IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
tj: dropped iff -> if, iff is if and only if not a typo. Spotted by
Randy Dunlap.
Signed-off-by: Shailendra Verma <shailendra.capricorn@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
We can avoid an ifdef over wq_power_efficient's declaration
by just using IS_ENABLED().
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
Cc: cocci@systeme.lip6.fr
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
flush_scheduled_work() is just a simple call to flush_work().
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Reading to wq->unbound_attrs requires protection of either wq_pool_mutex
or wq->mutex, and wq_sysfs_prep_attrs() is called with wq_pool_mutex held,
so we don't need to grab wq->mutex here.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This pre-declaration was unneeded since a previous refactor patch
6ba94429c8 ("workqueue: Reorder sysfs code").
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current modification to attrs via sysfs is not fully synchronized.
Process A (change cpumask) | Process B (change numa affinity)
wq_cpumask_store() |
wq_sysfs_prep_attrs() |
| apply_workqueue_attrs()
apply_workqueue_attrs() |
It results that the Process B's operation is totally reverted
without any notification, it is a buggy behavior. So this patch
moves wq_sysfs_prep_attrs() into the protection under wq_pool_mutex
to ensure attrs changes are properly synchronized.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Applying attrs requires two locks: get_online_cpus() and wq_pool_mutex,
and this code is duplicated at two places (apply_workqueue_attrs() and
workqueue_set_unbound_cpumask()). So we separate out this locking
code into apply_wqattrs_[un]lock() and do a minor refactor on
apply_workqueue_attrs().
The apply_wqattrs_[un]lock() will be also used on later patch for
ensuring attrs changes are properly synchronized.
tj: minor updates to comments
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
wq_update_unbound_numa() is known be called with wq_pool_mutex held.
But wq_update_unbound_numa() requests wq->mutex before reading
wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq. But these fields
were changed to be allowed being read with wq_pool_mutex held. So we
simply remove the mutex_lock(&wq->mutex).
Without the dependence on the the mutex_lock(&wq->mutex), the test
of wq->unbound_attrs->no_numa can also be moved upward.
The old code need a long comment to describe the stableness of
@wq->unbound_attrs which is also guaranteed by wq_pool_mutex now,
so we don't need this such comment.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current wq_pool_mutex doesn't proctect the attrs-installation, it results
that ->unbound_attrs, ->numa_pwq_tbl[] and ->dfl_pwq can only be accessed
under wq->mutex and causes some inconveniences. Example, wq_update_unbound_numa()
has to acquire wq->mutex before fetching the wq->unbound_attrs->no_numa
and the old_pwq.
attrs-installation is a short operation, so this change will no cause any
latency for other operations which also acquire the wq_pool_mutex.
The only unprotected attrs-installation code is in apply_workqueue_attrs(),
so this patch touches code less than comments.
It is also a preparation patch for next several patches which read
wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq with
only wq_pool_mutex held.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Allow to modify the low-level unbound workqueues cpumask through
sysfs. This is performed by traversing the entire workqueue list
and calling apply_wqattrs_prepare() on the unbound workqueues
with the new low level mask. Only after all the preparation are done,
we commit them all together.
Ordered workqueues are ignored from the low level unbound workqueue
cpumask, it will be handled in near future.
All the (default & per-node) pwqs are mandatorily controlled by
the low level cpumask. If the user configured cpumask doesn't overlap
with the low level cpumask, the low level cpumask will be used for the
wq instead.
The comment of wq_calc_node_cpumask() is updated and explicitly
requires that its first argument should be the attrs of the default
pwq.
The default wq_unbound_cpumask is cpu_possible_mask. The workqueue
subsystem doesn't know its best default value, let the system manager
or the other subsystem set it when needed.
Changed from V8:
merge the calculating code for the attrs of the default pwq together.
minor change the code&comments for saving the user configured attrs.
remove unnecessary list_del().
minor update the comment of wq_calc_node_cpumask().
update the comment of workqueue_set_unbound_cpumask();
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Original-patch-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Create a cpumask that limits the affinity of all unbound workqueues.
This cpumask is controlled through a file at the root of the workqueue
sysfs directory.
It works on a lower-level than the per WQ_SYSFS workqueues cpumask files
such that the effective cpumask applied for a given unbound workqueue is
the intersection of /sys/devices/virtual/workqueue/$WORKQUEUE/cpumask and
the new /sys/devices/virtual/workqueue/cpumask file.
This patch implements the basic infrastructure and the read interface.
wq_unbound_cpumask is initially set to cpu_possible_mask.
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current apply_workqueue_attrs() includes pwqs-allocation and pwqs-installation,
so when we batch multiple apply_workqueue_attrs()s as a transaction, we can't
ensure the transaction must succeed or fail as a complete unit.
To solve this, we split apply_workqueue_attrs() into three stages.
The first stage does the preparation: allocation memory, pwqs.
The second stage does the attrs-installaion and pwqs-installation.
The third stage frees the allocated memory and (old or unused) pwqs.
As the result, batching multiple apply_workqueue_attrs()s can
succeed or fail as a complete unit:
1) batch do all the first stage for all the workqueues
2) only commit all when all the above succeed.
This patch is a preparation for the next patch ("Allow modifying low level
unbound workqueue cpumask") which will do a multiple apply_workqueue_attrs().
The patch doesn't have functionality changed except two minor adjustment:
1) free_unbound_pwq() for the error path is removed, we use the
heavier version put_pwq_unlocked() instead since the error path
is rare. this adjustment simplifies the code.
2) the memory-allocation is also moved into wq_pool_mutex.
this is needed to avoid to do the further splitting.
tj: minor updates to comments.
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The sysfs code usually belongs to the botom of the file since it deals
with high level objects. In the workqueue code it's misplaced and such
that we'll need to work around functions references to allow the sysfs
code to call APIs like apply_workqueue_attrs().
Lets move that block further in the file, almost the botom.
And declare workqueue_sysfs_unregister() just before destroy_workqueue()
which reference it.
tj: Moved workqueue_sysfs_unregister() forward declaration where other
forward declarations are.
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Workqueues are used extensively throughout the kernel but sometimes
it's difficult to debug stalls involving work items because visibility
into its inner workings is fairly limited. Although sysrq-t task dump
annotates each active worker task with the information on the work
item being executed, it is challenging to find out which work items
are pending or delayed on which queues and how pools are being
managed.
This patch implements show_workqueue_state() which dumps all busy
workqueues and pools and is called from the sysrq-t handler. At the
end of sysrq-t dump, something like the following is printed.
Showing busy workqueues and worker pools:
...
workqueue filler_wq: flags=0x0
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=2/256
in-flight: 491:filler_workfn, 507:filler_workfn
pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256
in-flight: 501:filler_workfn
pending: filler_workfn
...
workqueue test_wq: flags=0x8
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=1/1
in-flight: 510(RESCUER):test_workfn BAR(69) BAR(500)
delayed: test_workfn1 BAR(492), test_workfn2
...
pool 0: cpus=0 node=0 flags=0x0 nice=0 workers=2 manager: 137
pool 2: cpus=1 node=0 flags=0x0 nice=0 workers=3 manager: 469
pool 3: cpus=1 node=0 flags=0x0 nice=-20 workers=2 idle: 16
pool 8: cpus=0-3 flags=0x4 nice=0 workers=2 manager: 62
The above shows that test_wq is executing test_workfn() on pid 510
which is the rescuer and also that there are two tasks 69 and 500
waiting for the work item to finish in flush_work(). As test_wq has
max_active of 1, there are two work items for test_workfn1() and
test_workfn2() which are delayed till the current work item is
finished. In addition, pid 492 is flushing test_workfn1().
The work item for test_workfn() is being executed on pwq of pool 2
which is the normal priority per-cpu pool for CPU 1. The pool has
three workers, two of which are executing filler_workfn() for
filler_wq and the last one is assuming the manager role trying to
create more workers.
This extra workqueue state dump will hopefully help chasing down hangs
involving workqueues.
v3: cpulist_pr_cont() replaced with "%*pbl" printf formatting.
v2: As suggested by Andrew, minor formatting change in pr_cont_work(),
printk()'s replaced with pr_info()'s, and cpumask printing now
uses cpulist_pr_cont().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@redhat.com>
Add wq_barrier->task and worker_pool->manager to keep track of the
flushing task and pool manager respectively. These are purely
informational and will be used to implement sysrq dump of workqueues.
Signed-off-by: Tejun Heo <tj@kernel.org>
The workqueues list is protected by wq_pool_mutex and a workqueue and
its subordinate data structures are freed directly on destruction. We
want to add the ability dump workqueues from a sysrq callback which
requires walking all workqueues without grabbing wq_pool_mutex. This
patch makes freeing of workqueues RCU protected and makes the
workqueues list walkable while holding RCU read lock.
Note that pool_workqueues and pools are already sched-RCU protected.
For consistency, workqueues are also protected with sched-RCU.
While at it, reverse the workqueues list so that a workqueue which is
created earlier comes before. The order of the list isn't significant
functionally but this makes the planned sysrq dump list system
workqueues first.
Signed-off-by: Tejun Heo <tj@kernel.org>
cancel[_delayed]_work_sync() are implemented using
__cancel_work_timer() which grabs the PENDING bit using
try_to_grab_pending() and then flushes the work item with PENDING set
to prevent the on-going execution of the work item from requeueing
itself.
try_to_grab_pending() can always grab PENDING bit without blocking
except when someone else is doing the above flushing during
cancelation. In that case, try_to_grab_pending() returns -ENOENT. In
this case, __cancel_work_timer() currently invokes flush_work(). The
assumption is that the completion of the work item is what the other
canceling task would be waiting for too and thus waiting for the same
condition and retrying should allow forward progress without excessive
busy looping
Unfortunately, this doesn't work if preemption is disabled or the
latter task has real time priority. Let's say task A just got woken
up from flush_work() by the completion of the target work item. If,
before task A starts executing, task B gets scheduled and invokes
__cancel_work_timer() on the same work item, its try_to_grab_pending()
will return -ENOENT as the work item is still being canceled by task A
and flush_work() will also immediately return false as the work item
is no longer executing. This puts task B in a busy loop possibly
preventing task A from executing and clearing the canceling state on
the work item leading to a hang.
task A task B worker
executing work
__cancel_work_timer()
try_to_grab_pending()
set work CANCELING
flush_work()
block for work completion
completion, wakes up A
__cancel_work_timer()
while (forever) {
try_to_grab_pending()
-ENOENT as work is being canceled
flush_work()
false as work is no longer executing
}
This patch removes the possible hang by updating __cancel_work_timer()
to explicitly wait for clearing of CANCELING rather than invoking
flush_work() after try_to_grab_pending() fails with -ENOENT.
Link: http://lkml.kernel.org/g/20150206171156.GA8942@axis.com
v3: bit_waitqueue() can't be used for work items defined in vmalloc
area. Switched to custom wake function which matches the target
work item and exclusive wait and wakeup.
v2: v1 used wake_up() on bit_waitqueue() which leads to NULL deref if
the target bit waitqueue has wait_bit_queue's on it. Use
DEFINE_WAIT_BIT() and __wake_up_bit() instead. Reported by Tomeu
Vizoso.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Rabin Vincent <rabin.vincent@axis.com>
Cc: Tomeu Vizoso <tomeu.vizoso@gmail.com>
Cc: stable@vger.kernel.org
Tested-by: Jesper Nilsson <jesper.nilsson@axis.com>
Tested-by: Rabin Vincent <rabin.vincent@axis.com>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A worker_pool's forward progress is guaranteed by the fact that the
last idle worker assumes the manager role to create more workers and
summon the rescuers if creating workers doesn't succeed in timely
manner before proceeding to execute work items.
This manager role is implemented in manage_workers(), which indicates
whether the worker may proceed to work item execution with its return
value. This is necessary because multiple workers may contend for the
manager role, and, if there already is a manager, others should
proceed to work item execution.
Unfortunately, the function also indicates that the worker may proceed
to work item execution if need_to_create_worker() is false at the head
of the function. need_to_create_worker() tests the following
conditions.
pending work items && !nr_running && !nr_idle
The first and third conditions are protected by pool->lock and thus
won't change while holding pool->lock; however, nr_running can change
asynchronously as other workers block and resume and while it's likely
to be zero, as someone woke this worker up in the first place, some
other workers could have become runnable inbetween making it non-zero.
If this happens, manage_worker() could return false even with zero
nr_idle making the worker, the last idle one, proceed to execute work
items. If then all workers of the pool end up blocking on a resource
which can only be released by a work item which is pending on that
pool, the whole pool can deadlock as there's no one to create more
workers or summon the rescuers.
This patch fixes the problem by removing the early exit condition from
maybe_create_worker() and making manage_workers() return false iff
there's already another manager, which ensures that the last worker
doesn't start executing work items.
We can leave the early exit condition alone and just ignore the return
value but the only reason it was put there is because the
manage_workers() used to perform both creations and destructions of
workers and thus the function may be invoked while the pool is trying
to reduce the number of workers. Now that manage_workers() is called
only when more workers are needed, the only case this early exit
condition is triggered is rare race conditions rendering it pointless.
Tested with simulated workload and modified workqueue code which
trigger the pool deadlock reliably without this patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Eric Sandeen <sandeen@sandeen.net>
Link: http://lkml.kernel.org/g/54B019F4.8030009@sandeen.net
Cc: Dave Chinner <david@fromorbit.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: stable@vger.kernel.org
When there is serious memory pressure, all workers in a pool could be
blocked, and a new thread cannot be created because it requires memory
allocation.
In this situation a WQ_MEM_RECLAIM workqueue will wake up the
rescuer thread to do some work.
The rescuer will only handle requests that are already on ->worklist.
If max_requests is 1, that means it will handle a single request.
The rescuer will be woken again in 100ms to handle another max_requests
requests.
I've seen a machine (running a 3.0 based "enterprise" kernel) with
thousands of requests queued for xfslogd, which has a max_requests of
1, and is needed for retiring all 'xfs' write requests. When one of
the worker pools gets into this state, it progresses extremely slowly
and possibly never recovers (only waited an hour or two).
With this patch we leave a pool_workqueue on mayday list
until it is clearly no longer in need of assistance. This allows
all requests to be handled in a timely fashion.
We keep each pool_workqueue on the mayday list until
need_to_create_worker() is false, and no work for this workqueue is
found in the pool.
I have tested this in combination with a (hackish) patch which forces
all work items to be handled by the rescuer thread. In that context
it significantly improves performance. A similar patch for a 3.0
kernel significantly improved performance on a heavy work load.
Thanks to Jan Kara for some design ideas, and to Dongsu Park for
some comments and testing.
tj: Inverted the lock order between wq_mayday_lock and pool->lock with
a preceding patch and simplified this patch. Added comment and
updated changelog accordingly. Dongsu spotted missing get_pwq()
in the simplified code.
Cc: Dongsu Park <dongsu.park@profitbricks.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, pool->lock nests inside pool->lock. There's no inherent
reason for this order. The only place where the two locks are held
together is pool_mayday_timeout() and it just got decided that way.
This nesting order turns out to complicate things with the planned
rescuer_thread() update. Let's invert them. This doesn't cause any
behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Dongsu Park <dongsu.park@profitbricks.com>
rescuer_thread() caches &rescuer->scheduled in a local variable
scheduled for convenience. There's one WARN_ON_ONCE() which was using
&rescuer->scheduled directly. Replace it with the local variable.
This patch causes no functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Tidy up and use cond_resched_rcu_qs when calling cond_resched and
reporting potential quiescent state to RCU. Splitting this change in
this way allows easy backporting to -stable for kernel versions not
having cond_resched_rcu_qs().
Signed-off-by: Joe Lawrence <joe.lawrence@stratus.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Similar to the stop_machine deadlock scenario on !PREEMPT kernels
addressed in b22ce2785d "workqueue: cond_resched() after processing
each work item", kworker threads requeueing back-to-back with zero jiffy
delay can stall RCU. The cond_resched call introduced in that fix will
yield only iff there are other higher priority tasks to run, so force a
quiescent RCU state between work items.
Signed-off-by: Joe Lawrence <joe.lawrence@stratus.com>
Link: https://lkml.kernel.org/r/20140926105227.01325697@jlaw-desktop.mno.stratus.com
Link: https://lkml.kernel.org/r/20140929115445.40221d8e@jlaw-desktop.mno.stratus.com
Fixes: b22ce2785d ("workqueue: cond_resched() after processing each work item")
Cc: <stable@vger.kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Pull percpu updates from Tejun Heo:
- Major reorganization of percpu header files which I think makes
things a lot more readable and logical than before.
- percpu-refcount is updated so that it requires explicit destruction
and can be reinitialized if necessary. This was pulled into the
block tree to replace the custom percpu refcnting implemented in
blk-mq.
- In the process, percpu and percpu-refcount got cleaned up a bit
* 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (21 commits)
percpu-refcount: implement percpu_ref_reinit() and percpu_ref_is_zero()
percpu-refcount: require percpu_ref to be exited explicitly
percpu-refcount: use unsigned long for pcpu_count pointer
percpu-refcount: add helpers for ->percpu_count accesses
percpu-refcount: one bit is enough for REF_STATUS
percpu-refcount, aio: use percpu_ref_cancel_init() in ioctx_alloc()
workqueue: stronger test in process_one_work()
workqueue: clear POOL_DISASSOCIATED in rebind_workers()
percpu: Use ALIGN macro instead of hand coding alignment calculation
percpu: invoke __verify_pcpu_ptr() from the generic part of accessors and operations
percpu: preffity percpu header files
percpu: use raw_cpu_*() to define __this_cpu_*()
percpu: reorder macros in percpu header files
percpu: move {raw|this}_cpu_*() definitions to include/linux/percpu-defs.h
percpu: move generic {raw|this}_cpu_*_N() definitions to include/asm-generic/percpu.h
percpu: only allow sized arch overrides for {raw|this}_cpu_*() ops
percpu: reorganize include/linux/percpu-defs.h
percpu: move accessors from include/linux/percpu.h to percpu-defs.h
percpu: include/asm-generic/percpu.h should contain only arch-overridable parts
percpu: introduce arch_raw_cpu_ptr()
...
Pull workqueue updates from Tejun Heo:
"Lai has been doing a lot of cleanups of workqueue and kthread_work.
No significant behavior change. Just a lot of cleanups all over the
place. Some are a bit invasive but overall nothing too dangerous"
* 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
kthread_work: remove the unused wait_queue_head
kthread_work: wake up worker only when the worker is idle
workqueue: use nr_node_ids instead of wq_numa_tbl_len
workqueue: remove the misnamed out_unlock label in get_unbound_pool()
workqueue: remove the stale comment in pwq_unbound_release_workfn()
workqueue: move rescuer pool detachment to the end
workqueue: unfold start_worker() into create_worker()
workqueue: remove @wakeup from worker_set_flags()
workqueue: remove an unneeded UNBOUND test before waking up the next worker
workqueue: wake regular worker if need_more_worker() when rescuer leave the pool
workqueue: alloc struct worker on its local node
workqueue: reuse the already calculated pwq in try_to_grab_pending()
workqueue: stronger test in process_one_work()
workqueue: clear POOL_DISASSOCIATED in rebind_workers()
workqueue: sanity check pool->cpu in wq_worker_sleeping()
workqueue: clear leftover flags when detached
workqueue: remove useless WARN_ON_ONCE()
workqueue: use schedule_timeout_interruptible() instead of open code
workqueue: remove the empty check in too_many_workers()
workqueue: use "pool->cpu < 0" to stand for an unbound pool
They are the same and nr_node_ids is provided by the memory subsystem.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
After the locking was moved up to the caller of the get_unbound_pool(),
out_unlock label doesn't need to do any unlock operation and the name
became bad, so we just remove this label, and the only usage-site
"goto out_unlock" is subsituted to "return pool".
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In 75ccf5950f ("workqueue: prepare flush_workqueue() for dynamic
creation and destrucion of unbound pool_workqueues"), a comment
about the synchronization for the pwq in pwq_unbound_release_workfn()
was added. The comment claimed the flush_mutex wasn't strictly
necessary, it was correct in that time, due to the pwq was protected
by workqueue_lock.
But it is incorrect now since the wq->flush_mutex was renamed to
wq->mutex and workqueue_lock was removed, the wq->mutex is strictly
needed. But the comment was miss-updated when the synchronization
was changed.
This patch removes the incorrect comments and doesn't add any new
comment to explain why wq->mutex is needed here, which is definitely
obvious and wq->pwqs_node has "WQ" notation in its definition which is
better comment.
The old commit mentioned above also introduced a comment in link_pwq()
about the synchronization. This comment is also removed in this patch
since the whole link_pwq() is proteced by wq->mutex.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In 51697d3939 ("workqueue: use generic attach/detach routine for
rescuers"), The rescuer detaches itself from the pool before put_pwq()
so that the put_unbound_pool() will not destroy the rescuer-attached
pool.
It is unnecessary. worker_detach_from_pool() can be used as the last
statement to access to the pool just like the regular workers,
put_unbound_pool() will wait for it to detach and then free the pool.
So we move the worker_detach_from_pool() down, make it coincide with
the regular workers.
tj: Minor description update.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Simply unfold the code of start_worker() into create_worker() and
remove the original start_worker() and create_and_start_worker().
The only trade-off is the introduced overhead that the pool->lock
is released and regrabbed after the newly worker is started.
The overhead is acceptible since the manager is slow path.
And because this new locking behavior, the newly created worker
may grab the lock earlier than the manager and go to process
work items. In this case, the recheck need_to_create_worker() may be
true as expected and the manager goes to restart which is the
correct behavior.
tj: Minor updates to description and comments.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
worker_set_flags() has only two callers, each specifying %true and
%false for @wakeup. Let's push the wake up to the caller and remove
@wakeup from worker_set_flags(). The caller can use the following
instead if wakeup is necessary:
worker_set_flags();
if (need_more_worker(pool))
wake_up_worker(pool);
This makes the code simpler. This patch doesn't introduce behavior
changes.
tj: Updated description and comments.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In process_one_work():
if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
wake_up_worker(pool);
the first test is unneeded. Even if the first test is removed, it
doesn't affect the wake-up logic for WORKER_UNBOUND, and it will not
introduce any useless wake-ups for normal per-cpu workers since
nr_running is always >= 1. It will introduce useless/redundant
wake-ups for CPU_INTENSIVE, but this case is rare and the next patch
will also remove this redundant wake-up.
tj: Minor updates to the description and comment.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We don't need to wake up regular worker when nr_running==1,
so need_more_worker() is sufficient here.
And need_more_worker() gives us better readability due to the name of
"keep_working()" implies the rescuer should keep working now but
the rescuer is actually leaving.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When the create_worker() is called from non-manager, the struct worker
is allocated from the node of the caller which may be different from the
node of pool->node.
So we add a node ID argument for the alloc_worker() to ensure the
struct worker is allocated from the preferable node.
tj: @nid renamed to @node for consistency.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
try_to_grab_pending() was re-calculating the associated pwq using
get_work_pwq() when it already has it cached in a local varible and
the association can't change. Reuse the local variable instead.
This doesn't introduce any functional changes.
tj: Updated description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When hot-adding and onlining CPU, kernel panic occurs, showing following
call trace.
BUG: unable to handle kernel paging request at 0000000000001d08
IP: [<ffffffff8114acfd>] __alloc_pages_nodemask+0x9d/0xb10
PGD 0
Oops: 0000 [#1] SMP
...
Call Trace:
[<ffffffff812b8745>] ? cpumask_next_and+0x35/0x50
[<ffffffff810a3283>] ? find_busiest_group+0x113/0x8f0
[<ffffffff81193bc9>] ? deactivate_slab+0x349/0x3c0
[<ffffffff811926f1>] new_slab+0x91/0x300
[<ffffffff815de95a>] __slab_alloc+0x2bb/0x482
[<ffffffff8105bc1c>] ? copy_process.part.25+0xfc/0x14c0
[<ffffffff810a3c78>] ? load_balance+0x218/0x890
[<ffffffff8101a679>] ? sched_clock+0x9/0x10
[<ffffffff81105ba9>] ? trace_clock_local+0x9/0x10
[<ffffffff81193d1c>] kmem_cache_alloc_node+0x8c/0x200
[<ffffffff8105bc1c>] copy_process.part.25+0xfc/0x14c0
[<ffffffff81114d0d>] ? trace_buffer_unlock_commit+0x4d/0x60
[<ffffffff81085a80>] ? kthread_create_on_node+0x140/0x140
[<ffffffff8105d0ec>] do_fork+0xbc/0x360
[<ffffffff8105d3b6>] kernel_thread+0x26/0x30
[<ffffffff81086652>] kthreadd+0x2c2/0x300
[<ffffffff81086390>] ? kthread_create_on_cpu+0x60/0x60
[<ffffffff815f20ec>] ret_from_fork+0x7c/0xb0
[<ffffffff81086390>] ? kthread_create_on_cpu+0x60/0x60
In my investigation, I found the root cause is wq_numa_possible_cpumask.
All entries of wq_numa_possible_cpumask is allocated by
alloc_cpumask_var_node(). And these entries are used without initializing.
So these entries have wrong value.
When hot-adding and onlining CPU, wq_update_unbound_numa() is called.
wq_update_unbound_numa() calls alloc_unbound_pwq(). And alloc_unbound_pwq()
calls get_unbound_pool(). In get_unbound_pool(), worker_pool->node is set
as follow:
3592 /* if cpumask is contained inside a NUMA node, we belong to that node */
3593 if (wq_numa_enabled) {
3594 for_each_node(node) {
3595 if (cpumask_subset(pool->attrs->cpumask,
3596 wq_numa_possible_cpumask[node])) {
3597 pool->node = node;
3598 break;
3599 }
3600 }
3601 }
But wq_numa_possible_cpumask[node] does not have correct cpumask. So, wrong
node is selected. As a result, kernel panic occurs.
By this patch, all entries of wq_numa_possible_cpumask are allocated by
zalloc_cpumask_var_node to initialize them. And the panic disappeared.
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Fixes: bce903809a ("workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]")
When POOL_DISASSOCIATED is cleared, the running worker's local CPU should
be the same as pool->cpu without any exception even during cpu-hotplug.
This patch changes "(proposition_A && proposition_B && proposition_C)"
to "(proposition_B && proposition_C)", so if the old compound
proposition is true, the new one must be true too. so this won't hide
any possible bug which can be hit by old test.
tj: Minor description update and dropped the obvious comment.
CC: Jason J. Herne <jjherne@linux.vnet.ibm.com>
CC: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
a9ab775bca ("workqueue: directly restore CPU affinity of workers
from CPU_ONLINE") moved pool locking into rebind_workers() but left
"pool->flags &= ~POOL_DISASSOCIATED" in workqueue_cpu_up_callback().
There is nothing necessarily wrong with it, but there is no benefit
either. Let's move it into rebind_workers() and achieve the following
benefits:
1) better readability, POOL_DISASSOCIATED is cleared in rebind_workers()
as expected.
2) we can guarantee that, when POOL_DISASSOCIATED is clear, the
running workers of the pool are on the local CPU (pool->cpu).
tj: Minor description update.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Uevents are suppressed during attributes registration, but never
restored, so kobject_uevent() does nothing.
Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 226223ab3c
After the recent changes, when POOL_DISASSOCIATED is cleared, the
running worker's local CPU should be the same as pool->cpu without any
exception even during cpu-hotplug. Update the sanity check in
process_one_work() accordingly.
This patch changes "(proposition_A && proposition_B && proposition_C)"
to "(proposition_B && proposition_C)", so if the old compound
proposition is true, the new one must be true too. so this will not
hide any possible bug which can be caught by the old test.
tj: Minor updates to the description.
CC: Jason J. Herne <jjherne@linux.vnet.ibm.com>
CC: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The commit a9ab775bca ("workqueue: directly restore CPU affinity of
workers from CPU_ONLINE") moved the pool->lock into rebind_workers()
without also moving "pool->flags &= ~POOL_DISASSOCIATED".
There is nothing wrong with "pool->flags &= ~POOL_DISASSOCIATED" not
being moved together, but there isn't any benefit either. We move it
into rebind_workers() and achieve these benefits:
1) Better readability. POOL_DISASSOCIATED is cleared in
rebind_workers() as expected.
2) When POOL_DISASSOCIATED is cleared, we can ensure that all the
running workers of the pool are on the local CPU (pool->cpu).
tj: Cosmetic updates to the code and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In theory, pool->cpu is equals to @cpu in wq_worker_sleeping() after
worker->flags is checked.
And "pool->cpu != cpu" sanity check will help us if something wrong.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When a worker is detached, the worker->flags may still have WORKER_UNBOUND
or WORKER_REBOUND, it is OK for all cases:
1) if it is a normal worker, the worker will be dead, it is OK.
2) if it is a rescuer, it may re-attach to a pool with this leftover flag[s],
it is still correct except it may cause unneeded wakeup.
It is correct but not good, so we just remove the leftover flags.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The @cpu is fetched via smp_processor_id() in this function,
so the check is useless.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
schedule_timeout_interruptible(CREATE_COOLDOWN) is exactly the same as
the original code.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The commit ea1abd6197 ("workqueue: reimplement idle worker rebinding")
used a trick which simply removes all to-be-bound idle workers from the
idle list and lets them add themselves back after completing rebinding.
And this trick caused the @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list. More specifically,
nr_idle may be non-zero while ->idle_list is empty. All users of
->nr_idle and ->idle_list are audited. The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.
The commit/trick was complicated due to it just tried to simplify an even
more complicated problem (workers had to rebind itself). But the commit
a9ab775bca ("workqueue: directly restore CPU affinity of workers
from CPU_ONLINE") fixed all these problems and the mentioned trick was
useless and is gone.
So, now the @worker_pool->nr_idle is exactly the actual number of workers
on @worker_pool->idle_list. too_many_workers() should recover as it was
before the trick. So we remove the empty check.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>