IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Intel's eXtended Feature Disable (XFD) feature allows the software
to dynamically adjust fpstate buffer size for XSAVE features which
have large state.
Because guest fpstate has been expanded for all possible dynamic
xstates at KVM_SET_CPUID2, emulation of the IA32_XFD MSR is
straightforward. For write just call fpu_update_guest_xfd() to
update the guest fpu container once all the sanity checks are passed.
For read simply return the cached value in the container.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-11-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest XFD can be updated either in the emulation path or in the
restore path.
Provide a wrapper to update guest_fpu::fpstate::xfd. If the guest
fpstate is currently in-use, also update the per-cpu xfd cache and
the actual MSR.
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-10-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM can request fpstate expansion in two approaches:
1) When intercepting guest updates to XCR0 and XFD MSR;
2) Before vcpu runs (e.g. at KVM_SET_CPUID2);
The first option doesn't waste memory for legacy guest if it doesn't
support XFD. However doing so introduces more complexity and also
imposes an order requirement in the restoring path, i.e. XCR0/XFD
must be restored before XSTATE.
Given that the agreement is to do the static approach. This is
considered a better tradeoff though it does waste 8K memory for
legacy guest if its CPUID includes dynamically-enabled xfeatures.
Successful fpstate expansion requires userspace VMM to acquire
guest xstate permissions before calling KVM_SET_CPUID2.
Also take the chance to adjust the indent in kvm_set_cpuid().
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-9-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a wrapper for expanding the guest fpstate buffer according
to requested xfeatures. KVM wants to call this wrapper to manage
any dynamic xstate used by the guest.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220105123532.12586-8-yang.zhong@intel.com>
[Remove unnecessary 32-bit check. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest support for dynamically enabled FPU features requires a few
modifications to the enablement function which is currently invoked from
the #NM handler:
1) Use guest permissions and sizes for the update
2) Update fpu_guest state accordingly
3) Take into account that the enabling can be triggered either from a
running guest via XSETBV and MSR_IA32_XFD write emulation or from
a guest restore. In the latter case the guests fpstate is not the
current tasks active fpstate.
Split the function and implement the guest mechanics throughout the
callchain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-7-yang.zhong@intel.com>
[Add 32-bit stub for __xfd_enable_feature. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vCPU threads are different from native tasks regarding to the initial XFD
value. While all native tasks follow a fixed value (init_fpstate::xfd)
established by the FPU core at boot, vCPU threads need to obey the reset
value (i.e. ZERO) defined by the specification, to meet the expectation of
the guest.
Let the caller supply an argument and adjust the host and guest related
invocations accordingly.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-6-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_CPUID should not include any dynamic xstates in
CPUID[0xD] if they have not been requested with prctl. Otherwise
a process which directly passes KVM_GET_SUPPORTED_CPUID to
KVM_SET_CPUID2 would now fail even if it doesn't intend to use a
dynamically enabled feature. Userspace must know that prctl is
required and allocate >4K xstate buffer before setting any dynamic
bit.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-5-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CPUID.0xD.1.EBX enumerates the size of the XSAVE area (in compacted
format) required by XSAVES. If CPUID.0xD.i.ECX[1] is set for a state
component (i), this state component should be located on the next
64-bytes boundary following the preceding state component in the
compacted layout.
Fix xstate_required_size() to follow the alignment rule. AMX is the
first state component with 64-bytes alignment to catch this bug.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-4-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support dynamically enabled FPU features for guests prepare the guest
pseudo FPU container to keep track of the currently enabled xfeatures and
the guest permissions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-3-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM requires a clear separation of host user space and guest permissions
for dynamic XSTATE components.
Add a guest permissions member to struct fpu and a separate set of prctl()
arguments: ARCH_GET_XCOMP_GUEST_PERM and ARCH_REQ_XCOMP_GUEST_PERM.
The semantics are equivalent to the host user space permission control
except for the following constraints:
1) Permissions have to be requested before the first vCPU is created
2) Permissions are frozen when the first vCPU is created to ensure
consistency. Any attempt to expand permissions via the prctl() after
that point is rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-2-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Normally guests will set up CR3 themselves, but some guests, such as
kselftests, and potentially CONFIG_PVH guests, rely on being booted
with paging enabled and CR3 initialized to a pre-allocated page table.
Currently CR3 updates via KVM_SET_SREGS* are not loaded into the guest
VMCB until just prior to entering the guest. For SEV-ES/SEV-SNP, this
is too late, since it will have switched over to using the VMSA page
prior to that point, with the VMSA CR3 copied from the VMCB initial
CR3 value: 0.
Address this by sync'ing the CR3 value into the VMCB save area
immediately when KVM_SET_SREGS* is issued so it will find it's way into
the initial VMSA.
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20211216171358.61140-10-michael.roth@amd.com>
[Remove vmx_post_set_cr3; add a remark about kvm_set_cr3 not calling the
new hook. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use asm-goto-output for smaller fast path code.
Message-Id: <YbcbbGW2GcMx6KpD@hirez.programming.kicks-ass.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty ring logging is enabled, any dirty logging without an active
vCPU context will cause a kernel oops. But we've already declared that
the shared_info page doesn't get dirty tracking anyway, since it would
be kind of insane to mark it dirty every time we deliver an event channel
interrupt. Userspace is supposed to just assume it's always dirty any
time a vCPU can run or event channels are routed.
So stop using the generic kvm_write_wall_clock() and just write directly
through the gfn_to_pfn_cache that we already have set up.
We can make kvm_write_wall_clock() static in x86.c again now, but let's
not remove the 'sec_hi_ofs' argument even though it's not used yet. At
some point we *will* want to use that for KVM guests too.
Fixes: 629b5348841a ("KVM: x86/xen: update wallclock region")
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds basic support for delivering 2 level event channels to a guest.
Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.
It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.
Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the newly reinstated gfn_to_pfn_cache to maintain a kernel mapping
of the Xen shared_info page so that it can be accessed in atomic context.
Note that we do not participate in dirty tracking for the shared info
page and we do not explicitly mark it dirty every single tim we deliver
an event channel interrupts. We wouldn't want to do that even if we *did*
have a valid vCPU context with which to do so.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I made the actual CPU bringup go nice and fast... and then Linux spends
half a minute printing stupid nonsense about clocks and steal time for
each of 256 vCPUs. Don't do that. Nobody cares.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211209150938.3518-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM retires a guest branch instruction through emulation,
increment any vPMCs that are configured to monitor "branch
instructions retired," and update the sample period of those counters
so that they will overflow at the right time.
Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
- Split the code to increment "branch instructions retired" into a
separate commit.
- Moved/consolidated the calls to kvm_pmu_trigger_event() in the
emulation of VMLAUNCH/VMRESUME to accommodate the evolution of
that code.
]
Fixes: f5132b01386b ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20211130074221.93635-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM retires a guest instruction through emulation, increment any
vPMCs that are configured to monitor "instructions retired," and
update the sample period of those counters so that they will overflow
at the right time.
Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
- Split the code to increment "branch instructions retired" into a
separate commit.
- Added 'static' to kvm_pmu_incr_counter() definition.
- Modified kvm_pmu_incr_counter() to check pmc->perf_event->state ==
PERF_EVENT_STATE_ACTIVE.
]
Fixes: f5132b01386b ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
[likexu:
- Drop checks for pmc->perf_event or event state or event type
- Increase a counter once its umask bits and the first 8 select bits are matched
- Rewrite kvm_pmu_incr_counter() with a less invasive approach to the host perf;
- Rename kvm_pmu_record_event to kvm_pmu_trigger_event;
- Add counter enable and CPL check for kvm_pmu_trigger_event();
]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Depending on whether intr should be triggered or not, KVM registers
two different event overflow callbacks in the perf_event context.
The code skeleton of these two functions is very similar, so
the pmc->intr can be stored into pmc from pmc_reprogram_counter()
which provides smaller instructions footprint against the
u-architecture branch predictor.
The __kvm_perf_overflow() can be called in non-nmi contexts
and a flag is needed to distinguish the caller context and thus
avoid a check on kvm_is_in_guest(), otherwise we might get
warnings from suspicious RCU or check_preemption_disabled().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since we set the same semantic event value for the fixed counter in
pmc->eventsel, returning the perf_hw_id for the fixed counter via
find_fixed_event() can be painlessly replaced by pmc_perf_hw_id()
with the help of pmc_is_fixed() check.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The find_arch_event() returns a "unsigned int" value,
which is used by the pmc_reprogram_counter() to
program a PERF_TYPE_HARDWARE type perf_event.
The returned value is actually the kernel defined generic
perf_hw_id, let's rename it to pmc_perf_hw_id() with simpler
incoming parameters for better self-explanation.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current pmc->eventsel for fixed counter is underutilised. The
pmc->eventsel can be setup for all known available fixed counters
since we have mapping between fixed pmc index and
the intel_arch_events array.
Either gp or fixed counter, it will simplify the later checks for
consistency between eventsel and perf_hw_id.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because IceLake has 4 fixed performance counters but KVM only
supports 3, it is possible for reprogram_fixed_counters to pass
to reprogram_fixed_counter an index that is out of bounds for the
fixed_pmc_events array.
Ultimately intel_find_fixed_event, which is the only place that uses
fixed_pmc_events, handles this correctly because it checks against the
size of fixed_pmc_events anyway. Every other place operates on the
fixed_counters[] array which is sized according to INTEL_PMC_MAX_FIXED.
However, it is cleaner if the unsupported performance counters are culled
early on in reprogram_fixed_counters.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but GUEST_CR3 is
still vmx->ept_identity_map_addr if EPT + !URG. So VCPU_EXREG_CR3 is
considered to be dirty and GUEST_CR3 needs to be updated in this case.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-4-jiangshanlai@gmail.com>
Fixes: c62c7bd4f95b ("KVM: VMX: Update vmcs.GUEST_CR3 only when the guest CR3 is dirty")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For shadow paging, the page table needs to be reconstructed before the
coming VMENTER if the guest PDPTEs is changed.
But not all paths that call load_pdptrs() will cause the page tables to be
reconstructed. Normally, kvm_mmu_reset_context() and kvm_mmu_free_roots()
are used to launch later reconstruction.
The commit d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and
CR0.NW are changed") skips kvm_mmu_reset_context() after load_pdptrs()
when changing CR0.CD and CR0.NW.
The commit 21823fbda552("KVM: x86: Invalidate all PGDs for the current
PCID on MOV CR3 w/ flush") skips kvm_mmu_free_roots() after
load_pdptrs() when rewriting the CR3 with the same value.
The commit a91a7c709600("KVM: X86: Don't reset mmu context when
toggling X86_CR4_PGE") skips kvm_mmu_reset_context() after
load_pdptrs() when changing CR4.PGE.
Guests like linux would keep the PDPTEs unchanged for every instance of
pagetable, so this missing reconstruction has no problem for linux
guests.
Fixes: d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")
Fixes: 21823fbda552("KVM: x86: Invalidate all PGDs for the current PCID on MOV CR3 w/ flush")
Fixes: a91a7c709600("KVM: X86: Don't reset mmu context when toggling X86_CR4_PGE")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The host CR3 in the vcpu thread can only be changed when scheduling,
so commit 15ad9762d69f ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
changed vmx.c to only save it in vmx_prepare_switch_to_guest().
However, it also has to be synced in vmx_sync_vmcs_host_state() when switching VMCS.
vmx_set_host_fs_gs() is called in both places, so rename it to
vmx_set_vmcs_host_state() and make it update HOST_CR3.
Fixes: 15ad9762d69f ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 24cd19a28cb7174df502162641d6e1e12e7ffbd9.
Sean Christopherson reports:
"Commit 24cd19a28cb7 ('KVM: X86: Update mmu->pdptrs only when it is
changed') breaks nested VMs with EPT in L0 and PAE shadow paging in L2.
Reproducing is trivial, just disable EPT in L1 and run a VM. I haven't
investigating how it breaks things."
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15e2 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop a check that guards triggering a posted interrupt on the currently
running vCPU, and more importantly guards waking the target vCPU if
triggering a posted interrupt fails because the vCPU isn't IN_GUEST_MODE.
If a vIRQ is delivered from asynchronous context, the target vCPU can be
the currently running vCPU and can also be blocking, in which case
skipping kvm_vcpu_wake_up() is effectively dropping what is supposed to
be a wake event for the vCPU.
The "do nothing" logic when "vcpu == running_vcpu" mostly works only
because the majority of calls to ->deliver_posted_interrupt(), especially
when using posted interrupts, come from synchronous KVM context. But if
a device is exposed to the guest using vfio-pci passthrough, the VFIO IRQ
and vCPU are bound to the same pCPU, and the IRQ is _not_ configured to
use posted interrupts, wake events from the device will be delivered to
KVM from IRQ context, e.g.
vfio_msihandler()
|
|-> eventfd_signal()
|
|-> ...
|
|-> irqfd_wakeup()
|
|->kvm_arch_set_irq_inatomic()
|
|-> kvm_irq_delivery_to_apic_fast()
|
|-> kvm_apic_set_irq()
This also aligns the non-nested and nested usage of triggering posted
interrupts, and will allow for additional cleanups.
Fixes: 379a3c8ee444 ("KVM: VMX: Optimize posted-interrupt delivery for timer fastpath")
Cc: stable@vger.kernel.org
Reported-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthesize a triple fault if L2 guest state is invalid at the time of
VM-Enter, which can happen if L1 modifies SMRAM or if userspace stuffs
guest state via ioctls(), e.g. KVM_SET_SREGS. KVM should never emulate
invalid guest state, since from L1's perspective, it's architecturally
impossible for L2 to have invalid state while L2 is running in hardware.
E.g. attempts to set CR0 or CR4 to unsupported values will either VM-Exit
or #GP.
Modifying vCPU state via RSM+SMRAM and ioctl() are the only paths that
can trigger this scenario, as nested VM-Enter correctly rejects any
attempt to enter L2 with invalid state.
RSM is a straightforward case as (a) KVM follows AMD's SMRAM layout and
behavior, and (b) Intel's SDM states that loading reserved CR0/CR4 bits
via RSM results in shutdown, i.e. there is precedent for KVM's behavior.
Following AMD's SMRAM layout is important as AMD's layout saves/restores
the descriptor cache information, including CS.RPL and SS.RPL, and also
defines all the fields relevant to invalid guest state as read-only, i.e.
so long as the vCPU had valid state before the SMI, which is guaranteed
for L2, RSM will generate valid state unless SMRAM was modified. Intel's
layout saves/restores only the selector, which means that scenarios where
the selector and cached RPL don't match, e.g. conforming code segments,
would yield invalid guest state. Intel CPUs fudge around this issued by
stuffing SS.RPL and CS.RPL on RSM. Per Intel's SDM on the "Default
Treatment of RSM", paraphrasing for brevity:
IF internal storage indicates that the [CPU was post-VMXON]
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must
be fixed in VMX operation [unless coming from an unrestricted guest];
IF RFLAGS.VM = 0 AND (in VMX root operation OR the
“unrestricted guest” VM-execution control is 0)
THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;
FI;
restore current VMCS pointer;
FI;
Note that Intel CPUs also overwrite the fixed CR0/CR4 bits, whereas KVM
will sythesize TRIPLE_FAULT in this scenario. KVM's behavior is allowed
as both Intel and AMD define CR0/CR4 SMRAM fields as read-only, i.e. the
only way for CR0 and/or CR4 to have illegal values is if they were
modified by the L1 SMM handler, and Intel's SDM "SMRAM State Save Map"
section states "modifying these registers will result in unpredictable
behavior".
KVM's ioctl() behavior is less straightforward. Because KVM allows
ioctls() to be executed in any order, rejecting an ioctl() if it would
result in invalid L2 guest state is not an option as KVM cannot know if
a future ioctl() would resolve the invalid state, e.g. KVM_SET_SREGS, or
drop the vCPU out of L2, e.g. KVM_SET_NESTED_STATE. Ideally, KVM would
reject KVM_RUN if L2 contained invalid guest state, but that carries the
risk of a false positive, e.g. if RSM loaded invalid guest state and KVM
exited to userspace. Setting a flag/request to detect such a scenario is
undesirable because (a) it's extremely unlikely to add value to KVM as a
whole, and (b) KVM would need to consider ioctl() interactions with such
a flag, e.g. if userspace migrated the vCPU while the flag were set.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-3-seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert a relatively recent change that set vmx->fail if the vCPU is in L2
and emulation_required is true, as that behavior is completely bogus.
Setting vmx->fail and synthesizing a VM-Exit is contradictory and wrong:
(a) it's impossible to have both a VM-Fail and VM-Exit
(b) vmcs.EXIT_REASON is not modified on VM-Fail
(c) emulation_required refers to guest state and guest state checks are
always VM-Exits, not VM-Fails.
For KVM specifically, emulation_required is handled before nested exits
in __vmx_handle_exit(), thus setting vmx->fail has no immediate effect,
i.e. KVM calls into handle_invalid_guest_state() and vmx->fail is ignored.
Setting vmx->fail can ultimately result in a WARN in nested_vmx_vmexit()
firing when tearing down the VM as KVM never expects vmx->fail to be set
when L2 is active, KVM always reflects those errors into L1.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 21158 at arch/x86/kvm/vmx/nested.c:4548
nested_vmx_vmexit+0x16bd/0x17e0
arch/x86/kvm/vmx/nested.c:4547
Modules linked in:
CPU: 0 PID: 21158 Comm: syz-executor.1 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:nested_vmx_vmexit+0x16bd/0x17e0 arch/x86/kvm/vmx/nested.c:4547
Code: <0f> 0b e9 2e f8 ff ff e8 57 b3 5d 00 0f 0b e9 00 f1 ff ff 89 e9 80
Call Trace:
vmx_leave_nested arch/x86/kvm/vmx/nested.c:6220 [inline]
nested_vmx_free_vcpu+0x83/0xc0 arch/x86/kvm/vmx/nested.c:330
vmx_free_vcpu+0x11f/0x2a0 arch/x86/kvm/vmx/vmx.c:6799
kvm_arch_vcpu_destroy+0x6b/0x240 arch/x86/kvm/x86.c:10989
kvm_vcpu_destroy+0x29/0x90 arch/x86/kvm/../../../virt/kvm/kvm_main.c:441
kvm_free_vcpus arch/x86/kvm/x86.c:11426 [inline]
kvm_arch_destroy_vm+0x3ef/0x6b0 arch/x86/kvm/x86.c:11545
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1189 [inline]
kvm_put_kvm+0x751/0xe40 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1220
kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3489
__fput+0x3fc/0x870 fs/file_table.c:280
task_work_run+0x146/0x1c0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0x705/0x24f0 kernel/exit.c:832
do_group_exit+0x168/0x2d0 kernel/exit.c:929
get_signal+0x1740/0x2120 kernel/signal.c:2852
arch_do_signal_or_restart+0x9c/0x730 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x191/0x220 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x2e/0x70 kernel/entry/common.c:300
do_syscall_64+0x53/0xd0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: c8607e4a086f ("KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if !from_vmentry")
Reported-by: syzbot+f1d2136db9c80d4733e8@syzkaller.appspotmail.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).
Fixes: f1c6366e3043 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025b3 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00aec ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025b3 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fixed counter 3 is used for the Topdown metrics, which hasn't been
enabled for KVM guests. Userspace accessing to it will fail as it's not
included in get_fixed_pmc(). This breaks KVM selftests on ICX+ machines,
which have this counter.
To reproduce it on ICX+ machines, ./state_test reports:
==== Test Assertion Failure ====
lib/x86_64/processor.c:1078: r == nmsrs
pid=4564 tid=4564 - Argument list too long
1 0x000000000040b1b9: vcpu_save_state at processor.c:1077
2 0x0000000000402478: main at state_test.c:209 (discriminator 6)
3 0x00007fbe21ed5f92: ?? ??:0
4 0x000000000040264d: _start at ??:?
Unexpected result from KVM_GET_MSRS, r: 17 (failed MSR was 0x30c)
With this patch, it works well.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20211217124934.32893-1-wei.w.wang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Play nice with a NULL shadow page when checking for an obsolete root in
the page fault handler by flagging the page fault as stale if there's no
shadow page associated with the root and KVM_REQ_MMU_RELOAD is pending.
Invalidating memslots, which is the only case where _all_ roots need to
be reloaded, requests all vCPUs to reload their MMUs while holding
mmu_lock for lock.
The "special" roots, e.g. pae_root when KVM uses PAE paging, are not
backed by a shadow page. Running with TDP disabled or with nested NPT
explodes spectaculary due to dereferencing a NULL shadow page pointer.
Skip the KVM_REQ_MMU_RELOAD check if there is a valid shadow page for the
root. Zapping shadow pages in response to guest activity, e.g. when the
guest frees a PGD, can trigger KVM_REQ_MMU_RELOAD even if the current
vCPU isn't using the affected root. I.e. KVM_REQ_MMU_RELOAD can be seen
with a completely valid root shadow page. This is a bit of a moot point
as KVM currently unloads all roots on KVM_REQ_MMU_RELOAD, but that will
be cleaned up in the future.
Fixes: a955cad84cda ("KVM: x86/mmu: Retry page fault if root is invalidated by memslot update")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211209060552.2956723-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ability to write to MSR_IA32_PERF_CAPABILITIES from the host should
not depend on guest visible CPUID entries, even if just to allow
creating/restoring guest MSRs and CPUIDs in any sequence.
Fixes: 27461da31089 ("KVM: x86/pmu: Support full width counting")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211216165213.338923-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a WARN with a comment to call out that userspace can modify RCX
during an exit to userspace to handle string I/O. KVM doesn't actually
support changing the rep count during an exit, i.e. the scenario can be
ignored, but the WARN needs to go as it's trivial to trigger from
userspace.
Cc: stable@vger.kernel.org
Fixes: 3b27de271839 ("KVM: x86: split the two parts of emulator_pio_in")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211025201311.1881846-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the SDM:
If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an
attempt to clear CR0.PG causes a general-protection exception (#GP).
Software should transition to compatibility mode and clear CR4.PCIDE
before attempting to disable paging.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211207095230.53437-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not bail early if there are no bits set in the sparse banks for a
non-sparse, a.k.a. "all CPUs", IPI request. Per the Hyper-V spec, it is
legal to have a variable length of '0', e.g. VP_SET's BankContents in
this case, if the request can be serviced without the extra info.
It is possible that for a given invocation of a hypercall that does
accept variable sized input headers that all the header input fits
entirely within the fixed size header. In such cases the variable sized
input header is zero-sized and the corresponding bits in the hypercall
input should be set to zero.
Bailing early results in KVM failing to send IPIs to all CPUs as expected
by the guest.
Fixes: 214ff83d4473 ("KVM: x86: hyperv: implement PV IPI send hypercalls")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211207220926.718794-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prior to commit 0baedd792713 ("KVM: x86: make Hyper-V PV TLB flush use
tlb_flush_guest()"), kvm_hv_flush_tlb() was using 'KVM_REQ_TLB_FLUSH |
KVM_REQUEST_NO_WAKEUP' when making a request to flush TLBs on other vCPUs
and KVM_REQ_TLB_FLUSH is/was defined as:
(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
so KVM_REQUEST_WAIT was lost. Hyper-V TLFS, however, requires that
"This call guarantees that by the time control returns back to the
caller, the observable effects of all flushes on the specified virtual
processors have occurred." and without KVM_REQUEST_WAIT there's a small
chance that the vCPU making the TLB flush will resume running before
all IPIs get delivered to other vCPUs and a stale mapping can get read
there.
Fix the issue by adding KVM_REQUEST_WAIT flag to KVM_REQ_TLB_FLUSH_GUEST:
kvm_hv_flush_tlb() is the sole caller which uses it for
kvm_make_all_cpus_request()/kvm_make_vcpus_request_mask() where
KVM_REQUEST_WAIT makes a difference.
Cc: stable@kernel.org
Fixes: 0baedd792713 ("KVM: x86: make Hyper-V PV TLB flush use tlb_flush_guest()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211209102937.584397-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Splitting kvm_main.c out into smaller and better-organized files is
slightly non-trivial when it involves editing a bunch of per-arch
KVM makefiles. Provide virt/kvm/Makefile.kvm for them to include.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20211121125451.9489-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I'd like to make the build include dirty_ring.c based on whether the
arch wants it or not. That's a whole lot simpler if there's a config
symbol instead of doing it implicitly on KVM_DIRTY_LOG_PAGE_OFFSET
being set to something non-zero.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211121125451.9489-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the WARN sanity checks out of the PI descriptor update loop so as
not to spam the kernel log if the condition is violated and the update
takes multiple attempts due to another writer. This also eliminates a
few extra uops from the retry path.
Technically not checking every attempt could mean KVM will now fail to
WARN in a scenario that would have failed before, but any such failure
would be inherently racy as some other agent (CPU or device) would have
to concurrent modify the PI descriptor.
Add a helper to handle the actual write and more importantly to document
why the write may need to be retried.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a memory barrier between writing vcpu->requests and reading
vcpu->guest_mode to ensure the read is ordered after the write when
(potentially) delivering an IRQ to L2 via nested posted interrupt. If
the request were to be completed after reading vcpu->mode, it would be
possible for the target vCPU to enter the guest without posting the
interrupt and without handling the event request.
Note, the barrier is only for documentation since atomic operations are
serializing on x86.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 6b6977117f50 ("KVM: nVMX: Fix races when sending nested PI while dest enters/leaves L2")
Fixes: 705699a13994 ("KVM: nVMX: Enable nested posted interrupt processing")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows to see how many interrupts were delivered via the
APICv/AVIC from the host.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211209115440.394441-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Updating MSR bitmap for L2 is not cheap and rearly needed. TLFS for Hyper-V
offers 'Enlightened MSR Bitmap' feature which allows L1 hypervisor to
inform L0 when it changes MSR bitmap, this eliminates the need to examine
L1's MSR bitmap for L2 every time when 'real' MSR bitmap for L2 gets
constructed.
Use 'vmx->nested.msr_bitmap_changed' flag to implement the feature.
Note, KVM already uses 'Enlightened MSR bitmap' feature when it runs as a
nested hypervisor on top of Hyper-V. The newly introduced feature is going
to be used by Hyper-V guests on KVM.
When the feature is enabled for Win10+WSL2, it shaves off around 700 CPU
cycles from a nested vmexit cost (tight cpuid loop test).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a flag to keep track of whether MSR bitmap for L2 needs to be
rebuilt due to changes in MSR bitmap for L1 or switching to a different
L2. This information will be used for Enlightened MSR Bitmap feature for
Hyper-V guests.
Note, setting msr_bitmap_changed to 'true' from set_current_vmptr() is
not really needed for Enlightened MSR Bitmap as the feature can only
be used in conjunction with Enlightened VMCS but let's keep tracking
information complete, it's cheap and in the future similar PV feature can
easily be implemented for KVM on KVM too.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to enabling 'Enlightened MSR Bitmap' feature for Hyper-V
guests move MSR bitmap update tracking to a dedicated helper.
Note: vmx_msr_bitmap_l01_changed() is called when MSR bitmap might be
updated. KVM doesn't check if the bit we're trying to set is already set
(or the bit it's trying to clear is already cleared). Such situations
should not be common and a few false positives should not be a problem.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211129094704.326635-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>