IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Affinity managed interrupts should keep their assigned affinity accross CPU
hotplug. To avoid magic hackery in device drivers, the core code shall
manage them transparently and set these interrupts into a managed shutdown
state when the last CPU of the assigned affinity mask goes offline. The
interrupt will be restarted when one of the CPUs in the assigned affinity
mask comes back online.
Add the necessary logic to irq_startup(). If an interrupt is requested and
started up, the code checks whether it is affinity managed and if so, it
checks whether a CPU in the interrupts affinity mask is online. If not, it
puts the interrupt into managed shutdown state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235447.189851170@linutronix.de
In order to handle managed interrupts gracefully on irq_startup() so they
won't lose their assigned affinity, it's necessary to allow startups which
keep the interrupts in managed shutdown state, if none of the assigend CPUs
is online. This allows drivers to request interrupts w/o the CPUs being
online, which avoid online/offline churn in drivers.
Add a force argument which can override that decision and let only
request_irq() and enable_irq() allow the managed shutdown
handling. enable_irq() is required, because the interrupt might be
requested with IRQF_NOAUTOEN and enable_irq() invokes irq_startup() which
would then wreckage the assignment again. All other callers force startup
and potentially break the assigned affinity.
No functional change as this only adds the function argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235447.112094565@linutronix.de
Affinity managed interrupts should keep their assigned affinity accross CPU
hotplug. To avoid magic hackery in device drivers, the core code shall
manage them transparently. This will set these interrupts into a managed
shutdown state when the last CPU of the assigned affinity mask goes
offline. The interrupt will be restarted when one of the CPUs in the
assigned affinity mask comes back online.
Introduce the necessary state flag and the accessor functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.954523476@linutronix.de
There is currently no way to evaluate the effective affinity mask of a
given interrupt. Many irq chips allow only a single target CPU or a subset
of CPUs in the affinity mask.
Updating the mask at the time of setting the affinity to the subset would
be counterproductive because information for cpu hotplug about assigned
interrupt affinities gets lost. On CPU hotplug it's also pointless to force
migrate an interrupt, which is not targeted at the CPU effectively. But
currently the information is not available.
Provide a seperate mask to be updated by the irq_chip->irq_set_affinity()
implementations. Implement the read only proc files so the user can see the
effective mask as well w/o trying to deduce it from /proc/interrupts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.247834245@linutronix.de
The startup vs. setaffinity ordering of interrupts depends on the
IRQF_NOAUTOEN flag. Chained interrupts are not getting any affinity
assignment at all.
A regular interrupt is started up and then the affinity is set. A
IRQF_NOAUTOEN marked interrupt is not started up, but the affinity is set
nevertheless.
Move the affinity setup to startup_irq() so the ordering is always the same
and chained interrupts get the proper default affinity assigned as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235445.020534783@linutronix.de
If an CPU goes offline, the interrupts are migrated away, but a eventually
pending interrupt move, which has not yet been made effective is kept
pending even if the outgoing CPU is the sole target of the pending affinity
mask. What's worse is, that the pending affinity mask is discarded even if
it would contain a valid subset of the online CPUs.
Use the newly introduced helper to:
- Discard a pending move when the outgoing CPU is the only target in the
pending mask.
- Use the pending mask instead of the affinity mask to find a valid target
for the CPU if the pending mask intersects with the online CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.774068557@linutronix.de
If an CPU goes offline, the interrupts are migrated away, but a eventually
pending interrupt move, which has not yet been made effective is kept
pending even if the outgoing CPU is the sole target of the pending affinity
mask. What's worse is, that the pending affinity mask is discarded even if
it would contain a valid subset of the online CPUs.
Implement a helper function which allows to avoid these issues.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.691345468@linutronix.de
Debugging (hierarchical) interupt domains is tedious as there is no
information about the hierarchy and no information about states of
interrupts in the various domain levels.
Add a debugfs directory 'irq' and subdirectories 'domains' and 'irqs'.
The domains directory contains the domain files. The content is information
about the domain. If the domain is part of a hierarchy then the parent
domains are printed as well.
# ls /sys/kernel/debug/irq/domains/
default INTEL-IR-2 INTEL-IR-MSI-2 IO-APIC-IR-2 PCI-MSI
DMAR-MSI INTEL-IR-3 INTEL-IR-MSI-3 IO-APIC-IR-3 unknown-1
INTEL-IR-0 INTEL-IR-MSI-0 IO-APIC-IR-0 IO-APIC-IR-4 VECTOR
INTEL-IR-1 INTEL-IR-MSI-1 IO-APIC-IR-1 PCI-HT
# cat /sys/kernel/debug/irq/domains/VECTOR
name: VECTOR
size: 0
mapped: 216
flags: 0x00000041
# cat /sys/kernel/debug/irq/domains/IO-APIC-IR-0
name: IO-APIC-IR-0
size: 24
mapped: 19
flags: 0x00000041
parent: INTEL-IR-3
name: INTEL-IR-3
size: 65536
mapped: 167
flags: 0x00000041
parent: VECTOR
name: VECTOR
size: 0
mapped: 216
flags: 0x00000041
Unfortunately there is no per cpu information about the VECTOR domain (yet).
The irqs directory contains detailed information about mapped interrupts.
# cat /sys/kernel/debug/irq/irqs/3
handler: handle_edge_irq
status: 0x00004000
istate: 0x00000000
ddepth: 1
wdepth: 0
dstate: 0x01018000
IRQD_IRQ_DISABLED
IRQD_SINGLE_TARGET
IRQD_MOVE_PCNTXT
node: 0
affinity: 0-143
effectiv: 0
pending:
domain: IO-APIC-IR-0
hwirq: 0x3
chip: IR-IO-APIC
flags: 0x10
IRQCHIP_SKIP_SET_WAKE
parent:
domain: INTEL-IR-3
hwirq: 0x20000
chip: INTEL-IR
flags: 0x0
parent:
domain: VECTOR
hwirq: 0x3
chip: APIC
flags: 0x0
This was developed to simplify the debugging of the managed affinity
changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.537566163@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In order to provide proper debug interface it's required to have domain
names available when the domain is added. Non fwnode based architectures
like x86 have no way to do so.
It's not possible to use domain ops or host data for this as domain ops
might be the same for several instances, but the names have to be unique.
Extend the irqchip fwnode to allow transporting the domain name. If no node
is supplied, create a 'unknown-N' placeholder.
Warn if an invalid node is supplied and treat it like no node. This happens
e.g. with i2 devices on x86 which hand in an ACPI type node which has no
interface for retrieving the name.
[ Folded a fix from Marc to make DT name parsing work ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.588784933@linutronix.de