45181 Commits

Author SHA1 Message Date
Yan Zhao
c9f65a3f2d KVM: VMX: drop IPAT in memtype when CD=1 for KVM_X86_QUIRK_CD_NW_CLEARED
For KVM_X86_QUIRK_CD_NW_CLEARED is on, remove the IPAT (ignore PAT) bit in
EPT memory types when cache is disabled and non-coherent DMA are present.

To correctly emulate CR0.CD=1, UC + IPAT are required as memtype in EPT.
However, as with commit fb279950ba02 ("KVM: vmx: obey
KVM_QUIRK_CD_NW_CLEARED"), WB + IPAT are now returned to workaround a BIOS
issue that guest MTRRs are enabled too late. Without this workaround, a
super slow guest boot-up is expected during the pre-guest-MTRR-enabled
period due to UC as the effective memory type for all guest memory.

Absent emulating CR0.CD=1 with UC, it makes no sense to set IPAT when KVM
is honoring the guest memtype.
Removing the IPAT bit in this patch allows effective memory type to honor
PAT values as well, as WB is the weakest memtype. It means if a guest
explicitly claims UC as the memtype in PAT, the effective memory is UC
instead of previous WB. If, for some unknown reason, a guest meets a slow
boot-up issue with the removal of IPAT, it's desired to fix the blamed PAT
in the guest.

Returning guest MTRR type as if CR0.CD=0 is also not preferred because
KVMs ABI for the quirk also requires KVM to force WB memtype regardless of
guest MTRRs to workaround the slow guest boot-up issue.

In the future, honoring guest PAT will also allow KVM to more precisely
zap SPTEs when the effective memtype changes.  E.g. by not forcing WB when
CR0.CD=1, instead of zapping SPTEs when guest MTRRs change, KVM can skip
MTRR-induced zaps if CR0.CD=1 and zap SPTEs for non-WB MTRR ranges when
CR0.CD is toggled (WB MTRR SPTEs can be kept because they're WB regardless
of CR0.CD).

The change of removing IPAT has been verified with normal boot-up time
on old OVMF of commit c9e5618f84b0cb54a9ac2d7604f7b7e7859b45a7 as well,
dated back to Apr 14 2015.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065326.20557-1-yan.y.zhao@intel.com
[sean: massage changelog to apply patch without full series]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-10 17:04:42 -07:00
Yan Zhao
362ff6dca5 KVM: x86/mmu: Zap KVM TDP when noncoherent DMA assignment starts/stops
Zap KVM TDP when noncoherent DMA assignment starts (noncoherent dma count
transitions from 0 to 1) or stops (noncoherent dma count transitions
from 1 to 0). Before the zap, test if guest MTRR is to be honored after
the assignment starts or was honored before the assignment stops.

When there's no noncoherent DMA device, EPT memory type is
((MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT)

When there're noncoherent DMA devices, EPT memory type needs to honor
guest CR0.CD and MTRR settings.

So, if noncoherent DMA count transitions between 0 and 1, EPT leaf entries
need to be zapped to clear stale memory type.

This issue might be hidden when the device is statically assigned with
VFIO adding/removing MMIO regions of the noncoherent DMA devices for
several times during guest boot, and current KVM MMU will call
kvm_mmu_zap_all_fast() on the memslot removal.

But if the device is hot-plugged, or if the guest has mmio_always_on for
the device, the MMIO regions of it may only be added for once, then there's
no path to do the EPT entries zapping to clear stale memory type.

Therefore do the EPT zapping when noncoherent assignment starts/stops to
ensure stale entries cleaned away.

Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065223.20432-1-yan.y.zhao@intel.com
[sean: fix misspelled words in comment and changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-10 17:04:38 -07:00
Joel Granados
ecd5d66383 x86/vdso: Remove now superfluous sentinel element from ctl_table array
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

Remove sentinel element from abi_table2. This removal is safe because
register_sysctl implicitly uses ARRAY_SIZE() in addition to checking for
the sentinel.

Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-10-10 15:22:02 -07:00
Joel Granados
83e291d3f5 arch/x86: Remove now superfluous sentinel elem from ctl_table arrays
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

Remove sentinel element from sld_sysctl and itmt_kern_table. This
removal is safe because register_sysctl_init and register_sysctl
implicitly use the array size in addition to checking for the sentinel.

Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-10-10 15:22:02 -07:00
Linus Torvalds
b711538a40 hyperv-fixes for v6.6-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmUk4fcTHHdlaS5saXVA
 a2VybmVsLm9yZwAKCRB2FHBfkEGgXhhqCACWsBYTB0EJ3oMJnzfnHeuN418ZDx/O
 AL0k0O5MT6roEFmvGUhzJ/jsoxL+W+Wj3aFwzReyOSQpgjTTF/Ja26LPvxRzDxKi
 sZPojnR2ykW31l7y+eh1p9qSM/aYvTMDP5zO7L1fBnWMAGMv8w8RezpCJ7bh4BgA
 FTMZZrvKYVT9hCGkYqKUZGBtDTPZ56WE+MCiRxTWQvF+4QKaIff0tpno8V7203bE
 D/b4+Ouh19RXFTC5dUq/0JtAdV2AadrPHnScUupc8Hk/MMFiU5CzvH4bAqiwXBcU
 YqqlD3kZbIqqbKE93+03jvyrRDvDGlq+rpA3KMk5MBAfrkM4DytpWvMs
 =SVq1
 -----END PGP SIGNATURE-----

Merge tag 'hyperv-fixes-signed-20231009' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux

Pull hyperv fixes from Wei Liu:

 - fixes for Hyper-V VTL code (Saurabh Sengar and Olaf Hering)

 - fix hv_kvp_daemon to support keyfile based connection profile
   (Shradha Gupta)

* tag 'hyperv-fixes-signed-20231009' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
  hv/hv_kvp_daemon:Support for keyfile based connection profile
  hyperv: reduce size of ms_hyperv_info
  x86/hyperv: Add common print prefix "Hyper-V" in hv_init
  x86/hyperv: Remove hv_vtl_early_init initcall
  x86/hyperv: Restrict get_vtl to only VTL platforms
2023-10-10 11:01:21 -07:00
Thomas Gleixner
48525fd1ea x86/cpu: Provide debug interface
Provide debug files which dump the topology related information of
cpuinfo_x86. This is useful to validate the upcoming conversion of the
topology evaluation for correctness or bug compatibility.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.353191313@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
90781f0c4c x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
Per CPU cpuinfo is used to persist the logical package and die IDs. That's
really not the right place simply because cpuinfo is subject to be
reinitialized when a CPU goes through an offline/online cycle.

This works by chance today, but that's far from correct and neither obvious
nor documented.

Add a per cpu datastructure which persists those logical IDs, which allows
to cleanup the CPUID evaluation code.

This is a temporary workaround until the larger topology management is in
place, which makes all of this logical management mechanics obsolete.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.292947071@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
db4a4086a2 x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.233274223@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
59f7928cd4 x86/apic: Use u32 for [gs]et_apic_id()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.172569282@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
01ccf9bbd2 x86/apic: Use u32 for phys_pkg_id()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width even if that callback going to be removed soonish.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.113097126@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
8aa2a4178d x86/apic: Use u32 for cpu_present_to_apicid()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width and fixup a few related usage sites for consistency sake.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.054064391@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
5d376b8fb1 x86/apic: Use u32 for check_apicid_used()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width and move the default implementation to local.h as there are
no users outside the apic directory.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.981956102@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
4705243d23 x86/apic: Use u32 for APIC IDs in global data
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width and fixup the most obvious usage sites of that.

The APIC callbacks will be addressed separately.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
9ff4275bc8 x86/apic: Use BAD_APICID consistently
APIC ID checks compare with BAD_APICID all over the place, but some
initializers and some code which fiddles with global data structure use
-1[U] instead. That simply cannot work at all.

Fix it up and use BAD_APICID consistently all over the place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.862835121@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
6e29032340 x86/cpu: Move cpu_l[l2]c_id into topology info
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.

Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.

This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
22dc963162 x86/cpu: Move logical package and die IDs into topology info
Yet another topology related data pair. Rename logical_proc_id to
logical_pkg_id so it fits the common naming conventions.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
594957d723 x86/cpu: Remove pointless evaluation of x86_coreid_bits
cpuinfo_x86::x86_coreid_bits is only used by the AMD numa topology code. No
point in evaluating it on non AMD systems.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.687588373@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
e3c0c5d52a x86/cpu: Move cu_id into topology info
No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.628405546@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
e95256335d x86/cpu: Move cpu_core_id into topology info
Rename it to core_id and stick it to the other ID fields.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
8a169ed40f x86/cpu: Move cpu_die_id into topology info
Move the next member.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
02fb601d27 x86/cpu: Move phys_proc_id into topology info
Rename it to pkg_id which is the terminology used in the kernel.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
b9655e702d x86/cpu: Encapsulate topology information in cpuinfo_x86
The topology related information is randomly scattered across cpuinfo_x86.

Create a new structure cpuinfo_topo and move in a first step initial_apicid
and apicid into it.

Aside of being better readable this is in preparation for replacing the
horribly fragile CPU topology evaluation code further down the road.

Consolidate APIC ID fields to u32 as that represents the hardware type.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
965e05ff8a x86/apic: Fake primary thread mask for XEN/PV
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.

This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.

This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So cpu_smt_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.

This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.

This happens because cpu_smt_control is set to CPU_SMT_NOT_SUPPORTED which
causes cpu_bootable() to evaluate the unpopulated primary thread mask with
the conclusion that all non-boot CPUs are not valid to be plugged.

The core code has already been made more robust against this kind of fail,
but the primary thread mask really wants to be populated to avoid other
issues all over the place.

Just fake the mask by pretending that all XEN/PV vCPUs are primary threads,
which is consistent because all of XEN/PVs topology is fake or non-existent.

Fixes: 6a4d2657e048 ("x86/smp: Provide topology_is_primary_thread()")
Fixes: f54d4434c281 ("x86/apic: Provide cpu_primary_thread mask")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.210011520@linutronix.de
2023-10-10 14:38:17 +02:00
Pu Wen
ee545b94d3 x86/cpu/hygon: Fix the CPU topology evaluation for real
Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.

Fixes: e0ceeae708ce ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
2023-10-10 14:38:16 +02:00
Like Xu
bf328e22e4 KVM: x86: Don't sync user-written TSC against startup values
The legacy API for setting the TSC is fundamentally broken, and only
allows userspace to set a TSC "now", without any way to account for
time lost between the calculation of the value, and the kernel eventually
handling the ioctl.

To work around this, KVM has a hack which, if a TSC is set with a value
which is within a second's worth of the last TSC "written" to any vCPU in
the VM, assumes that userspace actually intended the two TSC values to be
in sync and adjusts the newly-written TSC value accordingly.

Thus, when a VMM restores a guest after suspend or migration using the
legacy API, the TSCs aren't necessarily *right*, but at least they're
in sync.

This trick falls down when restoring a guest which genuinely has been
running for less time than the 1 second of imprecision KVM allows for in
in the legacy API.  On *creation*, the first vCPU starts its TSC counting
from zero, and the subsequent vCPUs synchronize to that.  But then when
the VMM tries to restore a vCPU's intended TSC, because the VM has been
alive for less than 1 second and KVM's default TSC value for new vCPU's is
'0', the intended TSC is within a second of the last "written" TSC and KVM
incorrectly adjusts the intended TSC in an attempt to synchronize.

But further hacks can be piled onto KVM's existing hackish ABI, and
declare that the *first* value written by *userspace* (on any vCPU)
should not be subject to this "correction", i.e. KVM can assume that the
first write from userspace is not an attempt to sync up with TSC values
that only come from the kernel's default vCPU creation.

To that end: Add a flag, kvm->arch.user_set_tsc, protected by
kvm->arch.tsc_write_lock, to record that a TSC for at least one vCPU in
the VM *has* been set by userspace, and make the 1-second slop hack only
trigger if user_set_tsc is already set.

Note that userspace can explicitly request a *synchronization* of the
TSC by writing zero. For the purpose of user_set_tsc, an explicit
synchronization counts as "setting" the TSC, i.e. if userspace then
subsequently writes an explicit non-zero value which happens to be within
1 second of the previous value, the new value will be "corrected".  This
behavior is deliberate, as treating explicit synchronization as "setting"
the TSC preserves KVM's existing behaviour inasmuch as possible (KVM
always applied the 1-second "correction" regardless of whether the write
came from userspace vs. the kernel).

Reported-by: Yong He <alexyonghe@tencent.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217423
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Tested-by: Yong He <alexyonghe@tencent.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231008025335.7419-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 17:29:52 -07:00
Yan Zhao
9a3768191d KVM: x86/mmu: Zap SPTEs on MTRR update iff guest MTRRs are honored
When guest MTRRs are updated, zap SPTEs and do zap range calcluation if and
only if KVM's MMU is honoring guest MTRRs, which is the only time that KVM
incorporates the guest's MTRR type into the final memtype.

Suggested-by: Chao Gao <chao.gao@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065156.20375-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 14:35:14 -07:00
Yan Zhao
7a18c7c2b6 KVM: x86/mmu: Zap SPTEs when CR0.CD is toggled iff guest MTRRs are honored
Zap SPTEs when CR0.CD is toggled if and only if KVM's MMU is honoring
guest MTRRs, which is the only time that KVM incorporates the guest's
CR0.CD into the final memtype.

Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065122.20315-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 14:35:13 -07:00
Yan Zhao
1affe455d6 KVM: x86/mmu: Add helpers to return if KVM honors guest MTRRs
Add helpers to check if KVM honors guest MTRRs instead of open coding the
logic in kvm_tdp_page_fault().  Future fixes and cleanups will also need
to determine if KVM should honor guest MTRRs, e.g. for CR0.CD toggling and
and non-coherent DMA transitions.

Provide an inner helper, __kvm_mmu_honors_guest_mtrrs(), so that KVM can
check if guest MTRRs were honored when stopping non-coherent DMA.

Note, there is no need to explicitly check that TDP is enabled, KVM clears
shadow_memtype_mask when TDP is disabled, i.e. it's non-zero if and only
if EPT is enabled.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065006.20201-1-yan.y.zhao@intel.com
Link: https://lore.kernel.org/r/20230714065043.20258-1-yan.y.zhao@intel.com
[sean: squash into a one patch, drop explicit TDP check massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 14:34:57 -07:00
Jim Mattson
8b0e00fba9 KVM: x86: Virtualize HWCR.TscFreqSel[bit 24]
On certain CPUs, Linux guests expect HWCR.TscFreqSel[bit 24] to be
set. If it isn't set, they complain:
	[Firmware Bug]: TSC doesn't count with P0 frequency!

Allow userspace (and the guest) to set this bit in the virtual HWCR to
eliminate the above complaint.

Allow the guest to write the bit even though its is R/O on *some* CPUs.
Like many bits in HWRC, TscFreqSel is not architectural at all. On Family
10h[1], it was R/W and powered on as 0. In Family 15h, one of the "changes
relative to Family 10H Revision D processors[2] was:

  • MSRC001_0015 [Hardware Configuration (HWCR)]:
  • Dropped TscFreqSel; TSC can no longer be selected to run at NB P0-state.

Despite the "Dropped" above, that same document later describes
HWCR[bit 24] as follows:

  TscFreqSel: TSC frequency select. Read-only. Reset: 1. 1=The TSC
  increments at the P0 frequency

If the guest clears the bit, the worst case scenario is the guest will be
no worse off than it is today, e.g. the whining may return after a guest
clears the bit and kexec()'s into a new kernel.

[1] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/31116.pdf
[2] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf,
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230929230246.1954854-3-jmattson@google.com
[sean: elaborate on why the bit is writable by the guest]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 12:36:16 -07:00
Jim Mattson
598a790fc2 KVM: x86: Allow HWCR.McStatusWrEn to be cleared once set
When HWCR is set to 0, store 0 in vcpu->arch.msr_hwcr.

Fixes: 191c8137a939 ("x86/kvm: Implement HWCR support")
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230929230246.1954854-2-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 12:36:15 -07:00
Uros Bizjak
636d6a8b85 locking/atomic/x86: Introduce arch_sync_try_cmpxchg()
Introduce the arch_sync_try_cmpxchg() macro to improve code using
sync_try_cmpxchg() locking primitive. The new definitions use existing
__raw_try_cmpxchg() macros, but use its own "lock; " prefix.

The new macros improve assembly of the cmpxchg loop in
evtchn_fifo_unmask() from drivers/xen/events/events_fifo.c from:

 57a:	85 c0                	test   %eax,%eax
 57c:	78 52                	js     5d0 <...>
 57e:	89 c1                	mov    %eax,%ecx
 580:	25 ff ff ff af       	and    $0xafffffff,%eax
 585:	c7 04 24 00 00 00 00 	movl   $0x0,(%rsp)
 58c:	81 e1 ff ff ff ef    	and    $0xefffffff,%ecx
 592:	89 4c 24 04          	mov    %ecx,0x4(%rsp)
 596:	89 44 24 08          	mov    %eax,0x8(%rsp)
 59a:	8b 74 24 08          	mov    0x8(%rsp),%esi
 59e:	8b 44 24 04          	mov    0x4(%rsp),%eax
 5a2:	f0 0f b1 32          	lock cmpxchg %esi,(%rdx)
 5a6:	89 04 24             	mov    %eax,(%rsp)
 5a9:	8b 04 24             	mov    (%rsp),%eax
 5ac:	39 c1                	cmp    %eax,%ecx
 5ae:	74 07                	je     5b7 <...>
 5b0:	a9 00 00 00 40       	test   $0x40000000,%eax
 5b5:	75 c3                	jne    57a <...>
 <...>

to:

 578:	a9 00 00 00 40       	test   $0x40000000,%eax
 57d:	74 2b                	je     5aa <...>
 57f:	85 c0                	test   %eax,%eax
 581:	78 40                	js     5c3 <...>
 583:	89 c1                	mov    %eax,%ecx
 585:	25 ff ff ff af       	and    $0xafffffff,%eax
 58a:	81 e1 ff ff ff ef    	and    $0xefffffff,%ecx
 590:	89 4c 24 04          	mov    %ecx,0x4(%rsp)
 594:	89 44 24 08          	mov    %eax,0x8(%rsp)
 598:	8b 4c 24 08          	mov    0x8(%rsp),%ecx
 59c:	8b 44 24 04          	mov    0x4(%rsp),%eax
 5a0:	f0 0f b1 0a          	lock cmpxchg %ecx,(%rdx)
 5a4:	89 44 24 04          	mov    %eax,0x4(%rsp)
 5a8:	75 30                	jne    5da <...>
 <...>
 5da:	8b 44 24 04          	mov    0x4(%rsp),%eax
 5de:	eb 98                	jmp    578 <...>

The new code removes move instructions from 585: 5a6: and 5a9:
and the compare from 5ac:. Additionally, the compiler assumes that
cmpxchg success is more probable and optimizes code flow accordingly.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
2023-10-09 18:14:25 +02:00
Ingo Molnar
fdb8b7a1af Linux 6.6-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmUjFeceHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGNCAH/RDI8G44DCV9Ps5U
 rl/FMf6iLUxU6fCS3Wwe8vtppLjPP7Y16AH5HKMumoDIqTfh9ZAUVKhZfT+PTgz3
 /oFXcGzZQLTcdbtH7XK2/zk7N/RI25/rDiCDd1uIJVCNii+hsBKS6Ihc4wXadxaR
 0z3lwoEKp2egeaeqmJWMzJLdjRrYhLs33+SEciVYqTiIvlWsM5QBm/sMvES7V57s
 TXrs5/y7yXtDBZ2PgYNCBRLyBazjqB28x07aQoePOAs6nFXl5N/wWPW/4wirWFHT
 s9LYZlmVo+O+RHWj10ASm/2l+ihgn959ZfRj1VekK2AWU1x/VzSPcuCXKvsrUoa+
 xEjL+vM=
 =efE3
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-rc5' into locking/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-09 18:09:23 +02:00
Sandipan Das
25e5684782 perf/x86/amd/uncore: Add memory controller support
Unified Memory Controller (UMC) events were introduced with Zen 4 as a
part of the Performance Monitoring Version 2 (PerfMonV2) enhancements.
An event is specified using the EventSelect bits and the RdWrMask bits
can be used for additional filtering of read and write requests.

As of now, a maximum of 12 channels of DDR5 are available on each socket
and each channel is controlled by a dedicated UMC. Each UMC, in turn,
has its own set of performance monitoring counters.

Since the MSR address space for the UMC PERF_CTL and PERF_CTR registers
are reused across sockets, uncore groups are created on the basis of
socket IDs. Hence, group exclusivity is mandatory while opening events
so that events for an UMC can only be opened on CPUs which are on the
same socket as the corresponding memory channel.

For each socket, the total number of available UMC counters and active
memory channels are determined from CPUID leaf 0x80000022 EBX and ECX
respectively. Usually, on Zen 4, each UMC has four counters.

MSR assignments are determined on the basis of active UMCs. E.g. if
UMCs 1, 4 and 9 are active for a given socket, then

  * UMC 1 gets MSRs 0xc0010800 to 0xc0010807 as PERF_CTLs and PERF_CTRs
  * UMC 4 gets MSRs 0xc0010808 to 0xc001080f as PERF_CTLs and PERF_CTRs
  * UMC 9 gets MSRs 0xc0010810 to 0xc0010817 as PERF_CTLs and PERF_CTRs

If there are sockets without any online CPUs when the amd_uncore driver
is loaded, UMCs for such sockets will not be discoverable since the
mechanism relies on executing the CPUID instruction on an online CPU
from the socket.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/b25f391205c22733493abec1ed850b71784edc5f.1696425185.git.sandipan.das@amd.com
2023-10-09 16:12:25 +02:00
Sandipan Das
83a43c6221 perf/x86/amd/uncore: Add group exclusivity
In some cases, it may be necessary to restrict opening PMU events to a
subset of CPUs. E.g. Unified Memory Controller (UMC) PMUs are specific
to each active memory channel and the MSR address space for the PERF_CTL
and PERF_CTR registers is reused on each socket. Thus, opening events
for a specific UMC PMU should be restricted to CPUs belonging to the
same socket as that of the UMC. The "cpumask" of the PMU should also
reflect this accordingly.

Uncore PMUs which require this can use the new group attribute in struct
amd_uncore_pmu to set a valid group ID during the scan() phase. Later,
during init(), an uncore context for a CPU will be unavailable if the
group ID does not match.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/937d6d71010a48ea4e069f4904b3116a5f99ecdf.1696425185.git.sandipan.das@amd.com
2023-10-09 16:12:24 +02:00
Sandipan Das
7ef0343855 perf/x86/amd/uncore: Use rdmsr if rdpmc is unavailable
Not all uncore PMUs may support the use of the RDPMC instruction for
reading counters. In such cases, read the count from the corresponding
PERF_CTR register using the RDMSR instruction.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e9d994e32a3fcb39fa59fcf43ab4260d11aba097.1696425185.git.sandipan.das@amd.com
2023-10-09 16:12:24 +02:00
Sandipan Das
07888daa05 perf/x86/amd/uncore: Move discovery and registration
Uncore PMUs have traditionally been registered in the module init path.
This is fine for the existing DF and L3 PMUs since the CPUID information
does not vary across CPUs but not for the memory controller (UMC) PMUs
since information like active memory channels can vary for each socket
depending on how the DIMMs have been physically populated.

To overcome this, the discovery of PMU information using CPUID is moved
to the startup of UNCORE_STARTING. This cannot be done in the startup of
UNCORE_PREP since the hotplug callback does not run on the CPU that is
being brought online.

Previously, the startup of UNCORE_PREP was used for allocating uncore
contexts following which, the startup of UNCORE_STARTING was used to
find and reuse an existing sibling context, if possible. Any unused
contexts were added to a list for reclaimation later during the startup
of UNCORE_ONLINE.

Since all required CPUID info is now available only after the startup of
UNCORE_STARTING has completed, context allocation has been moved to the
startup of UNCORE_ONLINE. Before allocating contexts, the first CPU that
comes online has to take up the additional responsibility of registering
the PMUs. This is a one-time process though. Since sibling discovery now
happens prior to deciding whether a new context is required, there is no
longer a need to track and free up unused contexts.

The teardown of UNCORE_ONLINE and UNCORE_PREP functionally remain the
same.

Overall, the flow of control described above is achieved using the
following handlers for managing uncore PMUs. It is mandatory to define
them for each type of uncore PMU.

  * scan() runs during startup of UNCORE_STARTING and collects PMU info
    using CPUID.

  * init() runs during startup of UNCORE_ONLINE, registers PMUs and sets
    up uncore contexts.

  * move() runs during teardown of UNCORE_ONLINE and migrates uncore
    contexts to a shared sibling, if possible.

  * free() runs during teardown of UNCORE_PREP and frees up uncore
    contexts.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e6c447e48872fcab8452e0dd81b1c9cb09f39eb4.1696425185.git.sandipan.das@amd.com
2023-10-09 16:12:23 +02:00
Sandipan Das
d6389d3ccc perf/x86/amd/uncore: Refactor uncore management
Since struct amd_uncore is used to manage per-cpu contexts, rename it to
amd_uncore_ctx in order to better reflect its purpose. Add a new struct
amd_uncore_pmu to encapsulate all attributes which are shared by per-cpu
contexts for a corresponding PMU. These include the number of counters,
active mask, MSR and RDPMC base addresses, etc. Since the struct pmu is
now embedded, the corresponding amd_uncore_pmu for a given event can be
found by simply using container_of().

Finally, move all PMU-specific code to separate functions. While the
original event management functions continue to provide the base
functionality, all PMU-specific quirks and customizations are applied in
separate functions.

The motivation is to simplify the management of uncore PMUs.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/24b38c49a5dae65d8c96e5d75a2b96ae97aaa651.1696425185.git.sandipan.das@amd.com
2023-10-09 16:12:23 +02:00
Tero Kristo
05276d4831 perf/x86/cstate: Allow reading the package statistics from local CPU
The MSR registers for reading the package residency counters are
available on every CPU of the package. To avoid doing unnecessary SMP
calls to read the values for these from the various CPUs inside a
package, allow reading them from any CPU of the package.

Suggested-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Tero Kristo <tero.kristo@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230912124432.3616761-2-tero.kristo@linux.intel.com
2023-10-09 16:12:22 +02:00
Joerg Roedel
b9cb9c4558 x86/sev: Check IOBM for IOIO exceptions from user-space
Check the IO permission bitmap (if present) before emulating IOIO #VC
exceptions for user-space. These permissions are checked by hardware
already before the #VC is raised, but due to the VC-handler decoding
race it needs to be checked again in software.

Fixes: 25189d08e516 ("x86/sev-es: Add support for handling IOIO exceptions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
2023-10-09 15:47:57 +02:00
Borislav Petkov (AMD)
a37cd2a59d x86/sev: Disable MMIO emulation from user mode
A virt scenario can be constructed where MMIO memory can be user memory.
When that happens, a race condition opens between when the hardware
raises the #VC and when the #VC handler gets to emulate the instruction.

If the MOVS is replaced with a MOVS accessing kernel memory in that
small race window, then write to kernel memory happens as the access
checks are not done at emulation time.

Disable MMIO emulation in user mode temporarily until a sensible use
case appears and justifies properly handling the race window.

Fixes: 0118b604c2c9 ("x86/sev-es: Handle MMIO String Instructions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
2023-10-09 15:45:34 +02:00
Lucy Mielke
38cd5b6a87 perf/x86/intel/pt: Fix kernel-doc comments
Some parameters or return codes were either wrong or missing,
update them.

Signed-off-by: Lucy Mielke <lucymielke@icloud.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZSOjQW3e2nJR4bAo@fedora.fritz.box
2023-10-09 12:26:22 +02:00
JP Kobryn
e53899771a perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):

    __insn_get_emulate_prefix()
    insn_get_emulate_prefix()
    insn_get_prefixes()
    insn_get_opcode()
    decode_branch_type()
    get_branch_type()
    intel_pmu_lbr_filter()
    intel_pmu_handle_irq()
    perf_event_nmi_handler()

Within __insn_get_emulate_prefix() at frame 0, a macro is called:

    peek_nbyte_next(insn_byte_t, insn, i)

Within this macro, this dereference occurs:

    (insn)->next_byte

Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.

To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
2023-10-08 12:25:18 +02:00
Kees Cook
a56d5551e1 perf/x86/rapl: Annotate 'struct rapl_pmus' with __counted_by
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time via CONFIG_UBSAN_BOUNDS=y (for
array indexing) and CONFIG_FORTIFY_SOURCE=y (for strcpy/memcpy-family
functions).

Found with Coccinelle:

  https://github.com/kees/kernel-tools/blob/trunk/coccinelle/examples/counted_by.cocci [1]

Add __counted_by for 'struct rapl_pmus'.

No change in functionality intended.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://lore.kernel.org/r/20231006201754.work.473-kees@kernel.org
2023-10-08 12:18:17 +02:00
Randy Dunlap
025d5ac978 x86/resctrl: Fix kernel-doc warnings
The kernel test robot reported kernel-doc warnings here:

  monitor.c:34: warning: Cannot understand  * @rmid_free_lru    A least recently used list of free RMIDs on line 34 - I thought it was a doc line
  monitor.c:41: warning: Cannot understand  * @rmid_limbo_count     count of currently unused but (potentially) on line 41 - I thought it was a doc line
  monitor.c:50: warning: Cannot understand  * @rmid_entry - The entry in the limbo and free lists.  on line 50 - I thought it was a doc line

We don't have a syntax for documenting individual data items via
kernel-doc, so remove the "/**" kernel-doc markers and add a hyphen
for consistency.

Fixes: 6a445edce657 ("x86/intel_rdt/cqm: Add RDT monitoring initialization")
Fixes: 24247aeeabe9 ("x86/intel_rdt/cqm: Improve limbo list processing")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231006235132.16227-1-rdunlap@infradead.org
2023-10-08 11:45:16 +02:00
Waiman Long
2743fe89d4 x86/idle: Disable IBRS when CPU is offline to improve single-threaded performance
Commit bf5835bcdb96 ("intel_idle: Disable IBRS during long idle")
disables IBRS when the CPU enters long idle. However, when a CPU
becomes offline, the IBRS bit is still set when X86_FEATURE_KERNEL_IBRS
is enabled. That will impact the performance of a sibling CPU. Mitigate
this performance impact by clearing all the mitigation bits in SPEC_CTRL
MSR when offline. When the CPU is online again, it will be re-initialized
and so restoring the SPEC_CTRL value isn't needed.

Add a comment to say that native_play_dead() is a __noreturn function,
but it can't be marked as such to avoid confusion about the missing
MSR restoration code.

When DPDK is running on an isolated CPU thread processing network packets
in user space while its sibling thread is idle. The performance of the
busy DPDK thread with IBRS on and off in the sibling idle thread are:

                                IBRS on         IBRS off
                                -------         --------
  packets/second:                  7.8M           10.4M
  avg tsc cycles/packet:         282.26          209.86

This is a 25% performance degradation. The test system is a Intel Xeon
4114 CPU @ 2.20GHz.

[ mingo: Extended the changelog with performance data from the 0/4 mail. ]

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230727184600.26768-3-longman@redhat.com
2023-10-07 11:33:28 +02:00
Waiman Long
e3e3bab184 x86/speculation: Add __update_spec_ctrl() helper
Add a new __update_spec_ctrl() helper which is a variant of
update_spec_ctrl() that can be used in a noinstr function.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230727184600.26768-2-longman@redhat.com
2023-10-07 11:33:28 +02:00
Baolin Wang
55d2a0bd5e mm: add statistics for PUD level pagetable
Recently, we found that cross-die access to pagetable pages on ARM64
machines can cause performance fluctuations in our business.  Currently,
there are no PMU events available to track this situation on our ARM64
machines, so accurate pagetable accounting can help to analyze this issue,
but now the PUD level pagetable accounting is missed.

So introduce pagetable_pud_ctor/dtor() to help to get accurate PUD
pagetable accounting, as well as converting the architectures which use
generic PUD pagetable allocation to add corresponding PUD pagetable
accounting.  Moreover this patch will mark the PUD level pagetable with
PG_table flag, which will help to do sanity validation in
unpoison_memory().

On my testing machine, I can see more pagetables statistics after the patch
with page-types tool:

Before patch:
        flags           page-count      MB  symbolic-flags                     long-symbolic-flags
0x0000000004000000           27326      106  __________________________g_________________       pgtable
After patch:
0x0000000004000000           27541      107  __________________________g_________________       pgtable

Link: https://lkml.kernel.org/r/876c71c03a7e69c17722a690e3225a4f7b172fb2.1695017383.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06 14:44:10 -07:00
Sohil Mehta
2fd0ebad27 arch: Reserve map_shadow_stack() syscall number for all architectures
commit c35559f94ebc ("x86/shstk: Introduce map_shadow_stack syscall")
recently added support for map_shadow_stack() but it is limited to x86
only for now. There is a possibility that other architectures (namely,
arm64 and RISC-V), that are implementing equivalent support for shadow
stacks, might need to add support for it.

Independent of that, reserving arch-specific syscall numbers in the
syscall tables of all architectures is good practice and would help
avoid future conflicts. map_shadow_stack() is marked as a conditional
syscall in sys_ni.c. Adding it to the syscall tables of other
architectures is harmless and would return ENOSYS when exercised.

Note, map_shadow_stack() was assigned #453 during the merge process
since #452 was taken by fchmodat2().

For Powerpc, map it to sys_ni_syscall() as is the norm for Powerpc
syscall tables.

For Alpha, map_shadow_stack() takes up #563 as Alpha still diverges from
the common syscall numbering system in the other architectures.

Link: https://lore.kernel.org/lkml/20230515212255.GA562920@debug.ba.rivosinc.com/
Link: https://lore.kernel.org/lkml/b402b80b-a7c6-4ef0-b977-c0f5f582b78a@sirena.org.uk/

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-10-06 22:26:51 +02:00
Kirill A. Shutemov
9ee4318c15 x86/tdx: Mark TSC reliable
In x86 virtualization environments, including TDX, RDTSC instruction is
handled without causing a VM exit, resulting in minimal overhead and
jitters. On the other hand, other clock sources (such as HPET, ACPI
timer, APIC, etc.) necessitate VM exits to implement, resulting in more
fluctuating measurements compared to TSC. Thus, those clock sources are
not effective for calibrating TSC.

As a foundation, the host TSC is guaranteed to be invariant on any
system which enumerates TDX support.

TDX guests and the TDX module build on that foundation by enforcing:

  - Virtual TSC is monotonously incrementing for any single VCPU;
  - Virtual TSC values are consistent among all the TD’s VCPUs at the
    level supported by the CPU:
    + VMM is required to set the same TSC_ADJUST;
    + VMM must not modify from initial value of TSC_ADJUST before
      SEAMCALL;
  - The frequency is determined by TD configuration:
    + Virtual TSC frequency is specified by VMM on TDH.MNG.INIT;
    + Virtual TSC starts counting from 0 at TDH.MNG.INIT;

The result is that a reliable TSC is a TDX architectural guarantee.

Use the TSC as the only reliable clock source in TD guests, bypassing
unstable calibration.

This is similar to what the kernel already does in some VMWare and
HyperV environments.

[ dhansen: changelog tweaks ]

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Reviewed-by: Erdem Aktas <erdemaktas@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/all/20231006144549.2633-1-kirill.shutemov%40linux.intel.com
2023-10-06 10:00:04 -07:00
Mario Limonciello
7d08f21f8c x86/PCI: Avoid PME from D3hot/D3cold for AMD Rembrandt and Phoenix USB4
Iain reports that USB devices can't be used to wake a Lenovo Z13 from
suspend.  This occurs because on some AMD platforms, even though the Root
Ports advertise PME_Support for D3hot and D3cold, wakeup events from
devices on a USB4 controller don't result in wakeup interrupts from the
Root Port when amd-pmc has put the platform in a hardware sleep state.

If amd-pmc will be involved in the suspend, remove D3hot and D3cold from
the PME_Support mask of Root Ports above USB4 controllers so we avoid those
states if we need wakeups.

Restore D3 support at resume so that it can be used by runtime suspend.

This affects both AMD Rembrandt and Phoenix SoCs.

"pm_suspend_target_state == PM_SUSPEND_ON" means we're doing runtime
suspend, and amd-pmc will not be involved.  In that case PMEs work as
advertised in D3hot/D3cold, so we don't need to do anything.

Note that amd-pmc is technically optional, and there's no need for this
quirk if it's not present, but we assume it's always present because power
consumption is so high without it.

Fixes: 9d26d3a8f1b0 ("PCI: Put PCIe ports into D3 during suspend")
Link: https://lore.kernel.org/r/20231004144959.158840-1-mario.limonciello@amd.com
Reported-by: Iain Lane <iain@orangesquash.org.uk>
Closes: https://forums.lenovo.com/t5/Ubuntu/Z13-can-t-resume-from-suspend-with-external-USB-keyboard/m-p/5217121
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
[bhelgaas: commit log, move to arch/x86/pci/fixup.c, add #includes]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org
2023-10-06 09:09:47 -05:00