IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cris Forno says:
====================
net/ethtool: Introduce link_ksettings API for virtual network devices
This series provides an API for drivers of virtual network devices that
allows users to alter initial device speed and duplex settings to reflect
the actual capabilities of underlying hardware. The changes made include
a helper function ethtool_virtdev_set_link_ksettings, which is used to
retrieve alterable link settings. In addition, there is a new ethtool
function defined to validate those settings. These changes resolve code
duplication for existing virtual network drivers that have already
implemented this behavior. In the case of the ibmveth driver, this API is
used to provide this capability for the first time.
---
v7: - removed ethtool_validate_cmd function pointer parameter from
ethtool_virtdev_set_link_ksettings since none of the virtual drivers
pass in a custom validate function as suggested by Michal Kubecek.
v6: - removed netvsc_validate_ethtool_ss_cmd(). netvsc_drv now uses
ethtool_virtdev_validate_cmd() instead as suggested by Michal Kubecek
and approved by Haiyang Zhang.
- matched handler argument name of ethtool_virtdev_set_link_ksettings
in declaration and definition as suggested by Michal Kubecek.
- shortened validate variable assignment in
ethtool_virtdev_set_link_ksettings as suggested by Michal Kubecek.
v5: - virtdev_validate_link_ksettings is taken out of the ethtool global
structure and is instead added as an argument to
ethtool_virtdev_set_link_ksettings as suggested by Jakub Kicinski.
v4: - Cleaned up return statement in ethtool_virtdev_validate_cmd based
off of Michal Kubecek's and Thomas Falcon's suggestion.
- If the netvsc driver is using the VF device in order to get
accelerated networking, the real speed and duplex is reported by using
the VF device as suggested by Stephen Hemminger.
- The speed and duplex variables are now passed by value rather than
passed by pointer as suggested by Willem de Bruijin and Michal
Kubecek.
- Removed ethtool_virtdev_get_link_ksettings since it was too simple
to warrant a helper function.
v3: - Factored out duplicated code to core/ethtool to provide API to
virtual drivers
v2: - Updated default driver speed/duplex settings to avoid breaking
existing setups
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
With the ethtool_virtdev_set_link_ksettings function in core/ethtool.c,
ibmveth, netvsc, and virtio now use the core's helper function.
Funtionality changes that pertain to ibmveth driver include:
1. Changed the initial hardcoded link speed to 1GB.
2. Added support for allowing a user to change the reported link
speed via ethtool.
Functionality changes to the netvsc driver include:
1. When netvsc_get_link_ksettings is called, it will defer to the VF
device if it exists to pull accelerated networking values, otherwise
pull default or user-defined values.
2. Similarly, if netvsc_set_link_ksettings called and a VF device
exists, the real values of speed and duplex are changed.
Signed-off-by: Cris Forno <cforno12@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Three virtual devices (ibmveth, virtio_net, and netvsc) all have
similar code to set link settings and validate ethtool command. To
eliminate duplication of code, it is factored out into core/ethtool.c.
Signed-off-by: Cris Forno <cforno12@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Taehee Yoo says:
====================
hsr: several code cleanup for hsr module
This patchset is to clean up hsr module code.
1. The first patch is to use debugfs_remove_recursive().
If it uses debugfs_remove_recursive() instead of debugfs_remove(),
hsr_priv() doesn't need to have "node_tbl_file" pointer variable.
2. The second patch is to use extack error message.
If HSR uses the extack instead of netdev_info(), users can get
error messages immediately without any checking the kernel message.
3. The third patch is to use netdev_err() instead of WARN_ONCE().
When a packet is being sent, hsr_addr_subst_dest() is called and
it tries to find the node with the ethernet destination address.
If it couldn't find a node, it warns with WARN_ONCE().
But, using WARN_ONCE() is a little bit overdoing.
So, in this patch, netdev_err() is used instead.
4. The fourth patch is to remove unnecessary rcu_read_{lock/unlock}().
There are some rcu_read_{lock/unlock}() in hsr module and some of
them are unnecessary. In this patch,
these unnecessary rcu_read_{lock/unlock}() will be removed.
5. The fifth patch is to use upper/lower device infrastructure.
netdev_upper_dev_link() is useful to manage lower/upper interfaces.
And this function internally validates looping, maximum depth.
If hsr module uses upper/lower device infrastructure,
it can prevent these above problems.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
netdev_upper_dev_link() is useful to manage lower/upper interfaces.
And this function internally validates looping, maximum depth.
All or most virtual interfaces that could have a real interface
(e.g. macsec, macvlan, ipvlan etc.) use lower/upper infrastructure.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to access the port list, the hsr_port_get_hsr() is used.
And this is protected by RTNL and RCU.
The hsr_fill_info(), hsr_check_carrier(), hsr_dev_open() and
hsr_get_max_mtu() are protected by RTNL.
So, rcu_read_lock() in these functions are not necessary.
The hsr_handle_frame() also uses rcu_read_lock() but this function
is called by packet path.
It's already protected by RCU.
So, the rcu_read_lock() in hsr_handle_frame() can be removed.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When HSR interface is sending a frame, it finds a node with
the destination ethernet address from the list.
If there is no node, it calls WARN_ONCE().
But, using WARN_ONCE() for this situation is a little bit overdoing.
So, in this patch, the netdev_err() is used instead.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If HSR uses the extack instead of netdev_info(), users can get
error messages immediately without any checking the kernel message.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If it uses debugfs_remove_recursive() instead of debugfs_remove(),
hsr_priv() doesn't need to have "node_tbl_file" pointer variable.
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The port to phylink was done as close as possible to initial
functionality.
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Esben Haabendal says:
====================
net: ll_temac: RX/TX ring size and coalesce ethtool parameters
This series adds support for RX/TX ring size and irq coalesce ethtool
parameters to ll_temac driver.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Please note that the delays are calculated based on typical
parameters. But as TEMAC is an HDL IP, designs may vary, and future
work might be needed to make this calculation configurable.
Signed-off-by: Esben Haabendal <esben@geanix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for setting the RX and TX ring sizes for this driver using
ethtool. Also increase the default RX ring size as the previous default
was far too low for good performance in some configurations.
Signed-off-by: Esben Haabendal <esben@geanix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The start_p variable was included in the initial commit,
commit 9274498953 ("net: add Xilinx ll_temac device driver"),
but has never had any real use.
Signed-off-by: Esben Haabendal <esben@geanix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The tx_bd_next field was included in the initial commit,
commit 9274498953 ("net: add Xilinx ll_temac device driver"),
but has never had any real use.
Signed-off-by: Esben Haabendal <esben@geanix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-02-28
The following pull-request contains BPF updates for your *net-next* tree.
We've added 41 non-merge commits during the last 7 day(s) which contain
a total of 49 files changed, 1383 insertions(+), 499 deletions(-).
The main changes are:
1) BPF and Real-Time nicely co-exist.
2) bpftool feature improvements.
3) retrieve bpf_sk_storage via INET_DIAG.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Paolo Abeni says:
====================
net: cleanup datagram receive helpers
Several receive helpers have an optional destructor argument, which uglify
the code a bit and is taxed by retpoline overhead.
This series refactor the code so that we can drop such optional argument,
cleaning the helpers a bit and avoiding an indirect call in fast path.
The first patch refactor a bit the caller, so that the second patch
actually dropping the argument is more straight-forward
v1 -> v2:
- call scm_stat_del() only when not peeking - Kirill
- fix build issue with CONFIG_INET_ESPINTCP
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The only users for such argument are the UDP protocol and the UNIX
socket family. We can safely reclaim the accounted memory directly
from the UDP code and, after the previous patch, we can do scm
stats accounting outside the datagram helpers.
Overall this cleans up a bit some datagram-related helpers, and
avoids an indirect call per packet in the UDP receive path.
v1 -> v2:
- call scm_stat_del() only when not peeking - Kirill
- fix build issue with CONFIG_INET_ESPINTCP
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
So the scm_stat_{add,del} helper can be invoked with no
additional lock held.
This clean-up the code a bit and will make the next
patch easier.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
Lastly, fix the following checkpatch warning:
CHECK: Prefer kernel type 'u8' over 'uint8_t'
#50: FILE: net/l2tp/l2tp_core.h:119:
+ uint8_t priv[]; /* private data */
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
mlx5 misc updates and minor cleanups:
1) Use per vport tables for mirroring
2) Improve log messages for SW steering (DR)
3) Add devlink fdb_large_groups parameter
4) E-Switch, Allow goto earlier chain
5) Don't allow forwarding between uplink representors
6) Add support for devlink-port in non-representors mode
7) Minor misc cleanups
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEGhZs6bAKwk/OTgTpSD+KveBX+j4FAl5YYYwACgkQSD+KveBX
+j7vIQgAsFQSjJGdyUzVDfeHu94Ze79OMRstuEh9fbcNXeyawMTShPLPE94E91qo
Nj6AfZp8sH9M6fLtFcOMrPou87ITslP3mQ/C2cYWWJn/iq9RN13kO+howZNeRhlk
iettT8qHGYR7aU3tBU38pc9/bWVHRPt+FZGBeCAcvwgQ1zfjBEtPcMJ8svjsfETA
0bzEDEq0eKEaynHr3phJpzbcnvzm3154HkfZtDZFAApgr4tpEGSlFa4n+8ctcmqy
zf82HH8GnB+GhTUPU3W33NwyH2otHOcE3dPAepQNmS3f8EemMJebAtjkexo6SfjY
rwUs5qTU05myOy5RPmzwhQsnzRyPBw==
=z2AA
-----END PGP SIGNATURE-----
Merge tag 'mlx5-updates-2020-02-27' of git://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux
Saeed Mahameed says:
====================
mlx5-updates-2020-02-27
mlx5 misc updates and minor cleanups:
1) Use per vport tables for mirroring
2) Improve log messages for SW steering (DR)
3) Add devlink fdb_large_groups parameter
4) E-Switch, Allow goto earlier chain
5) Don't allow forwarding between uplink representors
6) Add support for devlink-port in non-representors mode
7) Minor misc cleanups
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Martin KaFai Lau says:
====================
The bpf_prog can store specific info to a sk by using bpf_sk_storage.
In other words, a sk can be extended by a bpf_prog.
This series is to support providing bpf_sk_storage data during inet_diag's
dump. The primary target is the usage like iproute2's "ss".
The first two patches are refactoring works in inet_diag to make
adding bpf_sk_storage support easier. The next two patches do
the actual work.
Please see individual patch for details.
v2:
- Add commit message for u16 to u32 change in min_dump_alloc in Patch 4 (Song)
- Add comment to explain the !skb->len check in __inet_diag_dump in Patch 4.
- Do the map->map_type check earlier in Patch 3 for readability.
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch will dump out the bpf_sk_storages of a sk
if the request has the INET_DIAG_REQ_SK_BPF_STORAGES nlattr.
An array of SK_DIAG_BPF_STORAGE_REQ_MAP_FD can be specified in
INET_DIAG_REQ_SK_BPF_STORAGES to select which bpf_sk_storage to dump.
If no map_fd is specified, all bpf_sk_storages of a sk will be dumped.
bpf_sk_storages can be added to the system at runtime. It is difficult
to find a proper static value for cb->min_dump_alloc.
This patch learns the nlattr size required to dump the bpf_sk_storages
of a sk. If it happens to be the very first nlmsg of a dump and it
cannot fit the needed bpf_sk_storages, it will try to expand the
skb by "pskb_expand_head()".
Instead of expanding it in inet_sk_diag_fill(), it is expanded at a
sleepable context in __inet_diag_dump() so __GFP_DIRECT_RECLAIM can
be used. In __inet_diag_dump(), it will retry as long as the
skb is empty and the cb->min_dump_alloc becomes larger than before.
cb->min_dump_alloc is bounded by KMALLOC_MAX_SIZE. The min_dump_alloc
is also changed from 'u16' to 'u32' to accommodate a sk that may have
a few large bpf_sk_storages.
The updated cb->min_dump_alloc will also be used to allocate the skb in
the next dump. This logic already exists in netlink_dump().
Here is the sample output of a locally modified 'ss' and it could be made
more readable by using BTF later:
[root@arch-fb-vm1 ~]# ss --bpf-map-id 14 --bpf-map-id 13 -t6an 'dst [::1]:8989'
State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess
ESTAB 0 0 [::1]:51072 [::1]:8989
bpf_map_id:14 value:[ 3feb ]
bpf_map_id:13 value:[ 3f ]
ESTAB 0 0 [::1]:51070 [::1]:8989
bpf_map_id:14 value:[ 3feb ]
bpf_map_id:13 value:[ 3f ]
[root@arch-fb-vm1 ~]# ~/devshare/github/iproute2/misc/ss --bpf-maps -t6an 'dst [::1]:8989'
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
ESTAB 0 0 [::1]:51072 [::1]:8989
bpf_map_id:14 value:[ 3feb ]
bpf_map_id:13 value:[ 3f ]
bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ]
ESTAB 0 0 [::1]:51070 [::1]:8989
bpf_map_id:14 value:[ 3feb ]
bpf_map_id:13 value:[ 3f ]
bpf_map_id:12 value:[ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000... total:65407 ]
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230427.1976129-1-kafai@fb.com
This patch adds INET_DIAG support to bpf_sk_storage.
1. Although this series adds bpf_sk_storage diag capability to inet sk,
bpf_sk_storage is in general applicable to all fullsock. Hence, the
bpf_sk_storage logic will operate on SK_DIAG_* nlattr. The caller
will pass in its specific nesting nlattr (e.g. INET_DIAG_*) as
the argument.
2. The request will be like:
INET_DIAG_REQ_SK_BPF_STORAGES (nla_nest) (defined in latter patch)
SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
......
Considering there could have multiple bpf_sk_storages in a sk,
instead of reusing INET_DIAG_INFO ("ss -i"), the user can select
some specific bpf_sk_storage to dump by specifying an array of
SK_DIAG_BPF_STORAGE_REQ_MAP_FD.
If no SK_DIAG_BPF_STORAGE_REQ_MAP_FD is specified (i.e. an empty
INET_DIAG_REQ_SK_BPF_STORAGES), it will dump all bpf_sk_storages
of a sk.
3. The reply will be like:
INET_DIAG_BPF_SK_STORAGES (nla_nest) (defined in latter patch)
SK_DIAG_BPF_STORAGE (nla_nest)
SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
SK_DIAG_BPF_STORAGE (nla_nest)
SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
......
4. Unlike other INET_DIAG info of a sk which is pretty static, the size
required to dump the bpf_sk_storage(s) of a sk is dynamic as the
system adding more bpf_sk_storage_map. It is hard to set a static
min_dump_alloc size.
Hence, this series learns it at the runtime and adjust the
cb->min_dump_alloc as it iterates all sk(s) of a system. The
"unsigned int *res_diag_size" in bpf_sk_storage_diag_put()
is for this purpose.
The next patch will update the cb->min_dump_alloc as it
iterates the sk(s).
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230421.1975729-1-kafai@fb.com
The INET_DIAG_REQ_BYTECODE nlattr is currently re-found every time when
the "dump()" is re-started.
In a latter patch, it will also need to parse the new
INET_DIAG_REQ_SK_BPF_STORAGES nlattr to learn the map_fds. Thus, this
patch takes this chance to store the parsed nlattr in cb->data
during the "start" time of a dump.
By doing this, the "bc" argument also becomes unnecessary
and is removed. Also, the two copies of the INET_DIAG_REQ_BYTECODE
parsing-audit logic between compat/current version can be
consolidated to one.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230415.1975555-1-kafai@fb.com
In a latter patch, there is a need to update "cb->min_dump_alloc"
in inet_sk_diag_fill() as it learns the diffierent bpf_sk_storages
stored in a sk while dumping all sk(s) (e.g. tcp_hashinfo).
The inet_sk_diag_fill() currently does not take the "cb" as an argument.
One of the reason is inet_sk_diag_fill() is used by both dump_one()
and dump() (which belong to the "struct inet_diag_handler". The dump_one()
interface does not pass the "cb" along.
This patch is to make dump_one() pass a "cb". The "cb" is created in
inet_diag_cmd_exact(). The "nlh" and "in_skb" are stored in "cb" as
the dump() interface does. The total number of args in
inet_sk_diag_fill() is also cut from 10 to 7 and
that helps many callers to pass fewer args.
In particular,
"struct user_namespace *user_ns", "u32 pid", and "u32 seq"
can be replaced by accessing "cb->nlh" and "cb->skb".
A similar argument reduction is also made to
inet_twsk_diag_fill() and inet_req_diag_fill().
inet_csk_diag_dump() and inet_csk_diag_fill() are also removed.
They are mostly equivalent to inet_sk_diag_fill(). Their repeated
usages are very limited. Thus, inet_sk_diag_fill() is directly used
in those occasions.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230409.1975173-1-kafai@fb.com
The mptcp conflict was overlapping additions.
The SMC conflict was an additional and removal happening at the same
time.
Signed-off-by: David S. Miller <davem@davemloft.net>
The code is self explanatory and makes the comment redundant.
Signed-off-by: Roi Dayan <roid@mellanox.com>
Reviewed-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
mlx5e_tc_offload_to_slow_path() and mlx5e_tc_unoffload_from_slow_path()
take an extra argument allocated on the stack of the caller but not used
by the caller. Avoid the extra argument and use local variable in the
function itself.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Reviewed-by: Roi Dayan <roid@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
parse_attr is not used by parse_tc_pedit_action() so revmove it.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Reviewed-by: Roi Dayan <roid@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
This to be consistent and adds the module name to the error message.
Signed-off-by: Roi Dayan <roid@mellanox.com>
Reviewed-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
This is for added netdev prefix that helps identify
the source of the message.
Signed-off-by: Roi Dayan <roid@mellanox.com>
Reviewed-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
This helps identify the source of the message.
If netdev still doesn't exists use mlx5_core_warn().
Signed-off-by: Roi Dayan <roid@mellanox.com>
Reviewed-by: Vlad Buslov <vladbu@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Few print messages are in debug level where they should be in error, and
few messages are missing.
Signed-off-by: Erez Shitrit <erezsh@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Change matcher priority parameter type from u16 to u32,
this change is needed since sometimes upper levels
create a matcher with priority bigger than 2^16.
Signed-off-by: Hamdan Igbaria <hamdani@mellanox.com>
Reviewed-by: Alex Vesker <valex@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>