IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The sigaddset/sigdelset/sigismember functions that are implemented with
bitfield insn cannot allow the sigset argument to be placed in a data
register since the sigset is wider than 32 bits. Remove the "d"
constraint from the asm statements.
The effect of the bug is that sending RT signals does not work, the signal
number is truncated modulo 32.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: stable@vger.kernel.org
Pull module signing support from Rusty Russell:
"module signing is the highlight, but it's an all-over David Howells frenzy..."
Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG.
* 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits)
X.509: Fix indefinite length element skip error handling
X.509: Convert some printk calls to pr_devel
asymmetric keys: fix printk format warning
MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
MODSIGN: Make mrproper should remove generated files.
MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs
MODSIGN: Use the same digest for the autogen key sig as for the module sig
MODSIGN: Sign modules during the build process
MODSIGN: Provide a script for generating a key ID from an X.509 cert
MODSIGN: Implement module signature checking
MODSIGN: Provide module signing public keys to the kernel
MODSIGN: Automatically generate module signing keys if missing
MODSIGN: Provide Kconfig options
MODSIGN: Provide gitignore and make clean rules for extra files
MODSIGN: Add FIPS policy
module: signature checking hook
X.509: Add a crypto key parser for binary (DER) X.509 certificates
MPILIB: Provide a function to read raw data into an MPI
X.509: Add an ASN.1 decoder
X.509: Add simple ASN.1 grammar compiler
...
Pull pile 2 of execve and kernel_thread unification work from Al Viro:
"Stuff in there: kernel_thread/kernel_execve/sys_execve conversions for
several more architectures plus assorted signal fixes and cleanups.
There'll be more (in particular, real fixes for the alpha
do_notify_resume() irq mess)..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (43 commits)
alpha: don't open-code trace_report_syscall_{enter,exit}
Uninclude linux/freezer.h
m32r: trim masks
avr32: trim masks
tile: don't bother with SIGTRAP in setup_frame
microblaze: don't bother with SIGTRAP in setup_rt_frame()
mn10300: don't bother with SIGTRAP in setup_frame()
frv: no need to raise SIGTRAP in setup_frame()
x86: get rid of duplicate code in case of CONFIG_VM86
unicore32: remove pointless test
h8300: trim _TIF_WORK_MASK
parisc: decide whether to go to slow path (tracesys) based on thread flags
parisc: don't bother looping in do_signal()
parisc: fix double restarts
bury the rest of TIF_IRET
sanitize tsk_is_polling()
bury _TIF_RESTORE_SIGMASK
unicore32: unobfuscate _TIF_WORK_MASK
mips: NOTIFY_RESUME is not needed in TIF masks
mips: merge the identical "return from syscall" per-ABI code
...
Conflicts:
arch/arm/include/asm/thread_info.h
Pull generic execve() changes from Al Viro:
"This introduces the generic kernel_thread() and kernel_execve()
functions, and switches x86, arm, alpha, um and s390 over to them."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (26 commits)
s390: convert to generic kernel_execve()
s390: switch to generic kernel_thread()
s390: fold kernel_thread_helper() into ret_from_fork()
s390: fold execve_tail() into start_thread(), convert to generic sys_execve()
um: switch to generic kernel_thread()
x86, um/x86: switch to generic sys_execve and kernel_execve
x86: split ret_from_fork
alpha: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
alpha: switch to generic kernel_thread()
alpha: switch to generic sys_execve()
arm: get rid of execve wrapper, switch to generic execve() implementation
arm: optimized current_pt_regs()
arm: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
arm: split ret_from_fork, simplify kernel_thread() [based on patch by rmk]
generic sys_execve()
generic kernel_execve()
new helper: current_pt_regs()
preparation for generic kernel_thread()
um: kill thread->forking
um: let signal_delivered() do SIGTRAP on singlestepping into handler
...
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
other branch as normal asm-generic changes do. One is a fix for a
build warning, the other two are more interesting:
* A patch from Mark Brown to allow using the common clock infrastructure
on all architectures, so we can use the clock API in architecture
independent device drivers.
* The UAPI split patches from David Howells for the asm-generic files.
There are other architecture specific series that are going through
the arch maintainer tree and that depend on this one.
There may be a few small merge conflicts between Mark's patch and
the following arch header file split patches. In each case the solution
will be to keep the new "generic-y += clkdev.h" line, even if it
ends up being the only line in the Kbuild file.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIVAwUAUHLuO2CrR//JCVInAQLsKxAAoa+oSP3KGuQbLHq2wvUxAdXWDFcZgKo+
qMRejSJPI0sreJ9GJHpUjHtJ7W2gujeo9upmUIJzoWY9vrmjkhCDkaWliaQI8SmY
CKB9zI2xCB9iFzHtWxocfnJzU7NvzjJm+jnIYrqkaO9HGMxL99tsv9TsBYXK/08j
QmlGP5fHdGU3zZxVt5r1GL8/nfX4zn3/YEll9nJ7vqXZltIBbaksxmgPoa0QkkH8
LMeMAlgRR2DHWt58gXHyGB7Afx3QEnZBDaQpYxA446P+2gtvIhFYOnpuX14pZb7t
m4IM0vOO6WzARQR6DJlRHfYJevojgGHu4Y8wkEzuWE+Hr2BqmiVct7UKqGJdqTY5
7+I7wwaJmdd3zE61LxRS9UOjJDwMh1gmsNU4+42RArQ5eLcikNR5zfYzDRLCTmnk
qKZvbiaxgme2YvWazxbBT6EqmIVU6lfHHIoMLr8U0j40Cl0GCmN7EBbe7/r2Jhjs
6VnCOJ6vb4RCOJGGAcLRMQu7xEtqcCe0Zht839wl13QXewxS3QRgwg6Bjy/fwA9r
jij5gf+R25J/fQW7yZv4LwcMowRE1xvpu0ebwkK3LLR8jcon71scd6f3PW/bUUpj
j4tgFuJbXzOxQ4LFgBzvdVgx3wDzsQhqb/6p2l6ROdcw7xXFDdFZ4zq3h0A25wXZ
J6WDO387tpg=
=Aaki
-----END PGP SIGNATURE-----
Merge tag 'asm-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"This has three changes for asm-generic that did not really fit into
any other branch as normal asm-generic changes do. One is a fix for a
build warning, the other two are more interesting:
* A patch from Mark Brown to allow using the common clock
infrastructure on all architectures, so we can use the clock API in
architecture independent device drivers.
* The UAPI split patches from David Howells for the asm-generic
files. There are other architecture specific series that are going
through the arch maintainer tree and that depend on this one.
There may be a few small merge conflicts between Mark's patch and the
following arch header file split patches. In each case the solution
will be to keep the new "generic-y += clkdev.h" line, even if it ends
up being the only line in the Kbuild file."
* tag 'asm-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
UAPI: (Scripted) Disintegrate include/asm-generic
asm-generic: Add default clkdev.h
asm-generic: xor: mark static functions as __maybe_unused
Pull m68knommu arch updates from Greg Ungerer:
"Most of it is a cleanup of the ColdFire hardware header files. We
have had a few occurrances of bugs caused by inconsistent definitions
of peripheral addresses. These patches make them all consistent, and
also clean out a bunch of old crap. Overall we remove about 1000
lines."
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (27 commits)
m68knommu: fix inconsistent formating in ColdFire 5407 definitions
m68knommu: fix inconsistent formating in ColdFire 5307 definitions
m68knommu: fix inconsistent formating in ColdFire 527x definitions
m68knommu: fix inconsistent formating in ColdFire 5272 definitions
m68knommu: fix inconsistent formating in ColdFire 523x definitions
m68knommu: clean up ColdFire 54xx General Timer definitions
m68knommu: clean up Pin Assignment definitions for the 54xx ColdFire CPU
m68knommu: fix multi-function pin setup for FEC module on ColdFire 523x
m68knommu: move ColdFire slice timer address defiens to 54xx header
m68knommu: use read/write IO access functions in ColdFire m532x setup code
m68knommu: modify ColdFire 532x GPIO register definitions to be consistent
m68knommu: remove a lot of unsed definitions for 532x ColdFire
m68knommu: use definitions for the ColdFire 528x FEC multi-function pins
m68knommu: remove address offsets relative to IPSBAR for ColdFire 527x
m68knommu: remove unused ColdFire 5282 register definitions
m68knommu: fix wrong register offsets used for ColdFire 5272 multi-function pins
m68knommu: make ColdFire 5249 MBAR2 register definitions absolute addresses
m68knommu: make remaining ColdFire 5272 register definitions absolute addresses
m68knommu: make ColdFire Park and Assignment register definitions absolute addresses
m68knommu: make ColdFire Chip Select register definitions absolute addresses
...
Historically, the top three bytes of personality have been used for
things such as ADDR_NO_RANDOMIZE, which made sense only for specific
architectures.
We now however have a flag there that is general no matter the
architecture (UNAME26); generally we have to be careful to preserve the
personality flags across exec().
This patch tries to fix all architectures that forcefully overwrite
personality flags during exec() (ppc32 and s390 have been fixed recently
by commits f9783ec862ea ("[S390] Do not clobber personality flags on
exec") and 59e4c3a2fe9c ("powerpc/32: Don't clobber personality flags on
exec") in a similar way already).
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patches from David Howells <dhowells@redhat.com>:
This is to complete part of the UAPI disintegration for which the
preparatory patches were pulled recently.
Note that there are some fixup patches which are at the base of the
branch aimed at you, plus all arches get the asm-generic branch merged in too.
* 'disintegrate-asm-generic' of git://git.infradead.org/users/dhowells/linux-headers:
UAPI: (Scripted) Disintegrate include/asm-generic
UAPI: Fix conditional header installation handling (notably kvm_para.h on m68k)
c6x: remove c6x signal.h
UAPI: Split compound conditionals containing __KERNEL__ in Arm64
UAPI: Fix the guards on various asm/unistd.h files
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Ease the deployment of clkdev by providing a default asm/clkdev.h for
use if the arch does not have an include/asm/clkdev.h.
Due to limitations in Kbuild we manually add clkdev.h to all
architectures that don't have one rather than having the header appear
by default.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Reviewed-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Set up empty UAPI Kbuild files to be populated by the header splitter.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
Convert #include "..." to #include <path/...> in kernel system headers.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
The tricky part here is that task_pt_regs() on m68k works *only* for
process inside do_signal(). However, we need something much simpler -
pt_regs of a process inside do_signal() may be at different offsets
from the stack bottom, depending on the way we'd entered the kernel,
but for a task inside sys_execve() it *is* at constant offset.
Moreover, for a kernel thread about to become a userland process the
same location is also fine - setting sp to that will leave the kernel
stack pointer at the very bottom of the kernel stack when we finally
switch to userland.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The stack frame "format" field needs to be explicitly set on thread creation
on ColdFire. For a normal long word aligned user stack pointer the frame
format is 0x4.
We were doing this for non-MMU ColdFire, but not for the case with MMU enabled.
So fix it so we always do it if targeting ColdFire.
The old code happend to rely on the stack frame format being inhereted from
the process calling exec. Furture changes means that may not always work,
so we really do want to set it explicitly.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Use the mapping of Elf_[SPE]hdr, Elf_Addr, Elf_Sym, Elf_Dyn, Elf_Rel/Rela,
ELF_R_TYPE() and ELF_R_SYM() to either the 32-bit version or the 64-bit version
into asm-generic/module.h for all arches bar MIPS.
Also, use the generic definition mod_arch_specific where possible.
To this end, I've defined three new config bools:
(*) HAVE_MOD_ARCH_SPECIFIC
Arches define this if they don't want to use the empty generic
mod_arch_specific struct.
(*) MODULES_USE_ELF_RELA
Arches define this if their modules can contain RELA records. This causes
the Elf_Rela mapping to be emitted and allows apply_relocate_add() to be
defined by the arch rather than have the core emit an error message.
(*) MODULES_USE_ELF_REL
Arches define this if their modules can contain REL records. This causes
the Elf_Rel mapping to be emitted and allows apply_relocate() to be
defined by the arch rather than have the core emit an error message.
Note that it is possible to allow both REL and RELA records: m68k and mips are
two arches that do this.
With this, some arch asm/module.h files can be deleted entirely and replaced
with a generic-y marker in the arch Kbuild file.
Additionally, I have removed the bits from m32r and score that handle the
unsupported type of relocation record as that's now handled centrally.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Convert the ColdFire 54xx CPU General Timer register address definitions to
include the MCF_MBAR peripheral region offset. This makes them consistent
with all other 54xx address register definitions (in m54xxsim.h).
The goal is to reduce different definitions used (some including offsets and
others not) causing bugs when used incorrectly.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The Pin Assignment register definitions for the ColdFire 54xx CPU family are
inconsistently named and defined compared to the other ColdFire part
definitions. Rename them with the same prefix as used on other parts,
MCFGPIO_PAR_, and make their definitions include the MCF_MBAR periphperal
region offset.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The multi-function pin setup code for the FEC ethernet module is using just
plain wrong. Looks like it was cut-and-pasted from other init code. It has
hard coded register addresses that are incorrect for the 523x, and it is
manipulating bits that don't make sense.
Add proper register definitions for the Pin Assignment registers of the 532x,
and then use them to fix the setup code for the FEC hardware module.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Move the base address defines of the ColdFire 54xx CPU slice timers into the
54xx specific header (m54xxsim.h). They are CPU specific, and belong with the
CPU specific defines. Also make them relative to the MBAR peripheral region,
making the define the absolute address.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Get rid of the use of local IO access macros and switch to using the standard
read*/write* family of access functions for the ColdFire m532x setup code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 532x CPU register definitions for the multi-function setup
pins are inconsistently defined compared with other ColdFire parts. Modify
the register defintions to be just the addresses, not pointers. This also
fixes the erroneous use in one case of using these values in the UART setup
code for the 532x.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
There are a lot of unused and uneccessary definitions in the header to
support the ColdFire 532x CPU family. Remove the junk.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Remove the last address definitions relative to the IPSBAR peripheral region
for the ColdFire 527x family. This involved cleaning up some magic numbers
used in the code part, and making them proper register definitions in the 527x
specific header.
This is part of the process of cleaning up the ColdFire register definitions
to make them consistently use absolute addresses for the primary registers.
This will reduce the occasional bugs caused by inconsistent definition of
the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The registers used to configure and set the multifunction pins on the 5272
ColdFire are defined as absolute addresses. So the use of them does not need
to be offset relative to the peripheral region address.
Fix two cases of incorrect usage of these addresses. Both affect UART
initialization, one in the common UART pin setup code, the other in the
NETtel board specific UART signal handling.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make the ColdFire 5249 MBAR peripheral register definitions absolute
addresses, instead of offsets into the region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make the remaining definitions of the 5272 ColdFire registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire MPARK and IRQ Assignment registers
absolute addresses. Currently some are relative to the MBAR peripheral
region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Chip Select registers absolute addresses.
Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Interrupt Source registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Pin Assignment registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Software watchdog registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Reset and System registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the abolsute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Interrupt Mask and Pending registers
absolute addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Let the compiler choose which register to use in the cache flushing
asm statements, instead of imposing %d0.
Additionally, fix two typo's.
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>