43 Commits

Author SHA1 Message Date
Peter Zijlstra
4b5305decc x86/extable: Extend extable functionality
In order to remove further .fixup usage, extend the extable
infrastructure to take additional information from the extable entry
sites.

Specifically add _ASM_EXTABLE_TYPE_REG() and EX_TYPE_IMM_REG that
extend the existing _ASM_EXTABLE_TYPE() by taking an additional
register argument and encoding that and an s16 immediate into the
existing s32 type field. This limits the actual types to the first
byte, 255 seem plenty.

Also add a few flags into the type word, specifically CLEAR_AX and
CLEAR_DX which clear the return and extended return register.

Notes:
 - due to the % in our register names it's hard to make it more
   generally usable as arm64 did.
 - the s16 is far larger than used in these patches, future extentions
   can easily shrink this to get more bits.
 - without the bitfield fix this will not compile, because: 0xFF > -1
   and we can't even extract the TYPE field.

[nathanchance: Build fix for clang-lto builds:
 https://lkml.kernel.org/r/20211210234953.3420108-1-nathan@kernel.org
]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/20211110101325.303890153@infradead.org
2021-12-11 09:09:46 +01:00
Linus Torvalds
e0f4c59dc4 - Start checking a CPUID bit on AMD Zen3 which states that the CPU
clears the segment base when a null selector is written. Do the explicit
 detection on older CPUs, zen2 and hygon specifically, which have the
 functionality but do not advertize the CPUID bit. Factor in the presence
 of a hypervisor underneath the kernel and avoid doing the explicit check
 there which the HV might've decided to not advertize for migration
 safety reasons, a.o.
 
 - Add support for a new X86 CPU vendor: VORTEX. Needed for whitelisting
 those CPUs in the hardware vulnerabilities detection
 
 - Force the compiler to use rIP-relative addressing in the fallback path of
 static_cpu_has(), in order to avoid unnecessary register pressure
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/wRgACgkQEsHwGGHe
 VUoGQBAAk9V9//FMoENuGFGul/IK8+VBibTfztYgaPvm7vjMDYaYuRBCQiZg5Y8U
 D14pwkg7CuRa6iwZmrk/X/y6FVjo5BJA//ROk/n/9JNvV5QUp3/o00uLiziv80K3
 H6Wm3PUyGgkpBuJg+/K8SLE9UQ6uSh4nsykS+70Dcd45DtkC/vH8pkDs5Q1fVQwb
 7AuOuWTCWKUYOMFYWFI3a9D8tZYhg99ABREbXBaJGiGdIlZKNVe/7W8qQw5s6cVA
 cD5Q2ILY2RCGP55ZQiWoFy3XNP3/ygvZ7Zm1ARYUvUMR2Y5X2XJWN/B6oMbc0oEu
 OZsDDA/ILYcah9eBV/zk4ON/1djksp1iWNXNxjct0cNBPAKxi6T/HhHuIHBtzvW+
 zDyBWUMLlv1m2i1oW4J4NuNJJi9Gaz+7PesmI7C0OQPgywR8UqqfMD+TzlEHWya1
 YqYqI0f3aiyC/sLjUp3GSA7a9sWSd3BZfyAlLBJZCxyXAxX92tXX5BRPh/KYbnJn
 c/NaYA6X4m4Rdvr0gKKtCklaC6w4GLzVak6wIvftzHlUYsWX21BhnTkQrciKbqc+
 AKWed41AO+4pDHROePxc409x3UZolti+1RandikrztIVAolVJ6W/OkHWxXfy28Fg
 iSrtl4M3omv8fCHDaJ26STrXqxH8pIK8noVolwQoXKyAFVyvXTk=
 =rlVy
 -----END PGP SIGNATURE-----

Merge tag 'x86_cpu_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cpu updates from Borislav Petkov:

 - Start checking a CPUID bit on AMD Zen3 which states that the CPU
   clears the segment base when a null selector is written. Do the
   explicit detection on older CPUs, zen2 and hygon specifically, which
   have the functionality but do not advertize the CPUID bit. Factor in
   the presence of a hypervisor underneath the kernel and avoid doing
   the explicit check there which the HV might've decided to not
   advertize for migration safety reasons, or similar.

 - Add support for a new X86 CPU vendor: VORTEX. Needed for whitelisting
   those CPUs in the hardware vulnerabilities detection

 - Force the compiler to use rIP-relative addressing in the fallback
   path of static_cpu_has(), in order to avoid unnecessary register
   pressure

* tag 'x86_cpu_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu: Fix migration safety with X86_BUG_NULL_SEL
  x86/CPU: Add support for Vortex CPUs
  x86/umip: Downgrade warning messages to debug loglevel
  x86/asm: Avoid adding register pressure for the init case in static_cpu_has()
  x86/asm: Add _ASM_RIP() macro for x86-64 (%rip) suffix
2021-11-01 15:33:54 -07:00
H. Peter Anvin (Intel)
f87bc8dc7a x86/asm: Add _ASM_RIP() macro for x86-64 (%rip) suffix
Add a macro _ASM_RIP() to add a (%rip) suffix on 64 bits only. This is
useful for immediate memory references where one doesn't want gcc
to possibly use a register indirection as it may in the case of an "m"
constraint.

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210910195910.2542662-3-hpa@zytor.com
2021-09-13 19:38:40 +02:00
Thomas Gleixner
46d28947d9 x86/extable: Rework the exception table mechanics
The exception table entries contain the instruction address, the fixup
address and the handler address. All addresses are relative. Storing the
handler address has a few downsides:

 1) Most handlers need to be exported

 2) Handlers can be defined everywhere and there is no overview about the
    handler types

 3) MCE needs to check the handler type to decide whether an in kernel #MC
    can be recovered. The functionality of the handler itself is not in any
    way special, but for these checks there need to be separate functions
    which in the worst case have to be exported.

    Some of these 'recoverable' exception fixups are pretty obscure and
    just reuse some other handler to spare code. That obfuscates e.g. the
    #MC safe copy functions. Cleaning that up would require more handlers
    and exports

Rework the exception fixup mechanics by storing a fixup type number instead
of the handler address and invoke the proper handler for each fixup
type. Also teach the extable sort to leave the type field alone.

This makes most handlers static except for special cases like the MCE
MSR fixup and the BPF fixup. This allows to add more types for cleaning up
the obscure places without adding more handler code and exports.

There is a marginal code size reduction for a production config and it
removes _eight_ exported symbols.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lkml.kernel.org/r/20210908132525.211958725@linutronix.de
2021-09-13 17:51:47 +02:00
Thomas Gleixner
32fd8b59f9 x86/extable: Get rid of redundant macros
No point in defining the identical macros twice depending on C or assembly
mode. They are still identical.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.023659534@linutronix.de
2021-09-13 12:52:38 +02:00
Ingo Molnar
41f45fb045 x86/asm: Make <asm/asm.h> valid on cross-builds as well
Stephen Rothwell reported that the objtool cross-build breaks on
non-x86 hosts:

  > tools/arch/x86/include/asm/asm.h:185:24: error: invalid register name for 'current_stack_pointer'
  >   185 | register unsigned long current_stack_pointer asm(_ASM_SP);
  >       |                        ^~~~~~~~~~~~~~~~~~~~~

The PowerPC host obviously doesn't know much about x86 register names.

Protect the kernel-specific bits of <asm/asm.h>, so that it can be
included by tooling and cross-built.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-05-14 08:50:28 +02:00
H. Peter Anvin (Intel)
d88be187a6 x86/asm: Add _ASM_BYTES() macro for a .byte ... opcode sequence
Make it easy to create a sequence of bytes that can be used in either
assembly proper on in a C asm() statement.

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510090940.924953-3-hpa@zytor.com
2021-05-10 12:33:28 +02:00
H. Peter Anvin (Intel)
be5bb8021c x86/asm: Have the __ASM_FORM macros handle commas in arguments
The __ASM_FORM macros are really useful, but in order to be able to
use them to define instructions via .byte directives breaks because of
the necessary commas. Change the macros to handle commas correctly.

[ mingo: Removed stray whitespaces & aligned the definitions vertically. ]

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510090940.924953-2-hpa@zytor.com
2021-05-10 12:33:28 +02:00
Linus Torvalds
34eb62d868 Orphan link sections were a long-standing source of obscure bugs,
because the heuristics that various linkers & compilers use to handle them
 (include these bits into the output image vs discarding them silently)
 are both highly idiosyncratic and also version dependent.
 
 Instead of this historically problematic mess, this tree by Kees Cook (et al)
 adds build time asserts and build time warnings if there's any orphan section
 in the kernel or if a section is not sized as expected.
 
 And because we relied on so many silent assumptions in this area, fix a metric
 ton of dependencies and some outright bugs related to this, before we can
 finally enable the checks on the x86, ARM and ARM64 platforms.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Edv4RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hiKBAApdJEOaK7hMc3013DYNctklIxEPJL2mFJ
 11YJRIh4pUJTF0TE+EHT/D+rSIuRsyuoSmOQBQ61/wVSnyG067GjjVJRqh/eYaJ1
 fDhJi2FuHOjXl+CiN0KxzBjjp+V4NhF7jHT59tpQSvfZeg7FjteoxfztxaCp5ek3
 S3wHB3CC4c4jE3lfjHem1E9/PwT4kwPYx1c3gAUdEqJdjkihjX9fWusfjLeqW6/d
 Y5VkApi6bL9XiZUZj5l0dEIweLJJ86+PkKJqpo3spxxEak1LSn1MEix+lcJ8e1Kg
 sb/bEEivDcmFlFWOJnn0QLquCR0Cx5bz1pwsL0tuf0yAd4+sXX5IMuGUysZlEdKM
 BHL9h5HbevGF4BScwZwZH7lyEg7q67s5KnRu4hxy0Swfcj7y0oT/9lXqpbpZ2DqO
 Hd+bRRQKIbqnTMp0hcit9LfpLp93vj0dBlaV5ocAJJlu62u9VnwGG5HQuZ5giLUr
 kA1SLw63Y1wopFRxgFyER8les7eLsu0zxHeK44rRVlVnfI99OMTOgVNicmDFy3Fm
 AfcnfJG0BqBEJGQz5es34uQQKKBwFPtC9NztopI62KiwOspYYZyrO1BNxdOc6DlS
 mIHrmO89HMXuid5eolvLaFqUWirHoWO8TlycgZxUWVHc2txVPjAEU/axouU/dSSU
 w/6GpzAa+7g=
 =fXAw
 -----END PGP SIGNATURE-----

Merge tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull orphan section checking from Ingo Molnar:
 "Orphan link sections were a long-standing source of obscure bugs,
  because the heuristics that various linkers & compilers use to handle
  them (include these bits into the output image vs discarding them
  silently) are both highly idiosyncratic and also version dependent.

  Instead of this historically problematic mess, this tree by Kees Cook
  (et al) adds build time asserts and build time warnings if there's any
  orphan section in the kernel or if a section is not sized as expected.

  And because we relied on so many silent assumptions in this area, fix
  a metric ton of dependencies and some outright bugs related to this,
  before we can finally enable the checks on the x86, ARM and ARM64
  platforms"

* tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  x86/boot/compressed: Warn on orphan section placement
  x86/build: Warn on orphan section placement
  arm/boot: Warn on orphan section placement
  arm/build: Warn on orphan section placement
  arm64/build: Warn on orphan section placement
  x86/boot/compressed: Add missing debugging sections to output
  x86/boot/compressed: Remove, discard, or assert for unwanted sections
  x86/boot/compressed: Reorganize zero-size section asserts
  x86/build: Add asserts for unwanted sections
  x86/build: Enforce an empty .got.plt section
  x86/asm: Avoid generating unused kprobe sections
  arm/boot: Handle all sections explicitly
  arm/build: Assert for unwanted sections
  arm/build: Add missing sections
  arm/build: Explicitly keep .ARM.attributes sections
  arm/build: Refactor linker script headers
  arm64/build: Assert for unwanted sections
  arm64/build: Add missing DWARF sections
  arm64/build: Use common DISCARDS in linker script
  arm64/build: Remove .eh_frame* sections due to unwind tables
  ...
2020-10-12 13:39:19 -07:00
Youquan Song
278b917f8c x86/mce: Add _ASM_EXTABLE_CPY for copy user access
_ASM_EXTABLE_UA is a general exception entry to record the exception fixup
for all exception spots between kernel and user space access.

To enable recovery from machine checks while coping data from user
addresses it is necessary to be able to distinguish the places that are
looping copying data from those that copy a single byte/word/etc.

Add a new macro _ASM_EXTABLE_CPY and use it in place of _ASM_EXTABLE_UA
in the copy functions.

Record the exception reason number to regs->ax at
ex_handler_uaccess which is used to check MCE triggered.

The new fixup routine ex_handler_copy() is almost an exact copy of
ex_handler_uaccess() The difference is that it sets regs->ax to the trap
number. Following patches use this to avoid trying to copy remaining
bytes from the tail of the copy and possibly hitting the poison again.

New mce.kflags bit MCE_IN_KERNEL_COPYIN will be used by mce_severity()
calculation to indicate that a machine check is recoverable because the
kernel was copying from user space.

Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201006210910.21062-4-tony.luck@intel.com
2020-10-07 11:19:11 +02:00
Kees Cook
a850958c07 x86/asm: Avoid generating unused kprobe sections
When !CONFIG_KPROBES, do not generate kprobe sections. This makes
sure there are no unexpected sections encountered by the linker scripts.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200821194310.3089815-23-keescook@chromium.org
2020-09-01 10:03:18 +02:00
Borislav Petkov
28b60197b5 x86/asm: Unify __ASSEMBLY__ blocks
Merge the two ifndef __ASSEMBLY__ blocks.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200604133204.7636-1-bp@alien8.de
2020-06-15 19:29:36 +02:00
Al Viro
cf122cfba5 kill uaccess_try()
finally

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-03-26 15:02:14 -04:00
Linus Torvalds
168829ad09 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The main changes in this cycle were:

   - A comprehensive rewrite of the robust/PI futex code's exit handling
     to fix various exit races. (Thomas Gleixner et al)

   - Rework the generic REFCOUNT_FULL implementation using
     atomic_fetch_* operations so that the performance impact of the
     cmpxchg() loops is mitigated for common refcount operations.

     With these performance improvements the generic implementation of
     refcount_t should be good enough for everybody - and this got
     confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
     REFCOUNT_FULL entirely, leaving the generic implementation enabled
     unconditionally. (Will Deacon)

   - Other misc changes, fixes, cleanups"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  lkdtm: Remove references to CONFIG_REFCOUNT_FULL
  locking/refcount: Remove unused 'refcount_error_report()' function
  locking/refcount: Consolidate implementations of refcount_t
  locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
  locking/refcount: Move saturation warnings out of line
  locking/refcount: Improve performance of generic REFCOUNT_FULL code
  locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
  locking/refcount: Remove unused refcount_*_checked() variants
  locking/refcount: Ensure integer operands are treated as signed
  locking/refcount: Define constants for saturation and max refcount values
  futex: Prevent exit livelock
  futex: Provide distinct return value when owner is exiting
  futex: Add mutex around futex exit
  futex: Provide state handling for exec() as well
  futex: Sanitize exit state handling
  futex: Mark the begin of futex exit explicitly
  futex: Set task::futex_state to DEAD right after handling futex exit
  futex: Split futex_mm_release() for exit/exec
  exit/exec: Seperate mm_release()
  futex: Replace PF_EXITPIDONE with a state
  ...
2019-11-26 16:02:40 -08:00
Will Deacon
fb041bb7c0 locking/refcount: Consolidate implementations of refcount_t
The generic implementation of refcount_t should be good enough for
everybody, so remove ARCH_HAS_REFCOUNT and REFCOUNT_FULL entirely,
leaving the generic implementation enabled unconditionally.

Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191121115902.2551-9-will@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-25 09:15:32 +01:00
Masami Hiramatsu
f7919fd943 x86/asm: Allow to pass macros to __ASM_FORM()
Use __stringify() at __ASM_FORM() so that user can pass
code including macros to __ASM_FORM().

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/156777562873.25081.2288083344657460959.stgit@devnote2
2019-10-17 21:31:57 +02:00
Peter Zijlstra
3693ca8115 x86/uaccess: Move copy_user_handle_tail() into asm
By writing the function in asm we avoid cross object code flow and
objtool no longer gets confused about a 'stray' CLAC.

Also; the asm version is actually _simpler_.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 09:36:29 +02:00
Ingo Molnar
81a68455e7 Revert "x86/extable: Macrofy inline assembly code to work around GCC inlining bugs"
This reverts commit 0474d5d9d2f7f3b11262f7bf87d0e7314ead9200.

See this commit for details about the revert:

  e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")

Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-19 11:59:47 +01:00
Nadav Amit
0474d5d9d2 x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
As described in:

  77b0bf55bc67: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")

GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.

The workaround is to set an assembly macro and call it from the inline
assembly block - which is also a minor cleanup for the exception table
code.

Text size goes up a bit:

      text     data     bss      dec     hex  filename
  18162555 10226288 2957312 31346155 1de4deb  ./vmlinux before
  18162879 10226256 2957312 31346447 1de4f0f  ./vmlinux after (+292)

But this allows the inlining of functions such as nested_vmx_exit_reflected(),
set_segment_reg(), __copy_xstate_to_user() which is a net benefit.

Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-2-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-9-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 15:52:15 +02:00
Jann Horn
75045f77f7 x86/extable: Introduce _ASM_EXTABLE_UA for uaccess fixups
Currently, most fixups for attempting to access userspace memory are
handled using _ASM_EXTABLE, which is also used for various other types of
fixups (e.g. safe MSR access, IRET failures, and a bunch of other things).
In order to make it possible to add special safety checks to uaccess fixups
(in particular, checking whether the fault address is actually in
userspace), introduce a new exception table handler ex_handler_uaccess()
and wire it up to all the user access fixups (excluding ones that
already use _ASM_EXTABLE_EX).

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-5-jannh@google.com
2018-09-03 15:12:09 +02:00
H. Peter Anvin
0e2e160033 x86/asm: Add _ASM_ARG* constants for argument registers to <asm/asm.h>
i386 and x86-64 uses different registers for arguments; make them
available so we don't have to #ifdef in the actual code.

Native size and specified size (q, l, w, b) versions are provided.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@redhat.com
Cc: akataria@vmware.com
Cc: akpm@linux-foundation.org
Cc: andrea.parri@amarulasolutions.com
Cc: ard.biesheuvel@linaro.org
Cc: arnd@arndb.de
Cc: aryabinin@virtuozzo.com
Cc: astrachan@google.com
Cc: boris.ostrovsky@oracle.com
Cc: brijesh.singh@amd.com
Cc: caoj.fnst@cn.fujitsu.com
Cc: geert@linux-m68k.org
Cc: ghackmann@google.com
Cc: gregkh@linuxfoundation.org
Cc: jan.kiszka@siemens.com
Cc: jarkko.sakkinen@linux.intel.com
Cc: joe@perches.com
Cc: jpoimboe@redhat.com
Cc: keescook@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: kstewart@linuxfoundation.org
Cc: linux-efi@vger.kernel.org
Cc: linux-kbuild@vger.kernel.org
Cc: manojgupta@google.com
Cc: mawilcox@microsoft.com
Cc: michal.lkml@markovi.net
Cc: mjg59@google.com
Cc: mka@chromium.org
Cc: pombredanne@nexb.com
Cc: rientjes@google.com
Cc: rostedt@goodmis.org
Cc: thomas.lendacky@amd.com
Cc: tstellar@redhat.com
Cc: tweek@google.com
Cc: virtualization@lists.linux-foundation.org
Cc: will.deacon@arm.com
Cc: yamada.masahiro@socionext.com
Link: http://lkml.kernel.org/r/20180621162324.36656-3-ndesaulniers@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 10:56:27 +02:00
Arnaldo Carvalho de Melo
fd97d39b0a Revert "x86/asm: Allow again using asm.h when building for the 'bpf' clang target"
This reverts commit ca26cffa4e4aaeb09bb9e308f95c7835cb149248.

Newer clang versions accept that asm(_ASM_SP) construct, and now that
the bpf-script-test-kbuild.c script, used in one of the 'perf test LLVM'
subtests doesn't include ptrace.h, which ended up including
arch/x86/include/asm/asm.h, we can revert this patch.

Suggested-by: Yonghong Song <yhs@fb.com>
Link: https://lkml.kernel.org/r/613f0a0d-c433-8f4d-dcc1-c9889deae39e@fb.com
Acked-by: Yonghong Song <yhs@fb.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Ahern <dsahern@gmail.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wang Nan <wangnan0@huawei.com>
Link: https://lkml.kernel.org/n/tip-nqozcv8loq40tkqpfw997993@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-04-12 10:33:27 -03:00
Arnaldo Carvalho de Melo
ca26cffa4e x86/asm: Allow again using asm.h when building for the 'bpf' clang target
Up to f5caf621ee35 ("x86/asm: Fix inline asm call constraints for Clang")
we were able to use x86 headers to build to the 'bpf' clang target, as
done by the BPF code in tools/perf/.

With that commit, we ended up with following failure for 'perf test LLVM', this
is because "clang ... -target bpf ..." fails since 4.0 does not have bpf inline
asm support and 6.0 does not recognize the register 'esp', fix it by guarding
that part with an #ifndef __BPF__, that is defined by clang when building to
the "bpf" target.

  # perf test -v LLVM
  37: LLVM search and compile                               :
  37.1: Basic BPF llvm compile                              :
  --- start ---
  test child forked, pid 25526
  Kernel build dir is set to /lib/modules/4.14.0+/build
  set env: KBUILD_DIR=/lib/modules/4.14.0+/build
  unset env: KBUILD_OPTS
  include option is set to  -nostdinc -isystem /usr/lib/gcc/x86_64-redhat-linux/7/include -I/home/acme/git/linux/arch/x86/include -I./arch/x86/include/generated  -I/home/acme/git/linux/include -I./include -I/home/acme/git/linux/arch/x86/include/uapi -I./arch/x86/include/generated/uapi -I/home/acme/git/linux/include/uapi -I./include/generated/uapi -include /home/acme/git/linux/include/linux/kconfig.h
  set env: NR_CPUS=4
  set env: LINUX_VERSION_CODE=0x40e00
  set env: CLANG_EXEC=/usr/local/bin/clang
  set env: CLANG_OPTIONS=-xc
  set env: KERNEL_INC_OPTIONS= -nostdinc -isystem /usr/lib/gcc/x86_64-redhat-linux/7/include -I/home/acme/git/linux/arch/x86/include -I./arch/x86/include/generated  -I/home/acme/git/linux/include -I./include -I/home/acme/git/linux/arch/x86/include/uapi -I./arch/x86/include/generated/uapi -I/home/acme/git/linux/include/uapi -I./include/generated/uapi -include /home/acme/git/linux/include/linux/kconfig.h
  set env: WORKING_DIR=/lib/modules/4.14.0+/build
  set env: CLANG_SOURCE=-
  llvm compiling command template: echo '/*
   * bpf-script-example.c
   * Test basic LLVM building
   */
  #ifndef LINUX_VERSION_CODE
  # error Need LINUX_VERSION_CODE
  # error Example: for 4.2 kernel, put 'clang-opt="-DLINUX_VERSION_CODE=0x40200" into llvm section of ~/.perfconfig'
  #endif
  #define BPF_ANY 0
  #define BPF_MAP_TYPE_ARRAY 2
  #define BPF_FUNC_map_lookup_elem 1
  #define BPF_FUNC_map_update_elem 2

  static void *(*bpf_map_lookup_elem)(void *map, void *key) =
	  (void *) BPF_FUNC_map_lookup_elem;
  static void *(*bpf_map_update_elem)(void *map, void *key, void *value, int flags) =
	  (void *) BPF_FUNC_map_update_elem;

  struct bpf_map_def {
	  unsigned int type;
	  unsigned int key_size;
	  unsigned int value_size;
	  unsigned int max_entries;
  };

  #define SEC(NAME) __attribute__((section(NAME), used))
  struct bpf_map_def SEC("maps") flip_table = {
	  .type = BPF_MAP_TYPE_ARRAY,
	  .key_size = sizeof(int),
	  .value_size = sizeof(int),
	  .max_entries = 1,
  };

  SEC("func=SyS_epoll_wait")
  int bpf_func__SyS_epoll_wait(void *ctx)
  {
	  int ind =0;
	  int *flag = bpf_map_lookup_elem(&flip_table, &ind);
	  int new_flag;
	  if (!flag)
		  return 0;
	  /* flip flag and store back */
	  new_flag = !*flag;
	  bpf_map_update_elem(&flip_table, &ind, &new_flag, BPF_ANY);
	  return new_flag;
  }
  char _license[] SEC("license") = "GPL";
  int _version SEC("version") = LINUX_VERSION_CODE;
  ' | $CLANG_EXEC -D__KERNEL__ -D__NR_CPUS__=$NR_CPUS -DLINUX_VERSION_CODE=$LINUX_VERSION_CODE $CLANG_OPTIONS $KERNEL_INC_OPTIONS -Wno-unused-value -Wno-pointer-sign -working-directory $WORKING_DIR -c "$CLANG_SOURCE" -target bpf -O2 -o -
  test child finished with 0
  ---- end ----
  LLVM search and compile subtest 0: Ok
  37.2: kbuild searching                                    :
  --- start ---
  test child forked, pid 25950
  Kernel build dir is set to /lib/modules/4.14.0+/build
  set env: KBUILD_DIR=/lib/modules/4.14.0+/build
  unset env: KBUILD_OPTS
  include option is set to  -nostdinc -isystem /usr/lib/gcc/x86_64-redhat-linux/7/include -I/home/acme/git/linux/arch/x86/include -I./arch/x86/include/generated  -I/home/acme/git/linux/include -I./include -I/home/acme/git/linux/arch/x86/include/uapi -I./arch/x86/include/generated/uapi -I/home/acme/git/linux/include/uapi -I./include/generated/uapi -include /home/acme/git/linux/include/linux/kconfig.h
  set env: NR_CPUS=4
  set env: LINUX_VERSION_CODE=0x40e00
  set env: CLANG_EXEC=/usr/local/bin/clang
  set env: CLANG_OPTIONS=-xc
  set env: KERNEL_INC_OPTIONS= -nostdinc -isystem /usr/lib/gcc/x86_64-redhat-linux/7/include -I/home/acme/git/linux/arch/x86/include -I./arch/x86/include/generated  -I/home/acme/git/linux/include -I./include -I/home/acme/git/linux/arch/x86/include/uapi -I./arch/x86/include/generated/uapi -I/home/acme/git/linux/include/uapi -I./include/generated/uapi -include /home/acme/git/linux/include/linux/kconfig.h
  set env: WORKING_DIR=/lib/modules/4.14.0+/build
  set env: CLANG_SOURCE=-
  llvm compiling command template: echo '/*
   * bpf-script-test-kbuild.c
   * Test include from kernel header
   */
  #ifndef LINUX_VERSION_CODE
  # error Need LINUX_VERSION_CODE
  # error Example: for 4.2 kernel, put 'clang-opt="-DLINUX_VERSION_CODE=0x40200" into llvm section of ~/.perfconfig'
  #endif
  #define SEC(NAME) __attribute__((section(NAME), used))

  #include <uapi/linux/fs.h>
  #include <uapi/asm/ptrace.h>

  SEC("func=vfs_llseek")
  int bpf_func__vfs_llseek(void *ctx)
  {
	  return 0;
  }

  char _license[] SEC("license") = "GPL";
  int _version SEC("version") = LINUX_VERSION_CODE;
  ' | $CLANG_EXEC -D__KERNEL__ -D__NR_CPUS__=$NR_CPUS -DLINUX_VERSION_CODE=$LINUX_VERSION_CODE $CLANG_OPTIONS $KERNEL_INC_OPTIONS -Wno-unused-value -Wno-pointer-sign -working-directory $WORKING_DIR -c "$CLANG_SOURCE" -target bpf -O2 -o -
  In file included from <stdin>:12:
  In file included from /home/acme/git/linux/arch/x86/include/uapi/asm/ptrace.h:5:
  In file included from /home/acme/git/linux/include/linux/compiler.h:242:
  In file included from /home/acme/git/linux/arch/x86/include/asm/barrier.h:5:
  In file included from /home/acme/git/linux/arch/x86/include/asm/alternative.h:10:
  /home/acme/git/linux/arch/x86/include/asm/asm.h:145:50: error: unknown register name 'esp' in asm
  register unsigned long current_stack_pointer asm(_ASM_SP);
                                                   ^
  /home/acme/git/linux/arch/x86/include/asm/asm.h:44:18: note: expanded from macro '_ASM_SP'
  #define _ASM_SP         __ASM_REG(sp)
                          ^
  /home/acme/git/linux/arch/x86/include/asm/asm.h:27:32: note: expanded from macro '__ASM_REG'
  #define __ASM_REG(reg)         __ASM_SEL_RAW(e##reg, r##reg)
                                 ^
  /home/acme/git/linux/arch/x86/include/asm/asm.h:18:29: note: expanded from macro '__ASM_SEL_RAW'
  # define __ASM_SEL_RAW(a,b) __ASM_FORM_RAW(a)
                              ^
  /home/acme/git/linux/arch/x86/include/asm/asm.h:11:32: note: expanded from macro '__ASM_FORM_RAW'
  # define __ASM_FORM_RAW(x)     #x
                                 ^
  <scratch space>:4:1: note: expanded from here
  "esp"
  ^
  1 error generated.
  ERROR:	unable to compile -
  Hint:	Check error message shown above.
  Hint:	You can also pre-compile it into .o using:
     		  clang -target bpf -O2 -c -
     	  with proper -I and -D options.
  Failed to compile test case: 'kbuild searching'
  test child finished with -1
  ---- end ----
  LLVM search and compile subtest 1: FAILED!

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Ahern <dsahern@gmail.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Yonghong Song <yhs@fb.com>
Link: https://lkml.kernel.org/r/20171128175948.GL3298@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-12-18 11:56:22 -03:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Andrey Ryabinin
196bd485ee x86/asm: Use register variable to get stack pointer value
Currently we use current_stack_pointer() function to get the value
of the stack pointer register. Since commit:

  f5caf621ee35 ("x86/asm: Fix inline asm call constraints for Clang")

... we have a stack register variable declared. It can be used instead of
current_stack_pointer() function which allows to optimize away some
excessive "mov %rsp, %<dst>" instructions:

 -mov    %rsp,%rdx
 -sub    %rdx,%rax
 -cmp    $0x3fff,%rax
 -ja     ffffffff810722fd <ist_begin_non_atomic+0x2d>

 +sub    %rsp,%rax
 +cmp    $0x3fff,%rax
 +ja     ffffffff810722fa <ist_begin_non_atomic+0x2a>

Remove current_stack_pointer(), rename __asm_call_sp to current_stack_pointer
and use it instead of the removed function.

Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170929141537.29167-1-aryabinin@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-29 19:39:44 +02:00
Josh Poimboeuf
520a13c530 x86/asm: Fix inline asm call constraints for GCC 4.4
The kernel test bot (run by Xiaolong Ye) reported that the following commit:

  f5caf621ee35 ("x86/asm: Fix inline asm call constraints for Clang")

is causing double faults in a kernel compiled with GCC 4.4.

Linus subsequently diagnosed the crash pattern and the buggy commit and found that
the issue is with this code:

  register unsigned int __asm_call_sp asm("esp");
  #define ASM_CALL_CONSTRAINT "+r" (__asm_call_sp)

Even on a 64-bit kernel, it's using ESP instead of RSP.  That causes GCC
to produce the following bogus code:

  ffffffff8147461d:       89 e0                   mov    %esp,%eax
  ffffffff8147461f:       4c 89 f7                mov    %r14,%rdi
  ffffffff81474622:       4c 89 fe                mov    %r15,%rsi
  ffffffff81474625:       ba 20 00 00 00          mov    $0x20,%edx
  ffffffff8147462a:       89 c4                   mov    %eax,%esp
  ffffffff8147462c:       e8 bf 52 05 00          callq  ffffffff814c98f0 <copy_user_generic_unrolled>

Despite the absurdity of it backing up and restoring the stack pointer
for no reason, the bug is actually the fact that it's only backing up
and restoring the lower 32 bits of the stack pointer.  The upper 32 bits
are getting cleared out, corrupting the stack pointer.

So change the '__asm_call_sp' register variable to be associated with
the actual full-size stack pointer.

This also requires changing the __ASM_SEL() macro to be based on the
actual compiled arch size, rather than the CONFIG value, because
CONFIG_X86_64 compiles some files with '-m32' (e.g., realmode and vdso).
Otherwise Clang fails to build the kernel because it complains about the
use of a 64-bit register (RSP) in a 32-bit file.

Reported-and-Bisected-and-Tested-by: kernel test robot <xiaolong.ye@intel.com>
Diagnosed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: LKP <lkp@01.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f5caf621ee35 ("x86/asm: Fix inline asm call constraints for Clang")
Link: http://lkml.kernel.org/r/20170928215826.6sdpmwtkiydiytim@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-29 13:15:44 +02:00
Josh Poimboeuf
f5caf621ee x86/asm: Fix inline asm call constraints for Clang
For inline asm statements which have a CALL instruction, we list the
stack pointer as a constraint to convince GCC to ensure the frame
pointer is set up first:

  static inline void foo()
  {
	register void *__sp asm(_ASM_SP);
	asm("call bar" : "+r" (__sp))
  }

Unfortunately, that pattern causes Clang to corrupt the stack pointer.

The fix is easy: convert the stack pointer register variable to a global
variable.

It should be noted that the end result is different based on the GCC
version.  With GCC 6.4, this patch has exactly the same result as
before:

	defconfig	defconfig-nofp	distro		distro-nofp
 before	9820389		9491555		8816046		8516940
 after	9820389		9491555		8816046		8516940

With GCC 7.2, however, GCC's behavior has changed.  It now changes its
behavior based on the conversion of the register variable to a global.
That somehow convinces it to *always* set up the frame pointer before
inserting *any* inline asm.  (Therefore, listing the variable as an
output constraint is a no-op and is no longer necessary.)  It's a bit
overkill, but the performance impact should be negligible.  And in fact,
there's a nice improvement with frame pointers disabled:

	defconfig	defconfig-nofp	distro		distro-nofp
 before	9796316		9468236		9076191		8790305
 after	9796957		9464267		9076381		8785949

So in summary, while listing the stack pointer as an output constraint
is no longer necessary for newer versions of GCC, it's still needed for
older versions.

Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-23 15:06:20 +02:00
Kees Cook
7a46ec0e2f locking/refcounts, x86/asm: Implement fast refcount overflow protection
This implements refcount_t overflow protection on x86 without a noticeable
performance impact, though without the fuller checking of REFCOUNT_FULL.

This is done by duplicating the existing atomic_t refcount implementation
but with normally a single instruction added to detect if the refcount
has gone negative (e.g. wrapped past INT_MAX or below zero). When detected,
the handler saturates the refcount_t to INT_MIN / 2. With this overflow
protection, the erroneous reference release that would follow a wrap back
to zero is blocked from happening, avoiding the class of refcount-overflow
use-after-free vulnerabilities entirely.

Only the overflow case of refcounting can be perfectly protected, since
it can be detected and stopped before the reference is freed and left to
be abused by an attacker. There isn't a way to block early decrements,
and while REFCOUNT_FULL stops increment-from-zero cases (which would
be the state _after_ an early decrement and stops potential double-free
conditions), this fast implementation does not, since it would require
the more expensive cmpxchg loops. Since the overflow case is much more
common (e.g. missing a "put" during an error path), this protection
provides real-world protection. For example, the two public refcount
overflow use-after-free exploits published in 2016 would have been
rendered unexploitable:

  http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

  http://cyseclabs.com/page?n=02012016

This implementation does, however, notice an unchecked decrement to zero
(i.e. caller used refcount_dec() instead of refcount_dec_and_test() and it
resulted in a zero). Decrements under zero are noticed (since they will
have resulted in a negative value), though this only indicates that a
use-after-free may have already happened. Such notifications are likely
avoidable by an attacker that has already exploited a use-after-free
vulnerability, but it's better to have them reported than allow such
conditions to remain universally silent.

On first overflow detection, the refcount value is reset to INT_MIN / 2
(which serves as a saturation value) and a report and stack trace are
produced. When operations detect only negative value results (such as
changing an already saturated value), saturation still happens but no
notification is performed (since the value was already saturated).

On the matter of races, since the entire range beyond INT_MAX but before
0 is negative, every operation at INT_MIN / 2 will trap, leaving no
overflow-only race condition.

As for performance, this implementation adds a single "js" instruction
to the regular execution flow of a copy of the standard atomic_t refcount
operations. (The non-"and_test" refcount_dec() function, which is uncommon
in regular refcount design patterns, has an additional "jz" instruction
to detect reaching exactly zero.) Since this is a forward jump, it is by
default the non-predicted path, which will be reinforced by dynamic branch
prediction. The result is this protection having virtually no measurable
change in performance over standard atomic_t operations. The error path,
located in .text.unlikely, saves the refcount location and then uses UD0
to fire a refcount exception handler, which resets the refcount, handles
reporting, and returns to regular execution. This keeps the changes to
.text size minimal, avoiding return jumps and open-coded calls to the
error reporting routine.

Example assembly comparison:

refcount_inc() before:

  .text:
  ffffffff81546149:       f0 ff 45 f4             lock incl -0xc(%rbp)

refcount_inc() after:

  .text:
  ffffffff81546149:       f0 ff 45 f4             lock incl -0xc(%rbp)
  ffffffff8154614d:       0f 88 80 d5 17 00       js     ffffffff816c36d3
  ...
  .text.unlikely:
  ffffffff816c36d3:       48 8d 4d f4             lea    -0xc(%rbp),%rcx
  ffffffff816c36d7:       0f ff                   (bad)

These are the cycle counts comparing a loop of refcount_inc() from 1
to INT_MAX and back down to 0 (via refcount_dec_and_test()), between
unprotected refcount_t (atomic_t), fully protected REFCOUNT_FULL
(refcount_t-full), and this overflow-protected refcount (refcount_t-fast):

  2147483646 refcount_inc()s and 2147483647 refcount_dec_and_test()s:
		    cycles		protections
  atomic_t           82249267387	none
  refcount_t-fast    82211446892	overflow, untested dec-to-zero
  refcount_t-full   144814735193	overflow, untested dec-to-zero, inc-from-zero

This code is a modified version of the x86 PAX_REFCOUNT atomic_t
overflow defense from the last public patch of PaX/grsecurity, based
on my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code. Thanks
to PaX Team for various suggestions for improvement for repurposing this
code to be a refcount-only protection.

Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Hans Liljestrand <ishkamiel@gmail.com>
Cc: James Bottomley <James.Bottomley@hansenpartnership.com>
Cc: Jann Horn <jannh@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Serge E. Hallyn <serge@hallyn.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arozansk@redhat.com
Cc: axboe@kernel.dk
Cc: kernel-hardening@lists.openwall.com
Cc: linux-arch <linux-arch@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170815161924.GA133115@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-17 10:40:26 +02:00
Matthias Kaehlcke
121843eb02 x86/mm/kaslr: Use the _ASM_MUL macro for multiplication to work around Clang incompatibility
The constraint "rm" allows the compiler to put mix_const into memory.
When the input operand is a memory location then MUL needs an operand
size suffix, since Clang can't infer the multiplication width from the
operand.

Add and use the _ASM_MUL macro which determines the operand size and
resolves to the NUL instruction with the corresponding suffix.

This fixes the following error when building with clang:

  CC      arch/x86/lib/kaslr.o
  /tmp/kaslr-dfe1ad.s: Assembler messages:
  /tmp/kaslr-dfe1ad.s:182: Error: no instruction mnemonic suffix given and no register operands; can't size instruction

Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Cc: Grant Grundler <grundler@chromium.org>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Davidson <md@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170501224741.133938-1-mka@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-05 08:31:05 +02:00
H. Peter Anvin
ff3554b409 x86, asm: define CC_SET() and CC_OUT() macros
The CC_SET() and CC_OUT() macros can be used together to take
advantage of the new __GCC_ASM_FLAG_OUTPUTS__ feature in gcc 6+ while
remaining backwards compatible.  CC_SET() generates a SET instruction
on older compilers; CC_OUT() makes sure the output is received in the
correct variable.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-5-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-06-08 12:41:20 -07:00
Tony Luck
548acf1923 x86/mm: Expand the exception table logic to allow new handling options
Huge amounts of help from  Andy Lutomirski and Borislav Petkov to
produce this. Andy provided the inspiration to add classes to the
exception table with a clever bit-squeezing trick, Boris pointed
out how much cleaner it would all be if we just had a new field.

Linus Torvalds blessed the expansion with:

  ' I'd rather not be clever in order to save just a tiny amount of space
    in the exception table, which isn't really criticial for anybody. '

The third field is another relative function pointer, this one to a
handler that executes the actions.

We start out with three handlers:

 1: Legacy - just jumps the to fixup IP
 2: Fault - provide the trap number in %ax to the fixup code
 3: Cleaned up legacy for the uaccess error hack

Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f6af78fcbd348cf4939875cfda9c19689b5e50b8.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-18 09:21:46 +01:00
Borislav Petkov
9e6b13f761 x86/asm/uaccess: Unify the ALIGN_DESTINATION macro
Pull it up into the header and kill duplicate versions.
Separately, both macros are identical:

 35948b2bd3431aee7149e85cfe4becbc  /tmp/a
 35948b2bd3431aee7149e85cfe4becbc  /tmp/b

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431538944-27724-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-14 07:25:34 +02:00
Masami Hiramatsu
376e242429 kprobes: Introduce NOKPROBE_SYMBOL() macro to maintain kprobes blacklist
Introduce NOKPROBE_SYMBOL() macro which builds a kprobes
blacklist at kernel build time.

The usage of this macro is similar to EXPORT_SYMBOL(),
placed after the function definition:

  NOKPROBE_SYMBOL(function);

Since this macro will inhibit inlining of static/inline
functions, this patch also introduces a nokprobe_inline macro
for static/inline functions. In this case, we must use
NOKPROBE_SYMBOL() for the inline function caller.

When CONFIG_KPROBES=y, the macro stores the given function
address in the "_kprobe_blacklist" section.

Since the data structures are not fully initialized by the
macro (because there is no "size" information),  those
are re-initialized at boot time by using kallsyms.

Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jan-Simon Möller <dl9pf@gmx.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-sparse@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-24 10:02:56 +02:00
Jan-Simon Möller
3e9b2327b5 x86, asm: Extend definitions of _ASM_* with a raw format
The __ASM_* macros (e.g. __ASM_DX) are used to return the proper
register name (e.g. edx for 32bit / rdx for 64bit). We want to use
this also in arch/x86/include/asm/uaccess.h / get_user() .  For this
to work, we need a raw form as both gcc and clang choke on the
whitespace in a register asm() statement, and the __ASM_FORM macro
surrounds the argument with blanks.  A new macro, __ASM_FORM_RAW was
added and we change __ASM_REG to use the new RAW form.

Signed-off-by: Jan-Simon Möller <dl9pf@gmx.de>
Link: http://lkml.kernel.org/r/1377803585-5913-2-git-send-email-dl9pf@gmx.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-29 13:26:32 -07:00
H. Peter Anvin
706276543b x86, extable: Switch to relative exception table entries
Switch to using relative exception table entries on x86.  On i386,
this has the advantage that the exception table entries don't need to
be relocated; on x86-64 this means the exception table entries take up
only half the space.

In either case, a 32-bit delta is sufficient, as the range of kernel
code addresses is limited.

Since part of the goal is to avoid needing to adjust the entries when
the kernel is relocated, the old trick of using addresses in the NULL
pointer range to indicate uaccess_err no longer works (and unlike RISC
architectures we can't use a flag bit); instead use an delta just
below +2G to indicate these special entries.  The reach is still
limited to a single instruction.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: David Daney <david.daney@cavium.com>
Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
2012-04-20 17:22:34 -07:00
H. Peter Anvin
535c0c3469 x86, extable: Add _ASM_EXTABLE_EX() macro
Add _ASM_EXTABLE_EX() to generate the special extable entries that are
associated with uaccess_err.  This allows us to change the protocol
associated with these special entries.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: David Daney <david.daney@cavium.com>
Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
2012-04-20 16:57:35 -07:00
H. Peter Anvin
447657e312 x86, extable: Remove the now-unused __ASM_EX_SEC macros
Nothing should use them anymore; only _ASM_EXTABLE() should ever be
used.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: David Daney <david.daney@cavium.com>
Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
2012-04-20 13:51:40 -07:00
H. Peter Anvin
d4541805e8 x86, extable: Use .pushsection ... .popsection for _ASM_EXTABLE()
Instead of using .section ... .previous, use .pushsection
... .popsection; this is (hopefully) a bit more robust, especially in
complex assembly code.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: David Daney <david.daney@cavium.com>
Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
2012-04-20 13:51:38 -07:00
Jan Beulich
a750036f35 x86: Fix write lock scalability 64-bit issue
With the write lock path simply subtracting RW_LOCK_BIAS there
is, on large systems, the theoretical possibility of overflowing
the 32-bit value that was used so far (namely if 128 or more
CPUs manage to do the subtraction, but don't get to do the
inverse addition in the failure path quickly enough).

A first measure is to modify RW_LOCK_BIAS itself - with the new
value chosen, it is good for up to 2048 CPUs each allowed to
nest over 2048 times on the read path without causing an issue.
Quite possibly it would even be sufficient to adjust the bias a
little further, assuming that allowing for significantly less
nesting would suffice.

However, as the original value chosen allowed for even more
nesting levels, to support more than 2048 CPUs (possible
currently only for 64-bit kernels) the lock itself gets widened
to 64 bits.

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4E258E0D020000780004E3F0@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-07-21 09:03:36 +02:00
Jan Beulich
4625cd6379 x86: Unify rwlock assembly implementation
Rather than having two functionally identical implementations
for 32- and 64-bit configurations, extend the existing assembly
abstractions enough to fold the two rwlock implementations into
a shared one.

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4E258DD7020000780004E3EA@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-07-21 09:03:31 +02:00
H. Peter Anvin
709972b1f6 x86, asm: Make _ASM_EXTABLE() usable from assembly code
We have had this convenient macro _ASM_EXTABLE() to generate exception
table entry in inline assembly.  Make it also usable for pure
assembly.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-08-31 15:14:30 -07:00
H. Peter Anvin
1965aae3c9 x86: Fix ASM_X86__ header guards
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:

a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:23 -07:00
Al Viro
bb8985586b x86, um: ... and asm-x86 move
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:20 -07:00