IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If gfs2_inplace_reserve has chosen a resource group but it couldn't make a
reservation there, there are too many other reservations in that resource
group. In that case, don't even try to respect existing reservations in
gfs2_alloc_blocks.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Only pass the current reservation down to gfs2_rbm_find rather than the entire
inode; we don't need any of the other information.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Pass a non-NULL minext to gfs2_rbm_find even for single-block allocations. In
gfs2_rbm_find, also set rgd->rd_extfail_pt when a single-block allocation
fails in a resource group: there is no reason for treating that case
differently. In gfs2_reservation_check_and_update, only check how many free
blocks we have if more than one block is requested; we already know there's at
least one free block.
In addition, when allocating N blocks fails in gfs2_rbm_find, we need to set
rd_extfail_pt to N - 1 rather than N: rd_extfail_pt defines the biggest
allocation that might still succeed.
Finally, reset rd_extfail_pt when updating the resource group statistics in
update_rgrp_lvb, as we already do in gfs2_rgrp_bh_get.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
When starting an iomap write, gfs2_quota_lock_check -> gfs2_quota_lock
-> gfs2_quota_hold is called from gfs2_iomap_begin. At the end of the
write, before unlocking the quotas, punch_hole -> gfs2_quota_hold can be
called again in gfs2_iomap_end, which is incorrect and leads to a failed
assertion. Instead, move the call to gfs2_quota_unlock before the call
to punch_hole to fix that.
Fixes: 64bc06bb32ee ("gfs2: iomap buffered write support")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Add support for an additional filesystem version (sb_fs_format = 1802).
When a filesystem with the new version is mounted, the filesystem
supports "trusted.*" xattrs.
In addition, version 1802 filesystems implement a form of forward
compatibility for xattrs: when xattrs with an unknown prefix (ea_type)
are found on a version 1802 filesystem, those attributes are not shown
by listxattr, and they are not accessible by getxattr, setxattr, or
removexattr.
This mechanism might turn out to be what we need in the future, but if
not, we can always bump the filesystem version and break compatibility
instead.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Price <anprice@redhat.com>
Turn on rgrplvb by default for sb_fs_format > 1801.
Mount options still have to override this so a new args field to
differentiate between 'off' and 'not specified' is added, and the new
default is applied only when it's not specified.
Signed-off-by: Andrew Price <anprice@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Patch fb6791d100d1 was designed to allow gfs2 to unmount quicker by
skipping the step where it tells dlm to unlock glocks in EX with lvbs.
This was done because when gfs2 unmounts a file system, it destroys the
dlm lockspace shortly after it destroys the glocks so it doesn't need to
unlock them all: the unlock is implied when the lockspace is destroyed
by dlm.
However, that patch introduced a use-after-free in dlm: as part of its
normal dlm_recoverd process, it can call ls_recovery to recover dead
locks. In so doing, it can call recover_rsbs which calls recover_lvb for
any mastered rsbs. Func recover_lvb runs through the list of lkbs queued
to the given rsb (if the glock is cached but unlocked, it will still be
queued to the lkb, but in NL--Unlocked--mode) and if it has an lvb,
copies it to the rsb, thus trying to preserve the lkb. However, when
gfs2 skips the dlm unlock step, it frees the glock and its lvb, which
means dlm's function recover_lvb references the now freed lvb pointer,
copying the freed lvb memory to the rsb.
This patch changes the check in gdlm_put_lock so that it calls
dlm_unlock for all glocks that contain an lvb pointer.
Fixes: fb6791d100d1 ("GFS2: skip dlm_unlock calls in unmount")
Cc: stable@vger.kernel.org # v3.8+
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
In gfs2_recover_one, fix a sd_log_flush_lock imbalance when a recovery
pass fails.
Fixes: c9ebc4b73799 ("gfs2: allow journal replay to hold sd_log_flush_lock")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Keep the current value of the updated log tail in the super block as
sb_log_flush_tail instead of computing it on the fly. This avoids
unnecessary sd_ail_lock taking and cleans up the code.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Use a tighter bound for the number of blocks required by transactions in
gfs2_trans_begin: in the worst case, we'll have mixed data and metadata,
so we'll need a log desciptor for each type.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Wake up log waiters in gfs2_log_release when log space has actually become
available. This is a much better place for the wakeup than gfs2_logd.
Check if enough log space is immeditely available before anything else. If
there isn't, use io_wait_event to wait instead of open-coding it.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Commit 588bff95c94e added gfs2_write_log_header() and started using it in
clean_journal(), with an additional call to log_flush_wait() at the end of
gfs2_write_log_header() which is unnecessary for clean_journal(). Move
that call out of gfs2_write_log_header() to restore the previous behavior.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Move the read locking of sd_log_flush_lock from gfs2_log_reserve to
gfs2_trans_begin, and its unlocking from gfs2_log_release to
gfs2_trans_end. Use gfs2_log_release in two places in which it was open
coded before.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
This counter and the associated wait queue are only used so that
gfs2_make_fs_ro can efficiently wait for all pending log space
allocations to fail after setting the filesystem to read-only. This
comes at the cost of waking up that wait queue very frequently.
Instead, when gfs2_log_reserve fails because the filesystem has become
read-only, Wake up sd_log_waitq. In gfs2_make_fs_ro, set the file
system read-only and then wait until all the log space has been
released. Give up and report the problem after a while. With that,
sd_reserving_log and sd_reserving_log_wait can be removed.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Replace the TR_ALLOCED flag by its inverse, TR_ONSTACK: that way, the flag only
needs to be set in the exceptional case of on-stack transactions. Split off
__gfs2_trans_begin from gfs2_trans_begin and use it to replace the open-coded
version in gfs2_ail_empty_gl.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Commit 2e60d7683c8d ("GFS2: update freeze code to use freeze/thaw_super
on all nodes") optimized away the sb_start_intwrite ... sb_end_intwrite
protection for the on-stack transactions in gfs2_ail_empty_gl with no
explanation. I can't think of a valid reason for doing that, so revert
that change. This simplifies the next commit.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
The recovery func can recover multiple journals, but they were all using
the same bio. This resulted in use-after-free related to sdp->sd_log_bio.
This patch moves the variable to the journal descriptor, jd, so that
every recovery can operate on its own bio. And hopefully we never run out.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
If go_free is defined, function signal_our_withdraw is supposed to
synchronize on the GLF_FREEING flag of the inode glock, but it
accidentally does that on the live glock. Fix that and disambiguate
the glock variables.
Fixes: 601ef0d52e96 ("gfs2: Force withdraw to replay journals and wait for it to finish")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
This reverts commit 428fd95d859b24fea448380fa21ad6d841b34241.
Patch 428fd95d85b2 added a call to log_flush_wait to function
gfs2_log_flush. Then gfs2_log_flush calls log_write_header which submits
a write request with the REQ_PREFLUSH flag which also forces it to wait.
This patch removes the unnecessary call to log_flush_wait.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andrew Price <anprice@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The generic_fillattr() helper fills in the basic attributes associated
with an inode. Enable it to handle idmapped mounts. If the inode is
accessed through an idmapped mount map it into the mount's user
namespace before we store the uid and gid. If the initial user namespace
is passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-12-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The posix acl permission checking helpers determine whether a caller is
privileged over an inode according to the acls associated with the
inode. Add helpers that make it possible to handle acls on idmapped
mounts.
The vfs and the filesystems targeted by this first iteration make use of
posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to
translate basic posix access and default permissions such as the
ACL_USER and ACL_GROUP type according to the initial user namespace (or
the superblock's user namespace) to and from the caller's current user
namespace. Adapt these two helpers to handle idmapped mounts whereby we
either map from or into the mount's user namespace depending on in which
direction we're translating.
Similarly, cap_convert_nscap() is used by the vfs to translate user
namespace and non-user namespace aware filesystem capabilities from the
superblock's user namespace to the caller's user namespace. Enable it to
handle idmapped mounts by accounting for the mount's user namespace.
In addition the fileystems targeted in the first iteration of this patch
series make use of the posix_acl_chmod() and, posix_acl_update_mode()
helpers. Both helpers perform permission checks on the target inode. Let
them handle idmapped mounts. These two helpers are called when posix
acls are set by the respective filesystems to handle this case we extend
the ->set() method to take an additional user namespace argument to pass
the mount's user namespace down.
Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Pass a set of flags to iomap_dio_rw instead of the boolean
wait_for_completion argument. The IOMAP_DIO_FORCE_WAIT flag
replaces the wait_for_completion, but only needs to be passed
when the iocb isn't synchronous to start with to simplify the
callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
[djwong: rework xfs_file.c so that we can push iomap changes separately]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
As gfs2_quotad_cachep and gfs2_glock_cachep have registered
shrinkers, amending SLAB_RECLAIM_ACCOUNT when creating them,
which improves slab accounting.
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Function gfs2_write_revokes doesn't actually write any revokes; instead, it
adds revokes to the system transaction during a flush.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
The calc_reserved description claims that buf_limit is 502 (on 4k
filesystems), but it is actually 503. Fix / clarify the entire
description.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
The BUF_OFFSET and DATABUF_OFFSET definitions are only used in buf_limit
and databuf_limit, respectively, and the rounding done in those
definitions is immediately wiped out by dividing by the element size.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
When reading a resource group from disk or when receiving the resource group
statistics from a Lock Value Block (LVB), set/clear the GBF_FULL flags of all
bitmaps in that resource group according to whether or not the resource group
is full.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Removing a reservation doesn't make any actual space available, so don't clear
the GBF_FULL flags in that case. Otherwise, we'll only spend more time
scanning the bitmaps unnecessarily.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
This reverts commit e79e0e1428188b24c3b57309ffa54a33c4ae40c4.
It turns out that we're only setting the GBF_FULL flag of a bitmap if we've
been scanning from the beginning of the bitmap until the end and we haven't
found a single free block, and we're not skipping reservations in that process,
either. This means that in gfs2_rbm_find, we can always skip bitmaps with the
GBF_FULL flag set.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Variable ndata is only used inside "if (!dinode)", so it can be replaced
entirely with *nblocks.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
GFS2 uses struct gfs2_rbm to represent a filesystem block number as a
bit position within a resource group. This representation is used in
the bitmap manipulation code to prevent excessive conversions between
block numbers and bit positions, but also in struct gfs2_blkreserv which
is part of struct gfs2_inode, to mark the start of a reservation. In
the inode, the bit position representation makes less sense: first, the
start position is used as a block number about as often as a bit
position; second, the bit position representation makes the code
unnecessarily complicated and difficult to read.
Therefore, change struct gfs2_blkreserv to represent the start of a
reservation as a block number instead of a bit position. (This requires
keeping track of the resource group in gfs2_blkreserv separately.) With
that change, various things can be slightly simplified, and struct
gfs2_rbm can be moved to rgrp.c.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Change gfs2_rbm_incr to advance an rbm by a given number of blocks. Use that
in gfs2_reservation_check_and_update to save a gfs2_rbm_to_block ->
gfs2_rbm_from_block round trip.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
The I_DIRTY_TIME flag is primary used within the VFS, and there's no
reason for ->fsync() implementations to do anything with it. This is
because when !datasync, the VFS will expire dirty timestamps before
calling ->fsync(). (See vfs_fsync_range().) This turns I_DIRTY_TIME
into I_DIRTY_SYNC.
Therefore, change gfs2_fsync() to not check for I_DIRTY_TIME.
Link: https://lore.kernel.org/r/20210112190253.64307-11-ebiggers@kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
There is no need to call ->dirty_inode for lazytime timestamp updates
(i.e. for __mark_inode_dirty(I_DIRTY_TIME)), since by the definition of
lazytime, filesystems must ignore these updates. Filesystems only need
to care about the updated timestamps when they expire.
Therefore, only call ->dirty_inode when I_DIRTY_INODE is set.
Based on a patch from Christoph Hellwig:
https://lore.kernel.org/r/20200325122825.1086872-4-hch@lst.de
Link: https://lore.kernel.org/r/20210112190253.64307-6-ebiggers@kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Function gfs2_log_write_page is only used in lops.c, so make it static.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Before this patch, sister functions gfs2_make_fs_rw and gfs2_make_fs_ro locked
(held) the freeze glock by calling gfs2_freeze_lock and gfs2_freeze_unlock.
The problem is, not all the callers of gfs2_make_fs_ro should be doing this.
The three callers of gfs2_make_fs_ro are: remount (gfs2_reconfigure),
signal_our_withdraw, and unmount (gfs2_put_super). But when unmounting the
file system we can get into the following circular lock dependency:
deactivate_super
down_write(&s->s_umount); <-------------------------------------- s_umount
deactivate_locked_super
gfs2_kill_sb
kill_block_super
generic_shutdown_super
gfs2_put_super
gfs2_make_fs_ro
gfs2_glock_nq_init sd_freeze_gl
freeze_go_sync
if (freeze glock in SH)
freeze_super (vfs)
down_write(&sb->s_umount); <------- s_umount
This patch moves the hold of the freeze glock outside the two sister rw/ro
functions to their callers, but it doesn't request the glock from
gfs2_put_super, thus eliminating the circular dependency.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Many places in the gfs2 code queued and dequeued the freeze glock.
Almost all of them acquire it in SHARED mode, and need to specify the
same LM_FLAG_NOEXP and GL_EXACT flags.
This patch adds common helper functions gfs2_freeze_lock and gfs2_freeze_unlock
to make the code more readable, and to prepare for the next patch.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Function signal_our_withdraw needs to work on file systems that have been
partially frozen. To do this, it called flush_workqueue(gfs2_freeze_wq).
This this wrong because it waits for *ALL* file systems to be unfrozen, not
just the one we're withdrawing from. It should only wait for the targetted
file system to be unfrozen. Otherwise it would wait until ALL file systems
are thawed before signaling the withdraw.
This patch changes signal_our_withdraw so it calls flush_work() for the target
file system's freeze work (only) to be completed.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Before this patch, function gfs2_statfs_sync called sb_start_write and
sb_end_write. This is completely unnecessary because, aside from grabbing
glocks, gfs2_statfs_sync does all its updates to statfs with a transaction:
gfs2_trans_begin and _end. And transactions always do sb_start_intwrite in
gfs2_trans_begin and sb_end_intwrite in gfs2_trans_end.
This patch simply removes the call to sb_start_write.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>