IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Commit f05f62d04271f ("s390/vmem: get rid of memory segment list")
reshuffled the call to vmem_add_mapping() in __segment_load(), which now
overwrites rc after it was set to contain the segment type code.
As result, __segment_load() will now always return 0 on success, which
corresponds to the segment type code SEG_TYPE_SW, i.e. a writeable
segment. This results in a kernel crash when loading a read-only segment
as dcssblk block device, and trying to write to it.
Instead of reshuffling code again, make sure to return the segment type
on success, and also describe this rather delicate and unexpected logic
in the function comment. Also initialize new segtype variable with
invalid value, to prevent possible future confusion.
Fixes: f05f62d04271 ("s390/vmem: get rid of memory segment list")
Cc: <stable@vger.kernel.org> # 5.9+
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Baoquan He reported lots of KFENCE reports when /proc/kcore is read,
e.g. with crash or even simpler with dd:
BUG: KFENCE: invalid read in copy_from_kernel_nofault+0x5e/0x120
Invalid read at 0x00000000f4f5149f:
copy_from_kernel_nofault+0x5e/0x120
read_kcore+0x6b2/0x870
proc_reg_read+0x9a/0xf0
vfs_read+0x94/0x270
ksys_read+0x70/0x100
__do_syscall+0x1d0/0x200
system_call+0x82/0xb0
The reason for this is that read_kcore() simply reads memory that might
have been unmapped by KFENCE with copy_from_kernel_nofault(). Any fault due
to pages being unmapped by KFENCE would be handled gracefully by the fault
handler (exception table fixup).
However the s390 fault handler first reports the fault, and only afterwards
would perform the exception table fixup. Most architectures have this in
reversed order, which also avoids the false positive KFENCE reports when an
unmapped page is accessed.
Therefore change the s390 fault handler so it handles exception table
fixups before KFENCE page faults are reported.
Reported-by: Baoquan He <bhe@redhat.com>
Tested-by: Baoquan He <bhe@redhat.com>
Acked-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/r/20230213183858.1473681-1-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Commit bf64f0517e5d ("s390/mem_detect: handle online memory limit
just once") introduced truncation of mem_detect online ranges
based on identity mapping size. For kdump case however the full
set of online memory ranges has to be feed into memblock_physmem_add
so that crashed system memory could be extracted.
Instead of truncating introduce a "usable limit" which is respected by
mem_detect api. Also add extra online memory ranges iterator which still
provides full set of online memory ranges disregarding the "usable limit".
Fixes: bf64f0517e5d ("s390/mem_detect: handle online memory limit just once")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
RDP instruction allows to reset DAT-protection bit in a PTE, with less
CPU synchronization overhead than IPTE instruction. In particular, IPTE
can cause machine-wide synchronization overhead, and excessive IPTE usage
can negatively impact machine performance.
RDP can be used instead of IPTE, if the new PTE only differs in SW bits
and _PAGE_PROTECT HW bit, for PTE protection changes from RO to RW.
SW PTE bit changes are allowed, e.g. for dirty and young tracking, but none
of the other HW-defined part of the PTE must change. This is because the
architecture forbids such changes to an active and valid PTE, which
is why invalidation with IPTE is always used first, before writing a new
entry.
The RDP optimization helps mainly for fault-driven SW dirty-bit tracking.
Writable PTEs are initially always mapped with HW _PAGE_PROTECT bit set,
to allow SW dirty-bit accounting on first write protection fault, where
the DAT-protection would then be reset. The reset is now done with RDP
instead of IPTE, if RDP instruction is available.
RDP cannot always guarantee that the DAT-protection reset is propagated
to all CPUs immediately. This means that spurious TLB protection faults
on other CPUs can now occur. For this, common code provides a
flush_tlb_fix_spurious_fault() handler, which will now be used to do a
CPU-local TLB flush. However, this will clear the whole TLB of a CPU, and
not just the affected entry. For more fine-grained flushing, by simply
doing a (local) RDP again, flush_tlb_fix_spurious_fault() would need to
also provide the PTE pointer.
Note that spurious TLB protection faults cannot really be distinguished
from racing pagetable updates, where another thread already installed the
correct PTE. In such a case, the local TLB flush would be unnecessary
overhead, but overall reduction of CPU synchronization overhead by not
using IPTE is still expected to be beneficial.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The current definition already collapse with the generic definition of
vm_fault_reason. Move the private definitions to allocate bits from the
top of uint so they won't collapse anymore.
Signed-off-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20230205231704.909536-4-peterx@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
KASAN common code is able to handle memory hotplug and create KASAN shadow
memory on a fly. Online memory ranges are available from mem_detect,
use this information to avoid mapping KASAN shadow for standby memory.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Introduce mem_detect_truncate() to cut any online memory ranges above
established identity mapping size, so that mem_detect users wouldn't
have to do it over and over again.
Suggested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Kasan shadow memory area has been moved to the end of kernel address
space since commit 9a39abb7c9aa ("s390/boot: simplify and fix kernel
memory layout setup"), therefore skipping any memory ranges above
VMALLOC_START in empty page tables cleanup code already handles
KASAN shadow memory intersection case and explicit checks could be
removed.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Commit b9ff81003cf1 ("s390/vmem: cleanup empty page tables") introduced
empty page tables cleanup in vmem code, but when the kernel is built
with KASAN enabled the code has no effect due to wrong KASAN shadow
memory intersection condition, which effectively ignores any memory
range below KASAN shadow. Fix intersection condition to make code
work as anticipated.
Fixes: b9ff81003cf1 ("s390/vmem: cleanup empty page tables")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Kasan shadow memory area has been moved to the end of kernel address
space since commit 9a39abb7c9aa ("s390/boot: simplify and fix kernel
memory layout setup"). Change kasan memory layout note accordingly.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
---[ Real Memory Copy Area Start ]---
0x001bfffffffff000-0x001c000000000000 4K PTE I
---[ Kasan Shadow Start ]---
---[ Real Memory Copy Area End ]---
0x001c000000000000-0x001c000200000000 8G PMD RW NX
...
---[ Kasan Shadow End ]---
ptdump does a stable sort of markers. Move kasan markers after
memcpy real to avoid swapping.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Swap is a function interface that provides exchange function. To avoid
code duplication, we can use swap function.
./arch/s390/mm/vmem.c:680:10-11: WARNING opportunity for swap().
[hca@linux.ibm.com: get rid of all temp variables]
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3786
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230117060223.58583-1-jiapeng.chong@linux.alibaba.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Move Absolute Lowcore Area allocation to the decompressor.
As result, get_abs_lowcore() and put_abs_lowcore() access
brackets become really straight and do not require complex
execution context analysis and LAP and interrupts tackling.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Move Real Memory Copy Area allocation to the decompressor.
As result, memcpy_real() and memcpy_real_iter() movers
become usable since the very moment the kernel starts.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The identity mapping is created in the decompressor,
there is no need to have the same functionality in
the kasan setup code. Thus, remove it.
Remove the 4KB pages check for first 1MB since there
is no need to take care of the lowcore pages.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
As the kernel is executed in DAT-on mode only, remove
unnecessary DAT bit check together with the dead code.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The setup of the kernel virtual address space is spread
throughout the sources, boot stages and config options
like this:
1. The available physical memory regions are queried
and stored as mem_detect information for later use
in the decompressor.
2. Based on the physical memory availability the virtual
memory layout is established in the decompressor;
3. If CONFIG_KASAN is disabled the kernel paging setup
code populates kernel pgtables and turns DAT mode on.
It uses the information stored at step [1].
4. If CONFIG_KASAN is enabled the kernel early boot
kasan setup populates kernel pgtables and turns DAT
mode on. It uses the information stored at step [1].
The kasan setup creates early_pg_dir directory and
directly overwrites swapper_pg_dir entries to make
shadow memory pages available.
Move the kernel virtual memory setup to the decompressor
and start the kernel with DAT turned on right from the
very first istruction. That completely eliminates the
boot phase when the kernel runs in DAT-off mode, simplies
the overall design and consolidates pgtables setup.
The identity mapping is created in the decompressor, while
kasan shadow mappings are still created by the early boot
kernel code.
Share with decompressor the existing kasan memory allocator.
It decreases the size of a newly requested memory block from
pgalloc_pos and ensures that kernel image is not overwritten.
pgalloc_low and pgalloc_pos pointers are made preserved boot
variables for that.
Use the bootdata infrastructure to setup swapper_pg_dir
and invalid_pg_dir directories used by the kernel later.
The interim early_pg_dir directory established by the
kasan initialization code gets eliminated as result.
As the kernel runs in DAT-on mode only the PSW_KERNEL_BITS
define gets PSW_MASK_DAT bit by default. Additionally, the
setup_lowcore_dat_off() and setup_lowcore_dat_on() routines
get merged, since there is no DAT-off mode stage anymore.
The memory mappings are created with RW+X protection that
allows the early boot code setting up all necessary data
and services for the kernel being booted. Just before the
paging is enabled the memory protection is changed to
RO+X for text, RO+NX for read-only data and RW+NX for
kernel data and the identity mapping.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Convert setup of pgtable entries to use set_pXe_bit()
helpers as the preferred way in MM code.
Locally introduce pgprot_clear_bit() helper, which is
strictly speaking a generic function. However, it is
only x86 pgprot_clear_protnone_bits() helper, which
does a similar thing, so do not make it public.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Fix variables initialization coding style and setup zero
pgtable same way region and segment pgtables are set up.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The kasan early boot memory allocators operate on pgalloc_pos
and segment_pos physical address pointers, but fail to convert
it to the corresponding virtual pointers.
Currently it is not a problem, since virtual and physical
addresses on s390 are the same. Nevertheless, should they
ever differ, this would cause an invalid pointer access.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a97d:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
direction misannotations and (hopefully) preventing
more of the same for the future.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHQEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCY5ZzQAAKCRBZ7Krx/gZQ
65RZAP4nTkvOn0NZLVFkuGOx8pgJelXAvrteyAuecVL8V6CR4AD40qCVY51PJp8N
MzwiRTeqnGDxTTF7mgd//IB6hoatAA==
=bcvF
-----END PGP SIGNATURE-----
Merge tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"iov_iter work; most of that is about getting rid of direction
misannotations and (hopefully) preventing more of the same for the
future"
* tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
use less confusing names for iov_iter direction initializers
iov_iter: saner checks for attempt to copy to/from iterator
[xen] fix "direction" argument of iov_iter_kvec()
[vhost] fix 'direction' argument of iov_iter_{init,bvec}()
[target] fix iov_iter_bvec() "direction" argument
[s390] memcpy_real(): WRITE is "data source", not destination...
[s390] zcore: WRITE is "data source", not destination...
[infiniband] READ is "data destination", not source...
[fsi] WRITE is "data source", not destination...
[s390] copy_oldmem_kernel() - WRITE is "data source", not destination
csum_and_copy_to_iter(): handle ITER_DISCARD
get rid of unlikely() on page_copy_sane() calls
Keep sclp_early_sccb so it can also be used after initdata has been
freed. This is a prerequisite to allow printing a message from the
machine check handler.
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
In __gmap_segment_gaddr() pmd level page table page is being extracted
from the pmd pointer, similar to pmd_pgtable_page() implementation. This
reduces some redundancy by directly using pmd_pgtable_page() instead,
though first making it available.
Link: https://lkml.kernel.org/r/20221125034502.1559986-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
s390 allows to enable CONFIG_NUMA, mainly to enable a couple of system
calls which are only present if NUMA is enabled. The NUMA specific system
calls are required by a couple of applications, which wouldn't work if the
system calls wouldn't be present.
The NUMA implementation itself maps all CPUs and memory to node 0. A
special case is the generic percpu setup code, which doesn't expect an s390
like implementation and therefore emits a message/warning:
"percpu: cpu 0 has no node -1 or node-local memory".
In order to get rid of this message, and also to provide sane CPU to node
and CPU distance mappings implement a minimal setup_per_cpu_areas()
function, which is very close to the generic variant.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Add new exception table type which is able to handle register
pairs. If an exception is recognized on such an instruction the
specified register pair will be zeroed, and the specified error
register will be modified so it contains -EFAULT, similar to the
existing EX_TABLE_UA_LOAD_REG() macro.
Link: https://lore.kernel.org/r/Y2J8RSW2khWLgpPo@osiris
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
swiotlb passes virtual addresses to set_memory_encrypted() and
set_memory_decrypted(), but uv_remove_shared() and uv_set_shared()
expect physical addresses. This currently works, because virtual
and physical addresses are the same.
Add virt_to_phys() to resolve the virtual-physical confusion.
Reported-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20221107121221.156274-2-nrb@linux.ibm.com
Message-Id: <20221107121221.156274-2-nrb@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
Add "Real Memory Copy Area Start" and "Real Memory Copy Area End"
markers that fence the page used for real memory copying.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Function memcpy_real() is an univeral data mover that does not
require DAT mode to be able reading from a physical address.
Its advantage is an ability to read from any address, even
those for which no kernel virtual mapping exists.
Although memcpy_real() is interrupt-safe, there are no handlers
that make use of this function. The compiler instrumentation
have to be disabled and separate no-DAT stack used to allow
execution of the function once DAT mode is disabled.
Rework memcpy_real() to overcome these shortcomings. As result,
data copying (which is primarily reading out a crashed system
memory by a user process) is executed on a regular stack with
enabled interrupts. Also, use of memcpy_real_buf swap buffer
becomes unnecessary and the swapping is eliminated.
The above is achieved by using a fixed virtual address range
that spans a single page and remaps that page repeatedly when
memcpy_real() is called for a particular physical address.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Add "Lowcore Area Start" and "Lowcore Area End" markers
that fence pages where absolute lowcore resides.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Temporary unsetting of the prefix page in memcpy_absolute() routine
poses a risk of executing code path with unexpectedly disabled prefix
page. This rework avoids the prefix page uninstalling and disabling
of normal and machine check interrupts when accessing the absolute
zero memory.
Although memcpy_absolute() routine can access the whole memory, it is
only used to update the absolute zero lowcore. This rework therefore
introduces a new mechanism for the absolute zero lowcore access and
scraps memcpy_absolute() routine for good.
Instead, an area is reserved in the virtual memory that is used for
the absolute lowcore access only. That area holds an array of 8KB
virtual mappings - one per CPU. Whenever a CPU is brought online, the
corresponding item is mapped to the real address of the previously
installed prefix page.
The absolute zero lowcore access works like this: a CPU calls the
new primitive get_abs_lowcore() to obtain its 8KB mapping as a
pointer to the struct lowcore. Virtual address references to that
pointer get translated to the real addresses of the prefix page,
which in turn gets swapped with the absolute zero memory addresses
due to prefixing. Once the pointer is not needed it must be released
with put_abs_lowcore() primitive:
struct lowcore *abs_lc;
unsigned long flags;
abs_lc = get_abs_lowcore(&flags);
abs_lc->... = ...;
put_abs_lowcore(abs_lc, flags);
To ensure the described mechanism works large segment- and region-
table entries must be avoided for the 8KB mappings. Failure to do
so results in usage of Region-Frame Absolute Address (RFAA) or
Segment-Frame Absolute Address (SFAA) large page fields. In that
case absolute addresses would be used to address the prefix page
instead of the real ones and the prefixing would get bypassed.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
When pud-sized hugepages were introduced for s390, the generic version of
follow_huge_pud() was using pte_page() instead of pud_page(). This would
be wrong for s390, see also commit 97534127012f ("mm/hugetlb: use
pmd_page() in follow_huge_pmd()"). Therefore, and probably because not
all archs were supporting pud_page() at that time, a private version of
follow_huge_pud() was added for s390, correctly using pud_page().
Since commit 3a194f3f8ad01 ("mm/hugetlb: make pud_huge() and
follow_huge_pud() aware of non-present pud entry"), the generic version of
follow_huge_pud() is now also using pud_page(), and in general behaves
similar to follow_huge_pmd().
Therefore we can now switch to the generic version and get rid of the
s390-specific follow_huge_pud().
Link: https://lkml.kernel.org/r/20220818135717.609eef8a@thinkpad
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Haiyue Wang <haiyue.wang@intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add amode31 markers which makes a ro mapping in the middle of
nowhere in the kernel_page_tables output less magic.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Use set_memory_4k() to split lowcore pages within the kernel mapping
instead of using the quite subtle !addr check within modify_pmd_table()
and modify_pud_table() to prevent large pages for address zero.
With this lowcore might be mapped with 1MB / 2GB frames and only later
will be split. This way this mapping is handled like every other.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Remove unused access parameter from do_fault_error() which also makes the
code a bit more readable since quite some callers can be simplified.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The failing address alignment to HPAGE_MASK in do_exception(), for
hugetlb faults, was useless from the beginning. With 2 GB hugepage
support it became wrong, but w/o further negative impact. Now it
could have negative performance impact because it breaks the cacheline
optimization for process_huge_page().
Therefore, remove it.
Note that we still have failing address alignment by HW to PAGE_SIZE,
for all page faults, not just hugetlb faults. So this patch will not
fix UFFD_FEATURE_EXACT_ADDRESS for userfaultfd handling. It will just
move the failing address for hugetlb faults a bit closer to the real
address, at 4K page granularity, similar to normal page faults.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
For non-protection pXd_none() page faults in do_dat_exception(), we
call do_exception() with access == (VM_READ | VM_WRITE | VM_EXEC).
In do_exception(), vma->vm_flags is checked against that before
calling handle_mm_fault().
Since commit 92f842eac7ee3 ("[S390] store indication fault optimization"),
we call handle_mm_fault() with FAULT_FLAG_WRITE, when recognizing that
it was a write access. However, the vma flags check is still only
checking against (VM_READ | VM_WRITE | VM_EXEC), and therefore also
calling handle_mm_fault() with FAULT_FLAG_WRITE in cases where the vma
does not allow VM_WRITE.
Fix this by changing access check in do_exception() to VM_WRITE only,
when recognizing write access.
Link: https://lkml.kernel.org/r/20220811103435.188481-3-david@redhat.com
Fixes: 92f842eac7ee3 ("[S390] store indication fault optimization")
Cc: <stable@vger.kernel.org>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
- Rework copy_oldmem_page() callback to take an iov_iter.
This includes few prerequisite updates and fixes to the
oldmem reading code.
- Rework cpufeature implementation to allow for various CPU feature
indications, which is not only limited to hardware capabilities,
but also allows CPU facilities.
- Use the cpufeature rework to autoload Ultravisor module when CPU
facility 158 is available.
- Add ELF note type for encrypted CPU state of a protected virtual CPU.
The zgetdump tool from s390-tools package will decrypt the CPU state
using a Customer Communication Key and overwrite respective notes to
make the data accessible for crash and other debugging tools.
- Use vzalloc() instead of vmalloc() + memset() in ChaCha20 crypto test.
- Fix incorrect recovery of kretprobe modified return address in stacktrace.
- Switch the NMI handler to use generic irqentry_nmi_enter() and
irqentry_nmi_exit() helper functions.
- Rework the cryptographic Adjunct Processors (AP) pass-through design
to support dynamic changes to the AP matrix of a running guest as well
as to implement more of the AP architecture.
- Minor boot code cleanups.
- Grammar and typo fixes to hmcdrv and tape drivers.
-----BEGIN PGP SIGNATURE-----
iI0EABYIADUWIQQrtrZiYVkVzKQcYivNdxKlNrRb8AUCYu4dRBccYWdvcmRlZXZA
bGludXguaWJtLmNvbQAKCRDNdxKlNrRb8DnlAP45Sk4cE35T+Z0vdHE2f0uMXE/p
uHNjS3fDZOQVFJ2jZwEA99xPF5qPCttbR/b1VHsMSb30684IT1A4PC7y05kgfAw=
=jCc3
-----END PGP SIGNATURE-----
Merge tag 's390-5.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Alexander Gordeev:
- Rework copy_oldmem_page() callback to take an iov_iter.
This includes a few prerequisite updates and fixes to the oldmem
reading code.
- Rework cpufeature implementation to allow for various CPU feature
indications, which is not only limited to hardware capabilities, but
also allows CPU facilities.
- Use the cpufeature rework to autoload Ultravisor module when CPU
facility 158 is available.
- Add ELF note type for encrypted CPU state of a protected virtual CPU.
The zgetdump tool from s390-tools package will decrypt the CPU state
using a Customer Communication Key and overwrite respective notes to
make the data accessible for crash and other debugging tools.
- Use vzalloc() instead of vmalloc() + memset() in ChaCha20 crypto
test.
- Fix incorrect recovery of kretprobe modified return address in
stacktrace.
- Switch the NMI handler to use generic irqentry_nmi_enter() and
irqentry_nmi_exit() helper functions.
- Rework the cryptographic Adjunct Processors (AP) pass-through design
to support dynamic changes to the AP matrix of a running guest as
well as to implement more of the AP architecture.
- Minor boot code cleanups.
- Grammar and typo fixes to hmcdrv and tape drivers.
* tag 's390-5.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (46 commits)
Revert "s390/smp: enforce lowcore protection on CPU restart"
Revert "s390/smp: rework absolute lowcore access"
Revert "s390/smp,ptdump: add absolute lowcore markers"
s390/unwind: fix fgraph return address recovery
s390/nmi: use irqentry_nmi_enter()/irqentry_nmi_exit()
s390: add ELF note type for encrypted CPU state of a PV VCPU
s390/smp,ptdump: add absolute lowcore markers
s390/smp: rework absolute lowcore access
s390/setup: rearrange absolute lowcore initialization
s390/boot: cleanup adjust_to_uv_max() function
s390/smp: enforce lowcore protection on CPU restart
s390/tape: fix comment typo
s390/hmcdrv: fix Kconfig "its" grammar
s390/docs: fix warnings for vfio_ap driver doc
s390/docs: fix warnings for vfio_ap driver lock usage doc
s390/crash: support multi-segment iterators
s390/crash: use static swap buffer for copy_to_user_real()
s390/crash: move copy_to_user_real() to crash_dump.c
s390/zcore: fix race when reading from hardware system area
s390/crash: fix incorrect number of bytes to copy to user space
...