Commit Graph

85 Commits

Author SHA1 Message Date
Rafael J. Wysocki
57dc3bcd45 cpufreq: governor: Move rate_mult to struct policy_dbs
The rate_mult field in struct od_cpu_dbs_info_s is used by the code
shared with the conservative governor and to access it that code
has to do an ugly governor type check.  However, first of all it
is ever only used for policy->cpu, so it is per-policy rather than
per-CPU and second, it is initialized to 1 by cpufreq_governor_start(),
so if the conservative governor never modifies it, it will have no
effect on the results of any computations.

For these reasons, move rate_mult to struct policy_dbs_info (as a
common field).

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
78347cdb89 cpufreq: governor: Reset sample delay in store_sampling_rate()
If store_sampling_rate() updates the sample delay when the ondemand
governor is in the middle of its high/low dance (OD_SUB_SAMPLE sample
type is set), the governor will still do the bottom half of the
previous sample which may take too much time.

To prevent that from happening, change store_sampling_rate() to always
reset the sample delay to 0 which also is consistent with the new
behavior of cpufreq_governor_limits().

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
4cccf75557 cpufreq: governor: Get rid of the ->gov_check_cpu callback
The way the ->gov_check_cpu governor callback is used by the ondemand
and conservative governors is not really straightforward.  Namely, the
governor calls dbs_check_cpu() that updates the load information for
the policy and the invokes ->gov_check_cpu() for the governor.

To get rid of that entanglement, notice that cpufreq_governor_limits()
doesn't need to call dbs_check_cpu() directly.  Instead, it can simply
reset the sample delay to 0 which will cause a sample to be taken
immediately.  The result of that is practically equivalent to calling
dbs_check_cpu() except that it will trigger a full update of governor
internal state and not just the ->gov_check_cpu() part.

Following that observation, make cpufreq_governor_limits() reset
the sample delay and turn dbs_check_cpu() into a function that will
simply evaluate the load and return the result called dbs_update().

That function can now be called by governors from the routines that
previously were pointed to by ->gov_check_cpu and those routines
can be called directly by each governor instead of dbs_check_cpu().
This way ->gov_check_cpu becomes unnecessary, so drop it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
57eb832f90 cpufreq: governor: Clean up load-related computations
Clean up some load-related computations in dbs_check_cpu() and
cpufreq_governor_start() to get rid of unnecessary operations and
type casts and make the code easier to read.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
679b8fe43a cpufreq: governor: Fix nice contribution computation in dbs_check_cpu()
The contribution of the CPU nice time to the idle time in dbs_check_cpu()
is computed in a bogus way, as the code may subtract current and previous
nice values for different CPUs.

That doesn't matter for cases when cpufreq policies are not shared,
but may lead to problems otherwise.

Fix the computation and simplify it to avoid taking unnecessary steps.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
e4db2813d2 cpufreq: governor: Avoid atomic operations in hot paths
Rework the handling of work items by dbs_update_util_handler() and
dbs_work_handler() so the former (which is executed in scheduler
paths) only uses atomic operations when absolutely necessary.  That
is, when the policy is shared and dbs_update_util_handler() has
already decided that this is the time to queue up a work item.

In particular, this avoids the atomic ops entirely on platforms where
policy objects are never shared.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
f62b93740c cpufreq: governor: Simplify gov_cancel_work() slightly
The atomic work counter incrementation in gov_cancel_work() is not
necessary any more, because work items won't be queued up after
gov_clear_update_util() anyway, so drop it along with the comment
about how it may be missed by the gov_clear_update_util().

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:02 +01:00
Rafael J. Wysocki
b9db42730a cpufreq: governor: Avoid irq_work_queue_on() crash on non-SMP ARM
As it turns out, irq_work_queue_on() will crash if invoked on
non-SMP ARM platforms, but in fact it is not necessary to use that
function in the cpufreq governor code (as it doesn't matter to that
code which CPU will handle the irq_work), so change it to always use
irq_work_queue().

Fixes: 8fb47ff100af (cpufreq: governor: Replace timers with utilization update callbacks)
Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:02 +01:00
Viresh Kumar
aded387b94 cpufreq: conservative: Update sample_delay_ns immediately
The ondemand governor already updates sample_delay_ns immediately on
updates to the sampling rate, but conservative doesn't do that.

It was left out earlier as the code was really too complex to get
that done easily.  Things are sorted out very well now, however, and
the conservative governor can be modified to follow ondemand in that
respect.

Moreover, since the code needed to implement that in the
conservative governor would be identical to the corresponding
ondemand governor's code, make that code common and change both
governors to use it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:01 +01:00
Viresh Kumar
581c214b21 cpufreq: governor: No need to manage state machine now
The cpufreq core now guarantees that policy->rwsem won't be dropped
while running the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event and will be held acquired until the complete sequence of governor
state changes has finished.

This allows governor state machine checks to be dropped from multiple
functions in cpufreq_governor.c.

This also means that policy_dbs->policy can be initialized upfront, so
the entire initialization of struct policy_dbs can be carried out in
one place.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:01 +01:00
Viresh Kumar
c54df07184 cpufreq: governor: Create and traverse list of policy_dbs to avoid deadlock
The dbs_data_mutex lock is currently used in two places.  First,
cpufreq_governor_dbs() uses it to guarantee mutual exclusion between
invocations of governor operations from the core.  Second, it is used by
ondemand governor's update_sampling_rate() to ensure the stability of
data structures walked by it.

The second usage is quite problematic, because update_sampling_rate() is
called from a governor sysfs attribute's ->store callback and that leads
to a deadlock scenario involving cpufreq_governor_exit() which runs
under dbs_data_mutex.  Thus it is better to rework the code so
update_sampling_rate() doesn't need to acquire dbs_data_mutex.

To that end, rework update_sampling_rate() to walk a list of policy_dbs
objects supported by the dbs_data one it has been called for (instead of
walking cpu_dbs_info object for all CPUs).  The list manipulation is
protected with dbs_data->mutex which also is held around the execution
of update_sampling_rate(), it is not necessary to hold dbs_data_mutex in
that function any more.

Reported-by: Juri Lelli <juri.lelli@arm.com>
Reported-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:59 +01:00
Viresh Kumar
c443563036 cpufreq: governor: New sysfs show/store callbacks for governor tunables
The ondemand and conservative governors use the global-attr or freq-attr
structures to represent sysfs attributes corresponding to their tunables
(which of them is actually used depends on whether or not different
policy objects can use the same governor with different tunables at the
same time and, consequently, on where those attributes are located in
sysfs).

Unfortunately, in the freq-attr case, the standard cpufreq show/store
sysfs attribute callbacks are applied to the governor tunable attributes
and they always acquire the policy->rwsem lock before carrying out the
operation.  That may lead to an ABBA deadlock if governor tunable
attributes are removed under policy->rwsem while one of them is being
accessed concurrently (if sysfs attributes removal wins the race, it
will wait for the access to complete with policy->rwsem held while the
attribute callback will block on policy->rwsem indefinitely).

We attempted to address this issue by dropping policy->rwsem around
governor tunable attributes removal (that is, around invocations of the
->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT)
in cpufreq_set_policy(), but that opened up race conditions that had not
been possible with policy->rwsem held all the time.  Therefore
policy->rwsem cannot be dropped in cpufreq_set_policy() at any point,
but the deadlock situation described above must be avoided too.

To that end, use the observation that in principle governor tunables may
be represented by the same data type regardless of whether the governor
is system-wide or per-policy and introduce a new structure, struct
governor_attr, for representing them and new corresponding macros for
creating show/store sysfs callbacks for them.  Also make their parent
kobject use a new kobject type whose default show/store callbacks are
not related to the standard core cpufreq ones in any way (and they don't
acquire policy->rwsem in particular).

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Subject & changelog + rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:58 +01:00
Viresh Kumar
ff4b17895e cpufreq: governor: Move common tunables to 'struct dbs_data'
There are a few common tunables shared between the ondemand and
conservative governors.  Move them to struct dbs_data to simplify
code.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:58 +01:00
Rafael J. Wysocki
fafd5e8ab2 cpufreq: governor: Drop pointless goto from cpufreq_governor_init()
It is silly to jump around "return 0", so don't do that.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:57 +01:00
Rafael J. Wysocki
686cc637c9 cpufreq: governor: Rename skip_work to work_count
The skip_work field in struct policy_dbs_info technically is a
counter, so give it a new name to reflect that.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:57 +01:00
Rafael J. Wysocki
cea6a9e772 cpufreq: governor: Symmetrize cpu_dbs_info initialization and cleanup
Make the initialization of struct cpu_dbs_info objects in
alloc_policy_dbs_info() and the code that cleans them up in
free_policy_dbs_info() more symmetrical.  In particular,
set/clear the update_util.func field in those functions along
with the policy_dbs field.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
bc505475b8 cpufreq: governor: Rearrange governor data structures
The struct policy_dbs_info objects representing per-policy governor
data are not accessible directly from the corresponding policy
objects.  To access them, one has to get a pointer to the
struct cpu_dbs_info of policy->cpu and use the policy_dbs field of
that which isn't really straightforward.

To address that rearrange the governor data structures so the
governor_data pointer in struct cpufreq_policy will point to
struct policy_dbs_info (instead of struct dbs_data) and that will
contain a pointer to struct dbs_data.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
e975189400 cpufreq: governor: Simplify cpufreq_governor_limits()
Use the observation that cpufreq_governor_limits() doesn't have to
get to the policy object it wants to manipulate by walking the
reference chain cdbs->policy_dbs->policy, as the final pointer is
actually equal to its argument, and make it access the policy
object directy via its argument.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
d10b5eb5fc cpufreq: governor: Drop cpu argument from dbs_check_cpu()
Since policy->cpu is always passed as the second argument to
dbs_check_cpu(), it is not really necessary to pass it, because
the function can obtain that value via its first argument just fine.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
e40e7b255e cpufreq: governor: Rename cpu_common_dbs_info to policy_dbs_info
The struct cpu_common_dbs_info structure represents the per-policy
part of the governor data (for the ondemand and conservative
governors), but its name doesn't reflect its purpose.

Rename it to struct policy_dbs_info and rename variables related to
it accordingly.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
ea59ee0dc9 cpufreq: governor: Drop the gov pointer from struct dbs_data
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it with the help
of container_of(), the additional gov pointer in struct dbs_data
isn't really necessary.

Drop that pointer and make the code using it reach the dbs_governor
object via policy->governor.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
906a6e5aae cpufreq: governor: Rework cpufreq_governor_dbs()
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it via
container_of(), the second argument of cpufreq_governor_init()
is not necessary.  Accordingly, cpufreq_governor_dbs() doesn't
need its second argument either and the ->governor callbacks
for both the ondemand and conservative governors may be set
to cpufreq_governor_dbs() directly.  Make that happen.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:54 +01:00
Rafael J. Wysocki
7bdad34d08 cpufreq: governor: Rename some data types and variables
The ondemand and conservative governors are represented by
struct common_dbs_data whose name doesn't reflect the purpose it
is used for, so rename it to struct dbs_governor and rename
variables of that type accordingly.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:54 +01:00
Rafael J. Wysocki
5da3dd1e00 cpufreq: governor: Avoid passing dbs_data pointers around unnecessarily
Do not pass struct dbs_data pointers to the family of functions
implementing governor operations in cpufreq_governor.c as they can
take that pointer from policy->governor by themselves.

The cpufreq_governor_init() case is slightly more complicated, since
policy->governor may be NULL when it is invoked, but then it can reach
the pointer in question via its cdata argument just fine.

While at it, rework cpufreq_governor_dbs() to avoid a pointless
policy_governor check in the CPUFREQ_GOV_POLICY_INIT case.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:53 +01:00
Rafael J. Wysocki
2bb8d94fb0 cpufreq: governor: Use common mutex for dbs_data protection
Every governor relying on the common code in cpufreq_governor.c
has to provide its own mutex in struct common_dbs_data.  However,
there actually is no need to have a separate mutex per governor
for this purpose, they may be using the same global mutex just
fine.  Accordingly, introduce a single common mutex for that and
drop the mutex field from struct common_dbs_data.

That at least will ensure that the mutex is always present and
initialized regardless of what the particular governors do.

Another benefit is that the common code does not need a pointer to
a governor-related structure to get to the mutex which sometimes
helps.

Finally, it makes the code generally easier to follow.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:53 +01:00
Rafael J. Wysocki
9be4fd2c77 cpufreq: governor: Replace timers with utilization update callbacks
Instead of using a per-CPU deferrable timer for queuing up governor
work items, register a utilization update callback that will be
invoked from the scheduler on utilization changes.

The sampling rate is still the same as what was used for the
deferrable timers and the added irq_work overhead should be offset by
the eliminated timers overhead, so in theory the functional impact of
this patch should not be significant.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
2016-03-09 14:40:53 +01:00
Viresh Kumar
e4b133cc4b cpufreq: Fix NULL reference crash while accessing policy->governor_data
There is a race discovered by Juri, where we are able to:
- create and read a sysfs file before policy->governor_data is being set
  to a non NULL value.
  OR
- set policy->governor_data to NULL, and reading a file before being
  destroyed.

And so such a crash is reported:

Unable to handle kernel NULL pointer dereference at virtual address 0000000c
pgd = edfc8000
[0000000c] *pgd=bfc8c835
Internal error: Oops: 17 [#1] SMP ARM
Modules linked in:
CPU: 4 PID: 1730 Comm: cat Not tainted 4.5.0-rc1+ #463
Hardware name: ARM-Versatile Express
task: ee8e8480 ti: ee930000 task.ti: ee930000
PC is at show_ignore_nice_load_gov_pol+0x24/0x34
LR is at show+0x4c/0x60
pc : [<c058f1bc>]    lr : [<c058ae88>]    psr: a0070013
sp : ee931dd0  ip : ee931de0  fp : ee931ddc
r10: ee4bc290  r9 : 00001000  r8 : ef2cb000
r7 : ee4bc200  r6 : ef2cb000  r5 : c0af57b0  r4 : ee4bc2e0
r3 : 00000000  r2 : 00000000  r1 : c0928df4  r0 : ef2cb000
Flags: NzCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment none
Control: 10c5387d  Table: adfc806a  DAC: 00000051
Process cat (pid: 1730, stack limit = 0xee930210)
Stack: (0xee931dd0 to 0xee932000)
1dc0:                                     ee931dfc ee931de0 c058ae88 c058f1a4
1de0: edce3bc0 c07bfca4 edce3ac0 00001000 ee931e24 ee931e00 c01fcb90 c058ae48
1e00: 00000001 edce3bc0 00000000 00000001 ee931e50 ee8ff480 ee931e34 ee931e28
1e20: c01fb33c c01fcb0c ee931e8c ee931e38 c01a5210 c01fb314 ee931e9c ee931e48
1e40: 00000000 edce3bf0 befe4a00 ee931f78 00000000 00000000 000001e4 00000000
1e60: c00545a8 edce3ac0 00001000 00001000 befe4a00 ee931f78 00000000 00001000
1e80: ee931ed4 ee931e90 c01fbed8 c01a5038 ed085a58 00020000 00000000 00000000
1ea0: c0ad72e4 ee931f78 ee8ff488 ee8ff480 c077f3fc 00001000 befe4a00 ee931f78
1ec0: 00000000 00001000 ee931f44 ee931ed8 c017c328 c01fbdc4 00001000 00000000
1ee0: ee8ff480 00001000 ee931f44 ee931ef8 c017c65c c03deb10 ee931fac ee931f08
1f00: c0009270 c001f290 c0a8d968 ef2cb000 ef2cb000 ee8ff480 00000020 ee8ff480
1f20: ee8ff480 befe4a00 00001000 ee931f78 00000000 00000000 ee931f74 ee931f48
1f40: c017d1ec c017c2f8 c019c724 c019c684 ee8ff480 ee8ff480 00001000 befe4a00
1f60: 00000000 00000000 ee931fa4 ee931f78 c017d2a8 c017d160 00000000 00000000
1f80: 000a9f20 00001000 befe4a00 00000003 c000ffe4 ee930000 00000000 ee931fa8
1fa0: c000fe40 c017d264 000a9f20 00001000 00000003 befe4a00 00001000 00000000
Unable to handle kernel NULL pointer dereference at virtual address 0000000c
1fc0: 000a9f20 00001000 befe4a00 00000003 00000000 00000000 00000003 00000001
pgd = edfc4000
[0000000c] *pgd=bfcac835
1fe0: 00000000 befe49dc 000197f8 b6e35dfc 60070010 00000003 3065b49d 134ac2c9

[<c058f1bc>] (show_ignore_nice_load_gov_pol) from [<c058ae88>] (show+0x4c/0x60)
[<c058ae88>] (show) from [<c01fcb90>] (sysfs_kf_seq_show+0x90/0xfc)
[<c01fcb90>] (sysfs_kf_seq_show) from [<c01fb33c>] (kernfs_seq_show+0x34/0x38)
[<c01fb33c>] (kernfs_seq_show) from [<c01a5210>] (seq_read+0x1e4/0x4e4)
[<c01a5210>] (seq_read) from [<c01fbed8>] (kernfs_fop_read+0x120/0x1a0)
[<c01fbed8>] (kernfs_fop_read) from [<c017c328>] (__vfs_read+0x3c/0xe0)
[<c017c328>] (__vfs_read) from [<c017d1ec>] (vfs_read+0x98/0x104)
[<c017d1ec>] (vfs_read) from [<c017d2a8>] (SyS_read+0x50/0x90)
[<c017d2a8>] (SyS_read) from [<c000fe40>] (ret_fast_syscall+0x0/0x1c)
Code: e5903044 e1a00001 e3081df4 e34c1092 (e593300c)
---[ end trace 5994b9a5111f35ee ]---

Fix that by making sure, policy->governor_data is updated at the right
places only.

Cc: 4.2+ <stable@vger.kernel.org> # 4.2+
Reported-and-tested-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-27 23:13:53 +01:00
Chen Yu
0df35026c6 cpufreq: governor: Fix negative idle_time when configured with CONFIG_HZ_PERIODIC
It is reported that, with CONFIG_HZ_PERIODIC=y cpu stays at the
lowest frequency even if the usage goes to 100%, neither ondemand
nor conservative governor works, however performance and
userspace work as expected. If set with CONFIG_NO_HZ_FULL=y,
everything goes well.

This problem is caused by improper calculation of the idle_time
when the load is extremely high(near 100%). Firstly, cpufreq_governor
uses get_cpu_idle_time to get the total idle time for specific cpu, then:

1.If the system is configured with CONFIG_NO_HZ_FULL, the idle time is
  returned by ktime_get, which is always increasing, it's OK.
2.However, if the system is configured with CONFIG_HZ_PERIODIC,
  get_cpu_idle_time might not guarantee to be always increasing,
  because it will leverage get_cpu_idle_time_jiffy to calculate the
  idle_time, consider the following scenario:

At T1:
idle_tick_1 = total_tick_1 - user_tick_1

sample period(80ms)...

At T2: ( T2 = T1 + 80ms):
idle_tick_2 = total_tick_2 - user_tick_2

Currently the algorithm is using (idle_tick_2 - idle_tick_1) to
get the delta idle_time during the past sample period, however
it CAN NOT guarantee that idle_tick_2 >= idle_tick_1, especially
when cpu load is high.
(Yes, total_tick_2 >= total_tick_1, and user_tick_2 >= user_tick_1,
but how about idle_tick_2 and idle_tick_1? No guarantee.)
So governor might get a negative value of idle_time during the past
sample period, which might mislead the system that the idle time is
very big(converted to unsigned int), and the busy time is nearly zero,
which causes the governor to always choose the lowest cpufreq,
then cause this problem.

In theory there are two solutions:

1.The logic should not rely on the idle tick during every sample period,
  but be based on the busy tick directly, as this is how 'top' is
  implemented.

2.Or the logic must make sure that the idle_time is strictly increasing
  during each sample period, then there would be no negative idle_time
  anymore. This solution requires minimum modification to current code
  and this patch uses method 2.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=69821
Reported-by: Jan Fikar <j.fikar@gmail.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-05 02:01:32 +01:00
Rafael J. Wysocki
2dd3e724b4 cpufreq: governor: Use lockless timer function
It is possible to get rid of the timer_lock spinlock used by the
governor timer function for synchronization, but a couple of races
need to be avoided.

The first race is between multiple dbs_timer_handler() instances
that may be running in parallel with each other on different
CPUs.  Namely, one of them has to queue up the work item, but it
cannot be queued up more than once.  To achieve that,
atomic_inc_return() can be used on the skip_work field of
struct cpu_common_dbs_info.

The second race is between an already running dbs_timer_handler()
and gov_cancel_work().  In that case the dbs_timer_handler() might
not notice the skip_work incrementation in gov_cancel_work() and
it might queue up its work item after gov_cancel_work() had
returned (and that work item would corrupt skip_work going
forward).  To prevent that from happening, gov_cancel_work()
can be made wait for the timer function to complete (on all CPUs)
right after skip_work has been incremented.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2015-12-09 22:26:13 +01:00
Viresh Kumar
70f43e5e79 cpufreq: governor: replace per-CPU delayed work with timers
cpufreq governors evaluate load at sampling rate and based on that they
update frequency for a group of CPUs belonging to the same cpufreq
policy.

This is required to be done in a single thread for all policy->cpus, but
because we don't want to wakeup idle CPUs to do just that, we use
deferrable work for this. If we would have used a single delayed
deferrable work for the entire policy, there were chances that the CPU
required to run the handler can be in idle and we might end up not
changing the frequency for the entire group with load variations.

And so we were forced to keep per-cpu works, and only the one that
expires first need to do the real work and others are rescheduled for
next sampling time.

We have been using the more complex solution until now, where we used a
delayed deferrable work for this, which is a combination of a timer and
a work.

This could be made lightweight by keeping per-cpu deferred timers with a
single work item, which is scheduled by the first timer that expires.

This patch does just that and here are important changes:
- The timer handler will run in irq context and so we need to use a
  spin_lock instead of the timer_mutex. And so a separate timer_lock is
  created. This also makes the use of the mutex and lock quite clear, as
  we know what exactly they are protecting.
- A new field 'skip_work' is added to track when the timer handlers can
  queue a work. More comments present in code.

Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-09 22:26:00 +01:00
Viresh Kumar
5e4500d8db cpufreq: governor: initialize/destroy timer_mutex with 'shared'
timer_mutex is required to be initialized only while memory for 'shared'
is allocated and in a similar way it is required to be destroyed only
when memory for 'shared' is freed.

There is no need to do the same every time we start/stop the governor.
Move code to initialize/destroy timer_mutex to the relevant places.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:23 +01:00
Viresh Kumar
affde5d06a cpufreq: governor: Pass policy as argument to ->gov_dbs_timer()
Pass 'policy' as argument to ->gov_dbs_timer() instead of cdbs and
dbs_data.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-07 02:20:22 +01:00
Viresh Kumar
3a91b069ea cpufreq: governor: Quit work-handlers early if governor is stopped
gov_queue_work() acquires cpufreq_governor_lock to allow
cpufreq_governor_stop() to drain delayed work items possibly scheduled
on CPUs that share the policy with a CPU being taken offline.

However, the same goal may be achieved in a more straightforward way if
the policy pointer in the struct cpu_dbs_info matching the policy CPU is
reset upfront by cpufreq_governor_stop() under the timer_mutex belonging
to it and checked against NULL, under the same lock, at the beginning of
dbs_timer().

In that case every instance of dbs_timer() run for a struct cpu_dbs_info
sharing the policy pointer in question after cpufreq_governor_stop() has
started will notice that that pointer is NULL and bail out immediately
without queuing up any new work items.  In turn, gov_cancel_work()
called by cpufreq_governor_stop() before destroying timer_mutex will
wait for all of the delayed work items currently running on the CPUs
sharing the policy to drop the mutex, so it may be destroyed safely.

Make cpufreq_governor_stop() and dbs_timer() work as described and
modify gov_queue_work() so it does not acquire cpufreq_governor_lock any
more.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-11-02 02:07:11 +01:00
Viresh Kumar
8eec1020f0 cpufreq: create cpu/cpufreq at boot time
Later patches will need to create policy specific directories in
/sys/devices/system/cpu/cpufreq/ directory and so the cpufreq directory
wouldn't be ever empty.

And so no fun creating/destroying it on need basis anymore. Create it
once on system boot.

Reviewed-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-10-28 09:21:12 +01:00
Viresh Kumar
03d5eec000 cpufreq: conservative: remove 'enable' field
Conservative governor has its own 'enable' field to check if
conservative governor is used for a CPU or not

This can be checked by policy->governor with 'cpufreq_gov_conservative'
and so this field can be dropped.

Because its not guaranteed that dbs_info->cdbs.shared will a valid
pointer for all CPUs (will be NULL for CPUs that don't use
ondemand/conservative governors), we can't use it anymore. Lets get
policy with cpufreq_cpu_get_raw() instead.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-09-26 02:59:38 +02:00
Viresh Kumar
871ef3b53a cpufreq: governor: Don't WARN on invalid states
With previous commit, governors have started to return errors on invalid
state-transition requests. We already have a WARN for an invalid
state-transition request in cpufreq_governor_dbs(). This does trigger
today, as the sequence of events isn't guaranteed by cpufreq core.

Lets stop warning on that for now, and make sure we don't enter an
invalid state.

Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-21 01:12:02 +02:00
Viresh Kumar
a72c49590a cpufreq: governor: Avoid invalid states with additional checks
There can be races where the request has come to a wrong state. For
example INIT followed by STOP (instead of START) or START followed by
EXIT (instead of STOP).

Address these races by making sure the state-machine never gets into
any invalid state. Also return an error if an invalid state-transition
is requested.

Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-21 01:12:02 +02:00
Viresh Kumar
43e0ee361e cpufreq: governor: split out common part of {cs|od}_dbs_timer()
Some part of cs_dbs_timer() and od_dbs_timer() is exactly same and is
unnecessarily duplicated.

Create the real work-handler in cpufreq_governor.c and put the common
code in this routine (dbs_timer()).

Shouldn't make any functional change.

Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-21 01:12:01 +02:00
Viresh Kumar
44152cb82d cpufreq: governor: Keep single copy of information common to policy->cpus
Some information is common to all CPUs belonging to a policy, but are
kept on per-cpu basis. Lets keep that in another structure common to all
policy->cpus. That will make updates/reads to that less complex and less
error prone.

The memory for cpu_common_dbs_info is allocated/freed at INIT/EXIT, so
that it we don't reallocate it for STOP/START sequence. It will be also
be used (in next patch) while the governor is stopped and so must not be
freed that early.

Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-21 01:12:01 +02:00
Viresh Kumar
42994af63c cpufreq: governor: rename cur_policy as policy
Just call it 'policy', cur_policy is unnecessarily long and doesn't
have any special meaning.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-17 23:46:48 +02:00
Viresh Kumar
49a9a40c1b cpufreq: governor: name pointer to cpu_dbs_info as 'cdbs'
It is called as 'cdbs' at most of the places and 'cpu_dbs' at others.
Lets use 'cdbs' consistently for better readability.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-17 23:46:48 +02:00
Viresh Kumar
875b8508f9 cpufreq: governor: Rename 'cpu_dbs_common_info' to 'cpu_dbs_info'
Its not common info to all CPUs, but a structure representing common
type of cpu info to both governor types. Lets drop 'common_' from its
name.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-17 23:46:48 +02:00
Viresh Kumar
d3574c8511 cpufreq: governor: Drop unused field 'cpu'
Its not used at all, drop it.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-17 23:46:47 +02:00
Viresh Kumar
386d46e6d5 cpufreq: governor: Name delayed-work as dwork
Delayed work was named as 'work' and to access work within it we do
work.work. Not much readable. Rename delayed_work as 'dwork'.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-17 23:46:47 +02:00
Viresh Kumar
732b6d617a cpufreq: governor: Serialize governor callbacks
There are several races reported in cpufreq core around governors (only
ondemand and conservative) by different people.

There are at least two race scenarios present in governor code:
 (a) Concurrent access/updates of governor internal structures.

 It is possible that fields such as 'dbs_data->usage_count', etc.  are
 accessed simultaneously for different policies using same governor
 structure (i.e. CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag unset). And
 because of this we can dereference bad pointers.

 For example consider a system with two CPUs with separate 'struct
 cpufreq_policy' instances. CPU0 governor: ondemand and CPU1: powersave.
 CPU0 switching to powersave and CPU1 to ondemand:
	CPU0				CPU1

	store*				store*

	cpufreq_governor_exit()		cpufreq_governor_init()
					dbs_data = cdata->gdbs_data;

	if (!--dbs_data->usage_count)
		kfree(dbs_data);

					dbs_data->usage_count++;
					*Bad pointer dereference*

 There are other races possible between EXIT and START/STOP/LIMIT as
 well. Its really complicated.

 (b) Switching governor state in bad sequence:

 For example trying to switch a governor to START state, when the
 governor is in EXIT state. There are some checks present in
 __cpufreq_governor() but they aren't sufficient as they compare events
 against 'policy->governor_enabled', where as we need to take governor's
 state into account, which can be used by multiple policies.

These two issues need to be solved separately and the responsibility
should be properly divided between cpufreq and governor core.

The first problem is more about the governor core, as it needs to
protect its structures properly. And the second problem should be fixed
in cpufreq core instead of governor, as its all about sequence of
events.

This patch is trying to solve only the first problem.

There are two types of data we need to protect,
- 'struct common_dbs_data': No matter what, there is going to be a
  single copy of this per governor.
- 'struct dbs_data': With CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag set, we
  will have per-policy copy of this data, otherwise a single copy.

Because of such complexities, the mutex present in 'struct dbs_data' is
insufficient to solve our problem. For example we need to protect
fetching of 'dbs_data' from different structures at the beginning of
cpufreq_governor_dbs(), to make sure it isn't currently being updated.

This can be fixed if we can guarantee serialization of event parsing
code for an individual governor. This is best solved with a mutex per
governor, and the placeholder for that is 'struct common_dbs_data'.

And so this patch moves the mutex from 'struct dbs_data' to 'struct
common_dbs_data' and takes it at the beginning and drops it at the end
of cpufreq_governor_dbs().

Tested with and without following configuration options:

CONFIG_LOCKDEP_SUPPORT=y
CONFIG_DEBUG_RT_MUTEXES=y
CONFIG_DEBUG_PI_LIST=y
CONFIG_DEBUG_SPINLOCK=y
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_LOCKDEP=y
CONFIG_DEBUG_ATOMIC_SLEEP=y

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:42:53 +02:00
Viresh Kumar
714a2d9c87 cpufreq: governor: split cpufreq_governor_dbs()
cpufreq_governor_dbs() is hardly readable, it is just too big and
complicated. Lets make it more readable by splitting out event specific
routines.

Order of statements is changed at few places, but that shouldn't bring
any functional change.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:39:07 +02:00
Viresh Kumar
8e0484d2b3 cpufreq: governor: register notifier from cs_init()
Notifiers are required only for conservative governor and the common
governor code is unnecessarily polluted with that. Handle that from
cs_init/exit() instead of cpufreq_governor_dbs().

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:37:12 +02:00
Viresh Kumar
c8ae481b9a cpufreq: governor: remove copy_prev_load from 'struct cpu_dbs_common_info'
'copy_prev_load' was recently added by commit: 18b46ab (cpufreq: governor: Be
friendly towards latency-sensitive bursty workloads).

It actually is a bit redundant as we also have 'prev_load' which can store any
integer value and can be used instead of 'copy_prev_load' by setting it zero.

True load can also turn out to be zero during long idle intervals (and hence the
actual value of 'prev_load' and the overloaded value can clash). However this is
not a problem because, if the true load was really zero in the previous
interval, it makes sense to evaluate the load afresh for the current interval
rather than copying the previous load.

So, drop 'copy_prev_load' and use 'prev_load' instead.

Update comments as well to make it more clear.

There is another change here which was probably missed by Srivatsa during the
last version of updates he made. The unlikely in the 'if' statement was covering
only half of the condition and the whole line should actually come under it.

Also checkpatch is made more silent as it was reporting this (--strict option):

CHECK: Alignment should match open parenthesis
+		if (unlikely(wall_time > (2 * sampling_rate) &&
+						j_cdbs->prev_load)) {

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-09 12:58:21 +02:00
Srivatsa S. Bhat
18b46abd00 cpufreq: governor: Be friendly towards latency-sensitive bursty workloads
Cpufreq governors like the ondemand governor calculate the load on the CPU
periodically by employing deferrable timers. A deferrable timer won't fire
if the CPU is completely idle (and there are no other timers to be run), in
order to avoid unnecessary wakeups and thus save CPU power.

However, the load calculation logic is agnostic to all this, and this can
lead to the problem described below.

Time (ms)               CPU 1

100                Task-A running

110                Governor's timer fires, finds load as 100% in the last
                   10ms interval and increases the CPU frequency.

110.5              Task-A running

120		   Governor's timer fires, finds load as 100% in the last
		   10ms interval and increases the CPU frequency.

125		   Task-A went to sleep. With nothing else to do, CPU 1
		   went completely idle.

200		   Task-A woke up and started running again.

200.5		   Governor's deferred timer (which was originally programmed
		   to fire at time 130) fires now. It calculates load for the
		   time period 120 to 200.5, and finds the load is almost zero.
		   Hence it decreases the CPU frequency to the minimum.

210		   Governor's timer fires, finds load as 100% in the last
		   10ms interval and increases the CPU frequency.

So, after the workload woke up and started running, the frequency was suddenly
dropped to absolute minimum, and after that, there was an unnecessary delay of
10ms (sampling period) to increase the CPU frequency back to a reasonable value.
And this pattern repeats for every wake-up-from-cpu-idle for that workload.
This can be quite undesirable for latency- or response-time sensitive bursty
workloads. So we need to fix the governor's logic to detect such wake-up-from-
cpu-idle scenarios and start the workload at a reasonably high CPU frequency.

One extreme solution would be to fake a load of 100% in such scenarios. But
that might lead to undesirable side-effects such as frequency spikes (which
might also need voltage changes) especially if the previous frequency happened
to be very low.

We just want to avoid the stupidity of dropping down the frequency to a minimum
and then enduring a needless (and long) delay before ramping it up back again.
So, let us simply carry forward the previous load - that is, let us just pretend
that the 'load' for the current time-window is the same as the load for the
previous window. That way, the frequency and voltage will continue to be set
to whatever values they were set at previously. This means that bursty workloads
will get a chance to influence the CPU frequency at which they wake up from
cpu-idle, based on their past execution history. Thus, they might be able to
avoid suffering from slow wakeups and long response-times.

However, we should take care not to over-do this. For example, such a "copy
previous load" logic will benefit cases like this: (where # represents busy
and . represents idle)

##########.........#########.........###########...........##########........

but it will be detrimental in cases like the one shown below, because it will
retain the high frequency (copied from the previous interval) even in a mostly
idle system:

##########.........#.................#.....................#...............

(i.e., the workload finished and the remaining tasks are such that their busy
periods are smaller than the sampling interval, which causes the timer to
always get deferred. So, this will make the copy-previous-load logic copy
the initial high load to subsequent idle periods over and over again, thus
keeping the frequency high unnecessarily).

So, we modify this copy-previous-load logic such that it is used only once
upon every wakeup-from-idle. Thus if we have 2 consecutive idle periods, the
previous load won't get blindly copied over; cpufreq will freshly evaluate the
load in the second idle interval, thus ensuring that the system comes back to
its normal state.

[ The right way to solve this whole problem is to teach the CPU frequency
governors to also track load on a per-task basis, not just a per-CPU basis,
and then use both the data sources intelligently to set the appropriate
frequency on the CPUs. But that involves redesigning the cpufreq subsystem,
so this patch should make the situation bearable until then. ]

Experimental results:
+-------------------+

I ran a modified version of ebizzy (called 'sleeping-ebizzy') that sleeps in
between its execution such that its total utilization can be a user-defined
value, say 10% or 20% (higher the utilization specified, lesser the amount of
sleeps injected). This ebizzy was run with a single-thread, tied to CPU 8.

Behavior observed with tracing (sample taken from 40% utilization runs):
------------------------------------------------------------------------

Without patch:
~~~~~~~~~~~~~~
kworker/8:2-12137  416.335742: cpu_frequency: state=2061000 cpu_id=8
kworker/8:2-12137  416.335744: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40753  416.345741: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137  416.345744: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-12137  416.345746: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40753  416.355738: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
<snip>  ---------------------------------------------------------------------  <snip>
      <...>-40753  416.402202: sched_switch: prev_comm=ebizzy ==> next_comm=swapper/8
     <idle>-0      416.502130: sched_switch: prev_comm=swapper/8 ==> next_comm=ebizzy
      <...>-40753  416.505738: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137  416.505739: cpu_frequency: state=2061000 cpu_id=8
kworker/8:2-12137  416.505741: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40753  416.515739: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137  416.515742: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-12137  416.515744: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy

Observation: Ebizzy went idle at 416.402202, and started running again at
416.502130. But cpufreq noticed the long idle period, and dropped the frequency
at 416.505739, only to increase it back again at 416.515742, realizing that the
workload is in-fact CPU bound. Thus ebizzy needlessly ran at the lowest frequency
for almost 13 milliseconds (almost 1 full sample period), and this pattern
repeats on every sleep-wakeup. This could hurt latency-sensitive workloads quite
a lot.

With patch:
~~~~~~~~~~~

kworker/8:2-29802  464.832535: cpu_frequency: state=2061000 cpu_id=8
<snip>  ---------------------------------------------------------------------  <snip>
kworker/8:2-29802  464.962538: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40738  464.972533: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802  464.972536: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-29802  464.972538: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40738  464.982531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
<snip>  ---------------------------------------------------------------------  <snip>
kworker/8:2-29802  465.022533: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40738  465.032531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802  465.032532: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40738  465.035797: sched_switch: prev_comm=ebizzy ==> next_comm=swapper/8
     <idle>-0      465.240178: sched_switch: prev_comm=swapper/8 ==> next_comm=ebizzy
      <...>-40738  465.242533: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802  465.242535: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
      <...>-40738  465.252531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2

Observation: Ebizzy went idle at 465.035797, and started running again at
465.240178. Since ebizzy was the only real workload running on this CPU,
cpufreq retained the frequency at 4.1Ghz throughout the run of ebizzy, no
matter how many times ebizzy slept and woke-up in-between. Thus, ebizzy
got the 10ms worth of 4.1 Ghz benefit during every sleep-wakeup (as compared
to the run without the patch) and this boost gave a modest improvement in total
throughput, as shown below.

Sleeping-ebizzy records-per-second:
-----------------------------------

Utilization  Without patch  With patch  Difference (Absolute and % values)
    10%         274767        277046        +  2279 (+0.829%)
    20%         543429        553484        + 10055 (+1.850%)
    40%        1090744       1107959        + 17215 (+1.578%)
    60%        1634908       1662018        + 27110 (+1.658%)

A rudimentary and somewhat approximately latency-sensitive workload such as
sleeping-ebizzy itself showed a consistent, noticeable performance improvement
with this patch. Hence, workloads that are truly latency-sensitive will benefit
quite a bit from this change. Moreover, this is an overall win-win since this
patch does not hurt power-savings at all (because, this patch does not reduce
the idle time or idle residency; and the high frequency of the CPU when it goes
to cpu-idle does not affect/hurt the power-savings of deep idle states).

Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-07 22:53:51 +02:00
Bibek Basu
c5450db85b cpufreq: remove race while accessing cur_policy
While accessing cur_policy during executing events
CPUFREQ_GOV_START, CPUFREQ_GOV_STOP, CPUFREQ_GOV_LIMITS,
same mutex lock is not taken, dbs_data->mutex, which leads
to race and data corruption while running continious suspend
resume test. This is seen with ondemand governor with suspend
resume test using rtcwake.

 Unable to handle kernel NULL pointer dereference at virtual address 00000028
 pgd = ed610000
 [00000028] *pgd=adf11831, *pte=00000000, *ppte=00000000
 Internal error: Oops: 17 [#1] PREEMPT SMP ARM
 Modules linked in: nvhost_vi
 CPU: 1 PID: 3243 Comm: rtcwake Not tainted 3.10.24-gf5cf9e5 #1
 task: ee708040 ti: ed61c000 task.ti: ed61c000
 PC is at cpufreq_governor_dbs+0x400/0x634
 LR is at cpufreq_governor_dbs+0x3f8/0x634
 pc : [<c05652b8>] lr : [<c05652b0>] psr: 600f0013
 sp : ed61dcb0 ip : 000493e0 fp : c1cc14f0
 r10: 00000000 r9 : 00000000 r8 : 00000000
 r7 : eb725280 r6 : c1cc1560 r5 : eb575200 r4 : ebad7740
 r3 : ee708040 r2 : ed61dca8 r1 : 001ebd24 r0 : 00000000
 Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
 Control: 10c5387d Table: ad61006a DAC: 00000015
 [<c05652b8>] (cpufreq_governor_dbs+0x400/0x634) from [<c055f700>] (__cpufreq_governor+0x98/0x1b4)
 [<c055f700>] (__cpufreq_governor+0x98/0x1b4) from [<c0560770>] (__cpufreq_set_policy+0x250/0x320)
 [<c0560770>] (__cpufreq_set_policy+0x250/0x320) from [<c0561dcc>] (cpufreq_update_policy+0xcc/0x168)
 [<c0561dcc>] (cpufreq_update_policy+0xcc/0x168) from [<c0561ed0>] (cpu_freq_notify+0x68/0xdc)
 [<c0561ed0>] (cpu_freq_notify+0x68/0xdc) from [<c008eff8>] (notifier_call_chain+0x4c/0x8c)
 [<c008eff8>] (notifier_call_chain+0x4c/0x8c) from [<c008f3d4>] (__blocking_notifier_call_chain+0x50/0x68)
 [<c008f3d4>] (__blocking_notifier_call_chain+0x50/0x68) from [<c008f40c>] (blocking_notifier_call_chain+0x20/0x28)
 [<c008f40c>] (blocking_notifier_call_chain+0x20/0x28) from [<c00aac6c>] (pm_qos_update_bounded_target+0xd8/0x310)
 [<c00aac6c>] (pm_qos_update_bounded_target+0xd8/0x310) from [<c00ab3b0>] (__pm_qos_update_request+0x64/0x70)
 [<c00ab3b0>] (__pm_qos_update_request+0x64/0x70) from [<c004b4b8>] (tegra_pm_notify+0x114/0x134)
 [<c004b4b8>] (tegra_pm_notify+0x114/0x134) from [<c008eff8>] (notifier_call_chain+0x4c/0x8c)
 [<c008eff8>] (notifier_call_chain+0x4c/0x8c) from [<c008f3d4>] (__blocking_notifier_call_chain+0x50/0x68)
 [<c008f3d4>] (__blocking_notifier_call_chain+0x50/0x68) from [<c008f40c>] (blocking_notifier_call_chain+0x20/0x28)
 [<c008f40c>] (blocking_notifier_call_chain+0x20/0x28) from [<c00ac228>] (pm_notifier_call_chain+0x1c/0x34)
 [<c00ac228>] (pm_notifier_call_chain+0x1c/0x34) from [<c00ad38c>] (enter_state+0xec/0x128)
 [<c00ad38c>] (enter_state+0xec/0x128) from [<c00ad400>] (pm_suspend+0x38/0xa4)
 [<c00ad400>] (pm_suspend+0x38/0xa4) from [<c00ac114>] (state_store+0x70/0xc0)
 [<c00ac114>] (state_store+0x70/0xc0) from [<c027b1e8>] (kobj_attr_store+0x14/0x20)
 [<c027b1e8>] (kobj_attr_store+0x14/0x20) from [<c019cd9c>] (sysfs_write_file+0x104/0x184)
 [<c019cd9c>] (sysfs_write_file+0x104/0x184) from [<c0143038>] (vfs_write+0xd0/0x19c)
 [<c0143038>] (vfs_write+0xd0/0x19c) from [<c0143414>] (SyS_write+0x4c/0x78)
 [<c0143414>] (SyS_write+0x4c/0x78) from [<c000f080>] (ret_fast_syscall+0x0/0x30)
 Code: e1a00006 eb084346 e59b0020 e5951024 (e5903028)
 ---[ end trace 0488523c8f6b0f9d ]---

Signed-off-by: Bibek Basu <bbasu@nvidia.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.11+ <stable@vger.kernel.org> # 3.11+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-05-20 01:25:15 +02:00