IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A warning as below may be occasionally triggered in an ADL machine when
these conditions occur:
- Two perf record commands run one by one. Both record a PEBS event.
- Both runs on small cores.
- They have different adaptive PEBS configuration (PEBS_DATA_CFG).
[ ] WARNING: CPU: 4 PID: 9874 at arch/x86/events/intel/ds.c:1743 setup_pebs_adaptive_sample_data+0x55e/0x5b0
[ ] RIP: 0010:setup_pebs_adaptive_sample_data+0x55e/0x5b0
[ ] Call Trace:
[ ] <NMI>
[ ] intel_pmu_drain_pebs_icl+0x48b/0x810
[ ] perf_event_nmi_handler+0x41/0x80
[ ] </NMI>
[ ] __perf_event_task_sched_in+0x2c2/0x3a0
Different from the big core, the small core requires the ACK right
before re-enabling counters in the NMI handler, otherwise a stale PEBS
record may be dumped into the later NMI handler, which trigger the
warning.
Add a new mid_ack flag to track the case. Add all PMI handler bits in
the struct x86_hybrid_pmu to track the bits for different types of
PMUs. Apply mid ACK for the small cores on an Alder Lake machine.
The existing hybrid() macro has a compile error when taking address of
a bit-field variable. Add a new macro hybrid_bit() to get the
bit-field value of a given PMU.
Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Ammy Yi <ammy.yi@intel.com>
Link: https://lkml.kernel.org/r/1627997128-57891-1-git-send-email-kan.liang@linux.intel.com
If we use "perf record" in an AMD Milan guest, dmesg reports a #GP
warning from an unchecked MSR access error on MSR_F15H_PERF_CTLx:
[] unchecked MSR access error: WRMSR to 0xc0010200 (tried to write 0x0000020000110076) at rIP: 0xffffffff8106ddb4 (native_write_msr+0x4/0x20)
[] Call Trace:
[] amd_pmu_disable_event+0x22/0x90
[] x86_pmu_stop+0x4c/0xa0
[] x86_pmu_del+0x3a/0x140
The AMD64_EVENTSEL_HOSTONLY bit is defined and used on the host,
while the guest perf driver should avoid such use.
Fixes: 1018faa6cf23 ("perf/x86/kvm: Fix Host-Only/Guest-Only counting with SVM disabled")
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Tested-by: Liam Merwick <liam.merwick@oracle.com>
Link: https://lkml.kernel.org/r/20210802070850.35295-1-likexu@tencent.com
On Wed, Jul 28, 2021 at 12:49:43PM -0400, Vince Weaver wrote:
> [32694.087403] unchecked MSR access error: WRMSR to 0x318 (tried to write 0x0000000000000000) at rIP: 0xffffffff8106f854 (native_write_msr+0x4/0x20)
> [32694.101374] Call Trace:
> [32694.103974] perf_clear_dirty_counters+0x86/0x100
The problem being that it doesn't filter out all fake counters, in
specific the above (erroneously) tries to use FIXED_BTS. Limit the
fixed counters indexes to the hardware supplied number.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Like Xu <likexu@tencent.com>
Link: https://lkml.kernel.org/r/YQJxka3dxgdIdebG@hirez.programming.kicks-ass.net
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
writes the FPU state to the alternate stack without checking whether
the stack is large enough to accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
updated despite the fact that the FPU state which is stored on the
signal stack has grown over time which causes trouble in the field
when AVX512 is available on a CPU. The kernel does not expose the
minimum requirements for the alternate stack size depending on the
available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well
- A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
related issues unearthed quite some inconsistencies, duplicated code
and other issues.
The fine granular overhaul addresses this, makes the code more robust
and maintainable, which allows to integrate upcoming XSTATE related
features in sane ways.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
/TbbRZu7nXDN2w==
=Mq1m
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
The error handling path of iio mapping looks fragile. We already fixed
one issue caused by it, commit f797f05d917f ("perf/x86/intel/uncore:
Fix for iio mapping on Skylake Server"). Clean up the error handling
path and make the code robust.
Reported-by: gushengxian <gushengxian@yulong.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/40e66cf9-398b-20d7-ce4d-433be6e08921@linux.intel.com
Introduce icx_cstates for ICELAKE_X and ICELAKE_D, and also update the
comments.
On ICELAKE_X and ICELAKE_D, Core C1, Core C6, Package C2 and Package C6
Residency MSRs are supported.
This patch has been tested on real hardware.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Link: https://lkml.kernel.org/r/20210625133247.2813-1-rui.zhang@intel.com
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
e+fQrGh4noI=
=20Vc
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models and
do not enable kernel workarounds for those CPUs when TSX transactions
always abort, as a result of that microcode update.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDZhzEACgkQEsHwGGHe
VUo5ow//eRwlb1OL/D3jzLT4nTYX8+XdufaJF1HBr1Cf3mdNkiEgyu2bvsXNTpN/
ZP7CFCHibgYeHJ7qTTkhoK1DCe4YHjj450oCgg7pv40Mv9E29Rpszie8y8e/ngkc
g9OiAeEd4A32v8bRMAOOX0UZN4afismXBW0k4iwOAguNFiZ/usrrVYTZpJe3wG65
/YM9FdDZ+Mt7BavJdVyGh03PpzoSMrKyEQ673CHhERQyy5oEublrDSmtt5hQJv1W
4tgNOWpw57Gi7Vs7UYd7VvBQKwQZKeQeHJWu1TXUB6pw0lKYvULH6m0dasvc6cGb
WtCBvbQU9MRP0LvdvYOdgmSgn400z7mEwlUWmAFJLIUlDsuRpZmVQ4C1/OUnOSdx
amb7I3bp1z6Rqjs9ADW5h87qDA+q5OmbIZeIDvuRypQOB3yEktAEdUvWb65b1Fgm
9CpzebxyaOUM9YRxDzDd2joZYKnfI3stF6UCrVXaZwYei+Jmzn5gc8ZOoOX9g6gO
eX/sLW2RWRx6XxilaWZijOHJTjokVUpEnD12aGtKO6ou5QbFTwldc2Metpua42cL
5p8wRxEYeKT/EE/GKy/qIEp624QaInSEmfyq8RFKU4em7GSaSUmoQF5151LfnoRY
ARHkEdz+T8s5RI5xSvUZLRMNYjig9tZas3blYfbJHnU7V2+bspQ=
=wW+k
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- New AMD models support
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models
and do not enable kernel workarounds for those CPUs when TSX
transactions always abort, as a result of that microcode update.
* tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Clear CPUID bits when TSX always force aborts
x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated
x86/msr: Define new bits in TSX_FORCE_ABORT MSR
perf/x86/rapl: Use CPUID bit on AMD and Hygon parts
x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems
x86/amd_nb: Add AMD family 19h model 50h PCI ids
x86/cpu: Fix core name for Sapphire Rapids
XRSTORS requires a valid xstate buffer to work correctly. XSAVES does not
guarantee to write a fully valid buffer according to the SDM:
"XSAVES does not write to any parts of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields."
XRSTORS triggers a #GP:
"If bytes 63:16 of the XSAVE header are not all zero."
It's dubious at best how this can work at all when the buffer is not zeroed
before use.
Allocate the buffers with __GFP_ZERO to prevent XRSTORS failure.
Fixes: ce711ea3cab9 ("perf/x86/intel/lbr: Support XSAVES/XRSTORS for LBR context switch")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/87wnr0wo2z.ffs@nanos.tec.linutronix.de
The copy functions for the independent features are horribly named and the
supervisor and independent part is just overengineered.
The point is that the supplied mask has either to be a subset of the
independent features or a subset of the task->fpu.xstate managed features.
Rewrite it so it checks for invalid overlaps of these areas in the caller
supplied feature mask. Rename it so it follows the new naming convention
for these operations. Mop up the function documentation.
This allows to use that function for other purposes as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210623121455.004880675@linutronix.de
The salient feature of "dynamic" XSTATEs is that they are not part of the
main task XSTATE buffer. The fact that they are dynamically allocated is
irrelevant and will become quite confusing when user math XSTATEs start
being dynamically allocated. Rename them to "independent" because they
are independent of the main XSTATE code.
This is just a search-and-replace with some whitespace updates to keep
things aligned.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/1eecb0e4f3e07828ebe5d737ec77dc3b708fad2d.1623388344.git.luto@kernel.org
Link: https://lkml.kernel.org/r/20210623121454.911450390@linutronix.de
Perf errors out when sampling instructions:ppp.
$ perf record -e instructions:ppp -- true
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (instructions:ppp).
The instruction PDIR is only available on the fixed counter 0. The event
constraint has been updated to fixed0_constraint in
icl_get_event_constraints(). The Sapphire Rapids codes unconditionally
error out for the event which is not available on the GP counter 0.
Make the instructions:ppp an exception.
Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Reported-by: Yasin, Ahmad <ahmad.yasin@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-4-git-send-email-kan.liang@linux.intel.com
On Sapphire Rapids, there are two more events 0x40ad and 0x04c2 which
rely on the FRONTEND MSR. If the FRONTEND MSR is not set correctly, the
count value is not correct.
Update intel_spr_extra_regs[] to support them.
Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-3-git-send-email-kan.liang@linux.intel.com
For some Alder Lake machine, the below fixed counter check warning may be
triggered.
[ 2.010766] hw perf events fixed 5 > max(4), clipping!
Current perf unconditionally increases the number of the GP counters and
the fixed counters for a big core PMU on an Alder Lake system, because
the number enumerated in the CPUID only reflects the common counters.
The big core may has more counters. However, Alder Lake may have an
alternative configuration. With that configuration,
the X86_FEATURE_HYBRID_CPU is not set. The number of the GP counters and
fixed counters enumerated in the CPUID is accurate. Perf mistakenly
increases the number of counters. The warning is triggered.
Directly use the enumerated value on the system with the alternative
configuration.
Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-2-git-send-email-kan.liang@linux.intel.com
If we use the "PEBS-via-PT" feature on a platform that supports
extended PBES, like this:
perf record -c 10000 \
-e '{intel_pt/branch=0/,branch-instructions/aux-output/p}' uname
we will encounter the following call trace:
[ 250.906542] unchecked MSR access error: WRMSR to 0x14e1 (tried to write
0x0000000000000000) at rIP: 0xffffffff88073624 (native_write_msr+0x4/0x20)
[ 250.920779] Call Trace:
[ 250.923508] intel_pmu_pebs_enable+0x12c/0x190
[ 250.928359] intel_pmu_enable_event+0x346/0x390
[ 250.933300] x86_pmu_start+0x64/0x80
[ 250.937231] x86_pmu_enable+0x16a/0x2f0
[ 250.941434] perf_event_exec+0x144/0x4c0
[ 250.945731] begin_new_exec+0x650/0xbf0
[ 250.949933] load_elf_binary+0x13e/0x1700
[ 250.954321] ? lock_acquire+0xc2/0x390
[ 250.958430] ? bprm_execve+0x34f/0x8a0
[ 250.962544] ? lock_is_held_type+0xa7/0x120
[ 250.967118] ? find_held_lock+0x32/0x90
[ 250.971321] ? sched_clock_cpu+0xc/0xb0
[ 250.975527] bprm_execve+0x33d/0x8a0
[ 250.979452] do_execveat_common.isra.0+0x161/0x1d0
[ 250.984673] __x64_sys_execve+0x33/0x40
[ 250.988877] do_syscall_64+0x3d/0x80
[ 250.992806] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 250.998302] RIP: 0033:0x7fbc971d82fb
[ 251.002235] Code: Unable to access opcode bytes at RIP 0x7fbc971d82d1.
[ 251.009303] RSP: 002b:00007fffb8aed808 EFLAGS: 00000202 ORIG_RAX: 000000000000003b
[ 251.017478] RAX: ffffffffffffffda RBX: 00007fffb8af2f00 RCX: 00007fbc971d82fb
[ 251.025187] RDX: 00005574792aac50 RSI: 00007fffb8af2f00 RDI: 00007fffb8aed810
[ 251.032901] RBP: 00007fffb8aed970 R08: 0000000000000020 R09: 00007fbc9725c8b0
[ 251.040613] R10: 6d6c61632f6d6f63 R11: 0000000000000202 R12: 00005574792aac50
[ 251.048327] R13: 00007fffb8af35f0 R14: 00005574792aafdf R15: 00005574792aafe7
This is because the target reload msr address is calculated
based on the wrong base msr and the target reload msr value
is accessed from ds->pebs_event_reset[] with the wrong offset.
According to Intel SDM Table 2-14, for extended PBES feature,
the reload msr for MSR_IA32_FIXED_CTRx should be based on
MSR_RELOAD_FIXED_CTRx.
For fixed counters, let's fix it by overriding the reload msr
address and its value, thus avoiding out-of-bounds access.
Fixes: 42880f726c66("perf/x86/intel: Support PEBS output to PT")
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210621034710.31107-1-likexu@tencent.com
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.
perf stat -e 'branches,cycles' -- taskset -c 0 ./workload
In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)
$./rdpmc_read_all_counters
index 0x0 value 0x8001e5970f99
index 0x1 value 0x8005d750edb6
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x8002358e48a5
index 0x1 value 0x8006bd1e3bc9
index 0x2 value 0x0
index 0x3 value 0x0
It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.
The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.
Three methods were considered to address the issue.
- Unconditionally reset the counter in x86_pmu_del(). It can bring extra
overhead even when there is no RDPMC task running.
- Only reset the un-assigned dirty counters when the RDPMC task is
scheduled in via sched_task(). It fails for the below case.
Thread A Thread B
clone(CLONE_THREAD) --->
set_affine(0)
set_affine(1)
while (!event-enabled)
;
event = perf_event_open()
mmap(event)
ioctl(event, IOC_ENABLE); --->
RDPMC
Counters are still leaked to the thread B.
- Only reset the un-assigned dirty counters before updating the CR4.PCE
bit. The method is implemented here.
The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.
The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.
After applying the patch,
$ ./rdpmc_read_all_counters
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
Performance
The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.
The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.
Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).
lat_ctx -s 128K -N 1000 processes 2
Without the patch:
The context switch time is 4.97 us
With the patch:
The context switch time is 5.16 us
There is ~4% performance drop for the context switching time in the
worst-case.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
Earlier workaround added by
400816f60c54 ("perf/x86/intel: Implement support for TSX Force Abort")
for perf counter interactions [1] are not required on some client
systems which received a microcode update that deprecates TSX.
Bypass the perf workaround when such microcode is enumerated.
[1] [ bp: Look for document ID 604224, "Performance Monitoring Impact
of Intel Transactional Synchronization Extension Memory". Since
there's no way for us to have stable links to documents... ]
[ bp: Massage comment. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Link: https://lkml.kernel.org/r/e4d410f786946280ced02dd07c74e0a74f1d10cb.1623704845.git-series.pawan.kumar.gupta@linux.intel.com
AMD and Hygon CPUs have a CPUID bit for RAPL. Drop the fam17h suffix as
it is stale already.
Make use of this instead of a model check to work more nicely in virtual
environments where RAPL typically isn't available.
[ bp: drop the ../cpu/powerflags.c hunk which is superfluous as the
"rapl" bit name appears already in flags. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210514135920.16093-1-andrew.cooper3@citrix.com
Perf tool errors out with the latest event list for the Ice Lake server.
event syntax error: 'unc_m2m_imc_reads.to_pmm'
\___ value too big for format, maximum is 255
The same as the Snow Ridge server, the M2M uncore unit in the Ice Lake
server has the unit mask extension field as well.
Fixes: 2b3b76b5ec67 ("perf/x86/intel/uncore: Add Ice Lake server uncore support")
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1622552943-119174-1-git-send-email-kan.liang@linux.intel.com
A kernel WARNING may be triggered when setting maxcpus=1.
The uncore counters are Die-scope. When probing a PCI device, only the
BUS information can be retrieved. The uncore driver has to maintain a
mapping table used to calculate the logical Die ID from a given BUS#.
Before the patch ba9506be4e40, the mapping table stores the mapping
information from the BUS# -> a Physical Socket ID. To calculate the
logical die ID, perf does,
- In snbep_pci2phy_map_init(), retrieve the BUS# -> a Physical Socket ID
from the UBOX PCI configure space.
- Calculate the mapping information (a BUS# -> a Physical Socket ID) for
the other PCI BUS.
- In the uncore_pci_probe(), get the physical Socket ID from a given BUS
and the mapping table.
- Calculate the logical Die ID
Since only the logical Die ID is required, with the patch ba9506be4e40,
the mapping table stores the mapping information from the BUS# -> a
logical Die ID. Now perf does,
- In snbep_pci2phy_map_init(), retrieve the BUS# -> a Physical Socket ID
from the UBOX PCI configure space.
- Calculate the logical Die ID
- Calculate the mapping information (a BUS# -> a logical Die ID) for the
other PCI BUS.
- In the uncore_pci_probe(), get the logical die ID from a given BUS and
the mapping table.
When calculating the logical Die ID, -1 may be returned, especially when
maxcpus=1. Here, -1 means the logical Die ID is not found. But when
calculating the mapping information for the other PCI BUS, -1 indicates
that it's the other PCI BUS that requires the calculation of the
mapping. The driver will mistakenly do the calculation.
Uses the -ENODEV to indicate the case which the logical Die ID is not
found. The driver will not mess up the mapping table anymore.
Fixes: ba9506be4e40 ("perf/x86/intel/uncore: Store the logical die id instead of the physical die id.")
Reported-by: John Donnelly <john.p.donnelly@oracle.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Tested-by: John Donnelly <john.p.donnelly@oracle.com>
Link: https://lkml.kernel.org/r/1622037527-156028-1-git-send-email-kan.liang@linux.intel.com
I/O stacks to PMON mapping on Skylake server relies on topology information
from CPU_BUS_NO MSR but this approach is not applicable for SNR and ICX.
Mapping on these platforms can be gotten by reading SAD_CONTROL_CFG CSR
from Mesh2IIO device with 0x09a2 DID.
SAD_CONTROL_CFG CSR contains stack IDs in its own notation which are
statically mapped on IDs in PMON notation.
The map for Snowridge:
Stack Name | CBDMA/DMI | PCIe Gen 3 | DLB | NIS | QAT
SAD_CONTROL_CFG ID | 0 | 1 | 2 | 3 | 4
PMON ID | 1 | 4 | 3 | 2 | 0
This patch enables I/O stacks to IIO PMON mapping on Snowridge.
Mapping is exposed through attributes /sys/devices/uncore_iio_<pmu_idx>/dieX,
where dieX is file which holds "Segment:Root Bus" for PCIe root port which
can be monitored by that IIO PMON block. Example for Snowridge:
==> /sys/devices/uncore_iio_0/die0 <==
0000:f3
==> /sys/devices/uncore_iio_1/die0 <==
0000:00
==> /sys/devices/uncore_iio_2/die0 <==
0000:eb
==> /sys/devices/uncore_iio_3/die0 <==
0000:e3
==> /sys/devices/uncore_iio_4/die0 <==
0000:14
Mapping for Icelake server will be enabled in the follow-up patch.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210426131614.16205-3-alexander.antonov@linux.intel.com
Currently I/O stacks to IIO PMON mapping is available on Skylake servers
only and need to make code more general to easily enable further platforms.
So, introduce get_topology() callback in struct intel_uncore_type which
allows to move common code to separate function and make mapping procedure
more general.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210426131614.16205-2-alexander.antonov@linux.intel.com
If the kernel is compiled with the CONFIG_LOCKDEP option, the conditional
might_sleep_if() deep in kmem_cache_alloc() will generate the following
trace, and potentially cause a deadlock when another LBR event is added:
[] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:196
[] Call Trace:
[] kmem_cache_alloc+0x36/0x250
[] intel_pmu_lbr_add+0x152/0x170
[] x86_pmu_add+0x83/0xd0
Make it symmetric with the release_lbr_buffers() call and mirror the
existing DS buffers.
Fixes: c085fb8774 ("perf/x86/intel/lbr: Support XSAVES for arch LBR read")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simplified]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210430052247.3079672-2-like.xu@linux.intel.com
The Architecture LBR does not have MSR_LBR_TOS (0x000001c9).
In a guest that should support Architecture LBR, check_msr()
will be a non-related check for the architecture MSR 0x0
(IA32_P5_MC_ADDR) that is also not supported by KVM.
The failure will cause x86_pmu.lbr_nr = 0, thereby preventing
the initialization of the guest Arch LBR. Fix it by avoiding
this extraneous check in intel_pmu_init() for Arch LBR.
Fixes: 47125db27e47 ("perf/x86/intel/lbr: Support Architectural LBR")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simpler still]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210430052247.3079672-1-like.xu@linux.intel.com
The parameter passed to the pmu_enable() and pmu_disable() functions can not be
NULL because it is dereferenced by the caller.
That means the result of container_of() on that parameter can also never be NULL.
The existing NULL checks are therefore unnecessary and misleading. Remove them.
This change was made automatically with the following Coccinelle script.
@@
type t;
identifier v;
statement s;
@@
<+...
(
t v = container_of(...);
|
v = container_of(...);
)
...
when != v
- if (\( !v \| v == NULL \) ) s
...+>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510224849.2349861-1-linux@roeck-us.net
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCXprEACgkQEsHwGGHe
VUpUlA//YEmVtHSXbvF6OjNv3gUcslI86OGJneUV3ltZfpXZjufu4I4EJopIdjB2
0ORiiSFmbCABSf2BB0vp6VN4BXNOGtv0MEo7F5aTStFHP2/At2JPTekS8VI7Z75C
xwgqVI2lzTvcEDIRdmH3Elwa3u/Ob2sLOwhxK7937gcLAO7L5DW9+gBtP+Nzhoad
bZvym/oK7vv4d4CSPV8RC+A71cJwk0xF1dl31muoz9ijD6LXWIcox49B0AYSA5Uv
7wIIo9J2WIuZaEGDfjyblvBqEaSiZSbzVBTd42Rw5GK0dWwaM7kquHLmFScFPRK6
FQPnkOfdl+W9HWlLsVtupmSYRHAgaXc90qU9XdKlXBsDCCxqfCIhzTx+CkkWfY8z
LFiEmnOrP+qNVHatCmwtuP7FWeNo5W8DkJp7TSrtg6z7DqE/WtRtBZWnJIdzUBwB
eqm1e3gi2mv8Cd05VHLOWW7SoIuelleI0uBZGgb5cTWbWrhyNjL58ODAUtOOfVad
uyS31NHIMhk50JTL9pNDmNXzxXKx9/m2sjFulZcyZ2MneJ2cI0kEsJNzxVsbZoyS
IIWcQuHQpUe9NEAPU0uksq2qCTyqOZ8zqb+8e0L4p94RifNxPvmdmvsx+cgR6pyB
8UDffvhDniaFnyiV9AYv8U37VpoNacrywRAeQlqdGjlUNH1CULk=
=ksMy
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v5.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf fix from Borislav Petkov:
"Handle power-gating of AMD IOMMU perf counters properly when they are
used"
* tag 'perf_urgent_for_v5.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/events/amd/iommu: Fix invalid Perf result due to IOMMU PMC power-gating
On certain AMD platforms, when the IOMMU performance counter source
(csource) field is zero, power-gating for the counter is enabled, which
prevents write access and returns zero for read access.
This can cause invalid perf result especially when event multiplexing
is needed (i.e. more number of events than available counters) since
the current logic keeps track of the previously read counter value,
and subsequently re-program the counter to continue counting the event.
With power-gating enabled, we cannot gurantee successful re-programming
of the counter.
Workaround this issue by :
1. Modifying the ordering of setting/reading counters and enabing/
disabling csources to only access the counter when the csource
is set to non-zero.
2. Since AMD IOMMU PMU does not support interrupt mode, the logic
can be simplified to always start counting with value zero,
and accumulate the counter value when stopping without the need
to keep track and reprogram the counter with the previously read
counter value.
This has been tested on systems with and without power-gating.
Fixes: 994d6608efe4 ("iommu/amd: Remove performance counter pre-initialization test")
Suggested-by: Alexander Monakov <amonakov@ispras.ru>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210504065236.4415-1-suravee.suthikulpanit@amd.com
Including:
- Big cleanup of almost unsused parts of the IOMMU API by
Christoph Hellwig. This mostly affects the Freescale PAMU
driver.
- New IOMMU driver for Unisoc SOCs
- ARM SMMU Updates from Will:
- SMMUv3: Drop vestigial PREFETCH_ADDR support
- SMMUv3: Elide TLB sync logic for empty gather
- SMMUv3: Fix "Service Failure Mode" handling
- SMMUv2: New Qualcomm compatible string
- Removal of the AMD IOMMU performance counter writeable check
on AMD. It caused long boot delays on some machines and is
only needed to work around an errata on some older (possibly
pre-production) chips. If someone is still hit by this
hardware issue anyway the performance counters will just
return 0.
- Support for targeted invalidations in the AMD IOMMU driver.
Before that the driver only invalidated a single 4k page or the
whole IO/TLB for an address space. This has been extended now
and is mostly useful for emulated AMD IOMMUs.
- Several fixes for the Shared Virtual Memory support in the
Intel VT-d driver
- Mediatek drivers can now be built as modules
- Re-introduction of the forcedac boot option which got lost
when converting the Intel VT-d driver to the common dma-iommu
implementation.
- Extension of the IOMMU device registration interface and
support iommu_ops to be const again when drivers are built as
modules.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmCMEIoACgkQK/BELZcB
GuOu9xAAvg6aR0uHlxvRq6cgNnHN9Ltp5+t3qFYtRRrauY0iOPMO62k0QQli5shX
CGeczD0e59KAZqI0zNJnQn8hMY5dg7XVkFCC5BrSzuCDCtwJZ0N5Tq3pfUlaV1rw
BJf41t79Fd+jp7kn53tu+vRAfYZ3+sLOx/6U3c15pqKRZSkyFWbQllOtD3J5LnLu
1PyPlfiNpMwCajiS7aQbN+fuJ/lKIFeA2MDPOsCBzhbfxiJUqJxZOKAZO3rOjFfK
feTibqQ+3Zz6MPXt9st1cvPpy8jCosv81OY6Knqvxf/oB5q+fEdi2uNrKISonb/t
Fw331oOIwg2A+HOpwC9MN1AumOIqiHSWWENAMk9SlP+TMIWKQ8kZreyI6IEB23dV
+QvP3DVA+CfLwtNY/Zh0IqKh28D+IHlKbpWNU1m+9AUe468mV/MTjfwxr9Yfffhm
LZ6C0DgFdmtqv8jPuDGUOgo3RNeN8bLnUSEHG9gHibA+RKujl5BWDjKkwILqMQTt
Ysdsu8TiNtFIULomizqCpgqEbQfW8TLFvASXCM1VMQ/PDURxvchZPxFDJonYXy+K
z2HGaG3eUE07YrAdRKH69aMVIbmS+sjEhvmi4xZ1Lh7wWcIE2AZVvO8qNb+Ckcp3
4tLPPDksm/iQngnFf6gdgH3qv4rgbzE4+74GXqeANiQCjY9dSJI=
=qF2C
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- Big cleanup of almost unsused parts of the IOMMU API by Christoph
Hellwig. This mostly affects the Freescale PAMU driver.
- New IOMMU driver for Unisoc SOCs
- ARM SMMU Updates from Will:
- Drop vestigial PREFETCH_ADDR support (SMMUv3)
- Elide TLB sync logic for empty gather (SMMUv3)
- Fix "Service Failure Mode" handling (SMMUv3)
- New Qualcomm compatible string (SMMUv2)
- Removal of the AMD IOMMU performance counter writeable check on AMD.
It caused long boot delays on some machines and is only needed to
work around an errata on some older (possibly pre-production) chips.
If someone is still hit by this hardware issue anyway the performance
counters will just return 0.
- Support for targeted invalidations in the AMD IOMMU driver. Before
that the driver only invalidated a single 4k page or the whole IO/TLB
for an address space. This has been extended now and is mostly useful
for emulated AMD IOMMUs.
- Several fixes for the Shared Virtual Memory support in the Intel VT-d
driver
- Mediatek drivers can now be built as modules
- Re-introduction of the forcedac boot option which got lost when
converting the Intel VT-d driver to the common dma-iommu
implementation.
- Extension of the IOMMU device registration interface and support
iommu_ops to be const again when drivers are built as modules.
* tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (84 commits)
iommu: Streamline registration interface
iommu: Statically set module owner
iommu/mediatek-v1: Add error handle for mtk_iommu_probe
iommu/mediatek-v1: Avoid build fail when build as module
iommu/mediatek: Always enable the clk on resume
iommu/fsl-pamu: Fix uninitialized variable warning
iommu/vt-d: Force to flush iotlb before creating superpage
iommu/amd: Put newline after closing bracket in warning
iommu/vt-d: Fix an error handling path in 'intel_prepare_irq_remapping()'
iommu/vt-d: Fix build error of pasid_enable_wpe() with !X86
iommu/amd: Remove performance counter pre-initialization test
Revert "iommu/amd: Fix performance counter initialization"
iommu/amd: Remove duplicate check of devid
iommu/exynos: Remove unneeded local variable initialization
iommu/amd: Page-specific invalidations for more than one page
iommu/arm-smmu-v3: Remove the unused fields for PREFETCH_CONFIG command
iommu/vt-d: Avoid unnecessary cache flush in pasid entry teardown
iommu/vt-d: Invalidate PASID cache when root/context entry changed
iommu/vt-d: Remove WO permissions on second-level paging entries
iommu/vt-d: Report the right page fault address
...
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability enumeration method
introduced on the latest Intel platforms. This table is in a well-defined PCI
namespace location and is read via MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter blocks, but
fancier counters still need to be enumerated explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
cores.
The CPU-side feature set is entirely symmetrical - but on the PMU side there's
core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The immediate motivation
is to support low-overhead sampling-based race detection for user-space code. The
feature consists of the following main changes:
- Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
inheritance of events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the new field can be used
to introduce support for other types of metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
goUMOL/D0lg=
=NhQ7
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline how
one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery around
selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack
ops. Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
=bm4S
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
+HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
/uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
=bO1i
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
The 64 bit value read from MSR_ARCH_PERFMON_FIXED_CTR_CTRL is being
bit-wise masked with the value (0x03 << i*4). However, the shifted value
is evaluated using 32 bit arithmetic, so will UB when i > 8. Fix this
by making 0x03 a ULL so that the shift is performed using 64 bit
arithmetic.
This makes the arithmetic internally consistent and preparers for the
day when hardware provides 8<num_fixed_counters<16.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210420142907.382417-1-colin.king@canonical.com
The only stepping of Broadwell Xeon parts is stepping 1. Fix the
relevant isolation_ucodes[] entry, which previously enumerated
stepping 2.
Although the original commit was characterized as an optimization, it
is also a workaround for a correctness issue.
If a PMI arrives between kvm's call to perf_guest_get_msrs() and the
subsequent VM-entry, a stale value for the IA32_PEBS_ENABLE MSR may be
restored at the next VM-exit. This is because, unbeknownst to kvm, PMI
throttling may clear bits in the IA32_PEBS_ENABLE MSR. CPUs with "PEBS
isolation" don't suffer from this issue, because perf_guest_get_msrs()
doesn't report the IA32_PEBS_ENABLE value.
Fixes: 9b545c04abd4f ("perf/x86/kvm: Avoid unnecessary work in guest filtering")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Peter Shier <pshier@google.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210422001834.1748319-1-jmattson@google.com
There may be a kernel panic on the Haswell server and the Broadwell
server, if the snbep_pci2phy_map_init() return error.
The uncore_extra_pci_dev[HSWEP_PCI_PCU_3] is used in the cpu_init() to
detect the existence of the SBOX, which is a MSR type of PMON unit.
The uncore_extra_pci_dev is allocated in the uncore_pci_init(). If the
snbep_pci2phy_map_init() returns error, perf doesn't initialize the
PCI type of the PMON units, so the uncore_extra_pci_dev will not be
allocated. But perf may continue initializing the MSR type of PMON
units. A null dereference kernel panic will be triggered.
The sockets in a Haswell server or a Broadwell server are identical.
Only need to detect the existence of the SBOX once.
Current perf probes all available PCU devices and stores them into the
uncore_extra_pci_dev. It's unnecessary.
Use the pci_get_device() to replace the uncore_extra_pci_dev. Only
detect the existence of the SBOX on the first available PCU device once.
Factor out hswep_has_limit_sbox(), since the Haswell server and the
Broadwell server uses the same way to detect the existence of the SBOX.
Add some macros to replace the magic number.
Fixes: 5306c31c5733 ("perf/x86/uncore/hsw-ep: Handle systems with only two SBOXes")
Reported-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lkml.kernel.org/r/1618521764-100923-1-git-send-email-kan.liang@linux.intel.com
Compared with the Rocket Lake, the CORE C1 Residency Counter is added
for Alder Lake, but the CORE C3 Residency Counter is removed. Other
counters are the same.
Create a new adl_cstates for Alder Lake. Update the comments
accordingly.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-25-git-send-email-kan.liang@linux.intel.com
PPERF and SMI_COUNT MSRs are also supported on Alder Lake.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-24-git-send-email-kan.liang@linux.intel.com
The uncore subsystem for Alder Lake is similar to the previous Tiger
Lake.
The difference includes:
- New MSR addresses for global control, fixed counters, CBOX and ARB.
Add a new adl_uncore_msr_ops for uncore operations.
- Add a new threshold field for CBOX.
- New PCIIDs for IMC devices.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-23-git-send-email-kan.liang@linux.intel.com
Current Hardware events and Hardware cache events have special perf
types, PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE. The two types don't
pass the PMU type in the user interface. For a hybrid system, the perf
subsystem doesn't know which PMU the events belong to. The first capable
PMU will always be assigned to the events. The events never get a chance
to run on the other capable PMUs.
Extend the two types to become PMU aware types. The PMU type ID is
stored at attr.config[63:32].
Add a new PMU capability, PERF_PMU_CAP_EXTENDED_HW_TYPE, to indicate a
PMU which supports the extended PERF_TYPE_HARDWARE and
PERF_TYPE_HW_CACHE.
The PMU type is only required when searching a specific PMU. The PMU
specific codes will only be interested in the 'real' config value, which
is stored in the low 32 bit of the event->attr.config. Update the
event->attr.config in the generic code, so the PMU specific codes don't
need to calculate it separately.
If a user specifies a PMU type, but the PMU doesn't support the extended
type, error out.
If an event cannot be initialized in a PMU specified by a user, error
out immediately. Perf should not try to open it on other PMUs.
The new PMU capability is only set for the X86 hybrid PMUs for now.
Other architectures, e.g., ARM, may need it as well. The support on ARM
may be implemented later separately.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-22-git-send-email-kan.liang@linux.intel.com
Alder Lake Hybrid system has two different types of core, Golden Cove
core and Gracemont core. The Golden Cove core is registered to
"cpu_core" PMU. The Gracemont core is registered to "cpu_atom" PMU.
The difference between the two PMUs include:
- Number of GP and fixed counters
- Events
- The "cpu_core" PMU supports Topdown metrics.
The "cpu_atom" PMU supports PEBS-via-PT.
The "cpu_core" PMU is similar to the Sapphire Rapids PMU, but without
PMEM.
The "cpu_atom" PMU is similar to Tremont, but with different events,
event_constraints, extra_regs and number of counters.
The mem-loads AUX event workaround only applies to the Golden Cove core.
Users may disable all CPUs of the same CPU type on the command line or
in the BIOS. For this case, perf still register a PMU for the CPU type
but the CPU mask is 0.
Current caps/pmu_name is usually the microarch codename. Assign the
"alderlake_hybrid" to the caps/pmu_name of both PMUs to indicate the
hybrid Alder Lake microarchitecture.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-21-git-send-email-kan.liang@linux.intel.com
Implement filter_match callback for X86, which check whether an event is
schedulable on the current CPU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-20-git-send-email-kan.liang@linux.intel.com
The attribute_group for Hybrid PMUs should be different from the
previous
cpu PMU. For example, cpumask is required for a Hybrid PMU. The PMU type
should be included in the event and format attribute.
Add hybrid_attr_update for the Hybrid PMU.
Check the PMU type in is_visible() function. Only display the event or
format for the matched Hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-19-git-send-email-kan.liang@linux.intel.com
Hybrid PMUs have different events and formats. In theory, Hybrid PMU
specific attributes should be maintained in the dedicated struct
x86_hybrid_pmu, but it wastes space because the events and formats are
similar among Hybrid PMUs.
To reduce duplication, all hybrid PMUs will share a group of attributes
in the following patch. To distinguish an attribute from different
Hybrid PMUs, a PMU aware attribute structure is introduced. A PMU type
is required for the attribute structure. The type is internal usage. It
is not visible in the sysfs API.
Hybrid PMUs may support the same event name, but with different event
encoding, e.g., the mem-loads event on an Atom PMU has different event
encoding from a Core PMU. It brings issue if two attributes are
created for them. Current sysfs_update_group finds an attribute by
searching the attr name (aka event name). If two attributes have the
same event name, the first attribute will be replaced.
To address the issue, only one attribute is created for the event. The
event_str is extended and stores event encodings from all Hybrid PMUs.
Each event encoding is divided by ";". The order of the event encodings
must follow the order of the hybrid PMU index. The event_str is internal
usage as well. When a user wants to show the attribute of a Hybrid PMU,
only the corresponding part of the string is displayed.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-18-git-send-email-kan.liang@linux.intel.com
Different hybrid PMUs have different PMU capabilities and events. Perf
should registers a dedicated PMU for each of them.
To check the X86 event, perf has to go through all possible hybrid pmus.
All the hybrid PMUs are registered at boot time. Before the
registration, add intel_pmu_check_hybrid_pmus() to check and update the
counters information, the event constraints, the extra registers and the
unique capabilities for each hybrid PMUs.
Postpone the display of the PMU information and HW check to
CPU_STARTING, because the boot CPU is the only online CPU in the
init_hw_perf_events(). Perf doesn't know the availability of the other
PMUs. Perf should display the PMU information only if the counters of
the PMU are available.
One type of CPUs may be all offline. For this case, users can still
observe the PMU in /sys/devices, but its CPU mask is 0.
All hybrid PMUs have capability PERF_PMU_CAP_HETEROGENEOUS_CPUS.
The PMU name for hybrid PMUs will be "cpu_XXX", which will be assigned
later in a separated patch.
The PMU type id for the core PMU is still PERF_TYPE_RAW. For the other
hybrid PMUs, the PMU type id is not hard code.
The event->cpu must be compatitable with the supported CPUs of the PMU.
Add a check in the x86_pmu_event_init().
The events in a group must be from the same type of hybrid PMU.
The fake cpuc used in the validation must be from the supported CPU of
the event->pmu.
Perf may not retrieve a valid core type from get_this_hybrid_cpu_type().
For example, ADL may have an alternative configuration. With that
configuration, Perf cannot retrieve the core type from the CPUID leaf
0x1a. Add a platform specific get_hybrid_cpu_type(). If the generic way
fails, invoke the platform specific get_hybrid_cpu_type().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-17-git-send-email-kan.liang@linux.intel.com
The PMU capabilities are different among hybrid PMUs. Perf should dump
the PMU capabilities information for each hybrid PMU.
Factor out x86_pmu_show_pmu_cap() which shows the PMU capabilities
information. The function will be reused later when registering a
dedicated hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-16-git-send-email-kan.liang@linux.intel.com
The temporary pmu assignment in event_init is unnecessary.
The assignment was introduced by commit 8113070d6639 ("perf_events:
Add fast-path to the rescheduling code"). At that time, event->pmu is
not assigned yet when initializing an event. The assignment is required.
However, from commit 7e5b2a01d2ca ("perf: provide PMU when initing
events"), the event->pmu is provided before event_init is invoked.
The temporary pmu assignment in event_init should be removed.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-15-git-send-email-kan.liang@linux.intel.com
Each Hybrid PMU has to check and update its own extra registers before
registration.
The intel_pmu_check_extra_regs will be reused later to check the extra
registers of each hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-14-git-send-email-kan.liang@linux.intel.com
Each Hybrid PMU has to check and update its own event constraints before
registration.
The intel_pmu_check_event_constraints will be reused later to check
the event constraints of each hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-13-git-send-email-kan.liang@linux.intel.com