VGIC virtual CPU interface code, picking pending interrupts
from the distributor and stashing them in the VGIC control interface
list registers.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add the GIC distributor emulation code. A number of the GIC features
are simply ignored as they are not required to boot a Linux guest.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
User space defines the model to emulate to a guest and should therefore
decide which addresses are used for both the virtual CPU interface
directly mapped in the guest physical address space and for the emulated
distributor interface, which is mapped in software by the in-kernel VGIC
support.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Wire the basic framework code for VGIC support and the initial in-kernel
MMIO support code for the VGIC, used for the distributor emulation.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When an interrupt occurs for the guest, it is sometimes necessary
to find out which vcpu was running at that point.
Keep track of which vcpu is being run in kvm_arch_vcpu_ioctl_run(),
and allow the data to be retrieved using either:
- kvm_arm_get_running_vcpu(): returns the vcpu running at this point
on the current CPU. Can only be used in a non-preemptible context.
- kvm_arm_get_running_vcpus(): returns the per-CPU variable holding
the running vcpus, usable for per-CPU interrupts.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On ARM some bits are specific to the model being emulated for the guest and
user space needs a way to tell the kernel about those bits. An example is mmio
device base addresses, where KVM must know the base address for a given device
to properly emulate mmio accesses within a certain address range or directly
map a device with virtualiation extensions into the guest address space.
We make this API ARM-specific as we haven't yet reached a consensus for a
generic API for all KVM architectures that will allow us to do something like
this.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Implement the PSCI specification (ARM DEN 0022A) to control
virtual CPUs being "powered" on or off.
PSCI/KVM is detected using the KVM_CAP_ARM_PSCI capability.
A virtual CPU can now be initialized in a "powered off" state,
using the KVM_ARM_VCPU_POWER_OFF feature flag.
The guest can use either SMC or HVC to execute a PSCI function.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
When the guest accesses I/O memory this will create data abort
exceptions and they are handled by decoding the HSR information
(physical address, read/write, length, register) and forwarding reads
and writes to QEMU which performs the device emulation.
Certain classes of load/store operations do not support the syndrome
information provided in the HSR. We don't support decoding these (patches
are available elsewhere), so we report an error to user space in this case.
This requires changing the general flow somewhat since new calls to run
the VCPU must check if there's a pending MMIO load and perform the write
after userspace has made the data available.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Handles the guest faults in KVM by mapping in corresponding user pages
in the 2nd stage page tables.
We invalidate the instruction cache by MVA whenever we map a page to the
guest (no, we cannot only do it when we have an iabt because the guest
may happily read/write a page before hitting the icache) if the hardware
uses VIPT or PIPT. In the latter case, we can invalidate only that
physical page. In the first case, all bets are off and we simply must
invalidate the whole affair. Not that VIVT icaches are tagged with
vmids, and we are out of the woods on that one. Alexander Graf was nice
enough to remind us of this massive pain.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
We use space #18 for floating point regs.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The Cache Size Selection Register (CSSELR) selects the current Cache
Size ID Register (CCSIDR). You write which cache you are interested
in to CSSELR, and read the information out of CCSIDR.
Which cache numbers are valid is known by reading the Cache Level ID
Register (CLIDR).
To export this state to userspace, we add a KVM_REG_ARM_DEMUX
numberspace (17), which uses 8 bits to represent which register is
being demultiplexed (0 for CCSIDR), and the lower 8 bits to represent
this demultiplexing (in our case, the CSSELR value, which is 4 bits).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The following three ioctls are implemented:
- KVM_GET_REG_LIST
- KVM_GET_ONE_REG
- KVM_SET_ONE_REG
Now we have a table for all the cp15 registers, we can drive a generic
API.
The register IDs carry the following encoding:
ARM registers are mapped using the lower 32 bits. The upper 16 of that
is the register group type, or coprocessor number:
ARM 32-bit CP15 registers have the following id bit patterns:
0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
ARM 64-bit CP15 registers have the following id bit patterns:
0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
For futureproofing, we need to tell QEMU about the CP15 registers the
host lets the guest access.
It will need this information to restore a current guest on a future
CPU or perhaps a future KVM which allow some of these to be changed.
We use a separate table for these, as they're only for the userspace API.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>