189 Commits

Author SHA1 Message Date
Josh Poimboeuf
a111b7c0f2 arm64/speculation: Support 'mitigations=' cmdline option
Configure arm64 runtime CPU speculation bug mitigations in accordance
with the 'mitigations=' cmdline option.  This affects Meltdown, Spectre
v2, and Speculative Store Bypass.

The default behavior is unchanged.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
[will: reorder checks so KASLR implies KPTI and SSBS is affected by cmdline]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-01 14:48:07 +01:00
Jeremy Linton
1b3ccf4be0 arm64: add sysfs vulnerability show for meltdown
We implement page table isolation as a mitigation for meltdown.
Report this to userspace via sysfs.

Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-26 16:28:12 +01:00
Hanjun Guo
0ecc471a2c arm64: kpti: Whitelist HiSilicon Taishan v110 CPUs
HiSilicon Taishan v110 CPUs didn't implement CSV3 field of the
ID_AA64PFR0_EL1 and are not susceptible to Meltdown, so whitelist
the MIDR in kpti_safe_list[] table.

Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: John Garry <john.garry@huawei.com>
Reviewed-by: Zhangshaokun <zhangshaokun@hisilicon.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-03-19 14:55:10 +00:00
Julien Thierry
bc3c03ccb4 arm64: Enable the support of pseudo-NMIs
Add a build option and a command line parameter to build and enable the
support of pseudo-NMIs.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Suggested-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:06:41 +00:00
Daniel Thompson
0ceb0d5690 arm64: alternative: Apply alternatives early in boot process
Currently alternatives are applied very late in the boot process (and
a long time after we enable scheduling). Some alternative sequences,
such as those that alter the way CPU context is stored, must be applied
much earlier in the boot sequence.

Introduce apply_boot_alternatives() to allow some alternatives to be
applied immediately after we detect the CPU features of the boot CPU.

Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
[julien.thierry@arm.com: rename to fit new cpufeature framework better,
			 apply BOOT_SCOPE feature early in boot]
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:20 +00:00
Julien Thierry
e9ab7a2e33 arm64: alternative: Allow alternative status checking per cpufeature
In preparation for the application of alternatives at different points
during the boot process, provide the possibility to check whether
alternatives for a feature of interest was already applied instead of
having a global boolean for all alternatives.

Make VHE enablement code check for the VHE feature instead of considering
all alternatives.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <Marc.Zyngier@arm.com>
Cc: Christoffer Dall <Christoffer.Dall@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:20 +00:00
Julien Thierry
b90d2b22af arm64: cpufeature: Add cpufeature for IRQ priority masking
Add a cpufeature indicating whether a cpu supports masking interrupts
by priority.

The feature will be properly enabled in a later patch.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:17 +00:00
Julien Thierry
c9bfdf734d arm64: cpufeature: Set SYSREG_GIC_CPUIF as a boot system feature
It is not supported to have some CPUs using GICv3 sysreg CPU interface
while some others do not.

Once ICC_SRE_EL1.SRE is set on a CPU, the bit cannot be cleared. Since
matching this feature require setting ICC_SRE_EL1.SRE, it cannot be
turned off if found on a CPU.

Set the feature as STRICT_BOOT, if boot CPU has it, all other CPUs are
required to have it.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Suggested-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:17 +00:00
Will Deacon
b89d82ef01 arm64: kpti: Avoid rewriting early page tables when KASLR is enabled
A side effect of commit c55191e96caa ("arm64: mm: apply r/o permissions
of VM areas to its linear alias as well") is that the linear map is
created with page granularity, which means that transitioning the early
page table from global to non-global mappings when enabling kpti can
take a significant amount of time during boot.

Given that most CPU implementations do not require kpti, this mainly
impacts KASLR builds where kpti is forcefully enabled. However, in these
situations we know early on that non-global mappings are required and
can avoid the use of global mappings from the beginning. The only gotcha
is Cavium erratum #27456, which we must detect based on the MIDR value
of the boot CPU.

Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: John Garry <john.garry@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-01-10 17:49:35 +00:00
Linus Torvalds
5694cecdb0 arm64 festive updates for 4.21
In the end, we ended up with quite a lot more than I expected:
 
 - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
   kernel-side support to come later)
 
 - Support for per-thread stack canaries, pending an update to GCC that
   is currently undergoing review
 
 - Support for kexec_file_load(), which permits secure boot of a kexec
   payload but also happens to improve the performance of kexec
   dramatically because we can avoid the sucky purgatory code from
   userspace. Kdump will come later (requires updates to libfdt).
 
 - Optimisation of our dynamic CPU feature framework, so that all
   detected features are enabled via a single stop_machine() invocation
 
 - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
   they can benefit from global TLB entries when KASLR is not in use
 
 - 52-bit virtual addressing for userspace (kernel remains 48-bit)
 
 - Patch in LSE atomics for per-cpu atomic operations
 
 - Custom preempt.h implementation to avoid unconditional calls to
   preempt_schedule() from preempt_enable()
 
 - Support for the new 'SB' Speculation Barrier instruction
 
 - Vectorised implementation of XOR checksumming and CRC32 optimisations
 
 - Workaround for Cortex-A76 erratum #1165522
 
 - Improved compatibility with Clang/LLD
 
 - Support for TX2 system PMUS for profiling the L3 cache and DMC
 
 - Reflect read-only permissions in the linear map by default
 
 - Ensure MMIO reads are ordered with subsequent calls to Xdelay()
 
 - Initial support for memory hotplug
 
 - Tweak the threshold when we invalidate the TLB by-ASID, so that
   mremap() performance is improved for ranges spanning multiple PMDs.
 
 - Minor refactoring and cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
 Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
 B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
 Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
 lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
 O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
 =sYdt
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 festive updates from Will Deacon:
 "In the end, we ended up with quite a lot more than I expected:

   - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
     kernel-side support to come later)

   - Support for per-thread stack canaries, pending an update to GCC
     that is currently undergoing review

   - Support for kexec_file_load(), which permits secure boot of a kexec
     payload but also happens to improve the performance of kexec
     dramatically because we can avoid the sucky purgatory code from
     userspace. Kdump will come later (requires updates to libfdt).

   - Optimisation of our dynamic CPU feature framework, so that all
     detected features are enabled via a single stop_machine()
     invocation

   - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
     they can benefit from global TLB entries when KASLR is not in use

   - 52-bit virtual addressing for userspace (kernel remains 48-bit)

   - Patch in LSE atomics for per-cpu atomic operations

   - Custom preempt.h implementation to avoid unconditional calls to
     preempt_schedule() from preempt_enable()

   - Support for the new 'SB' Speculation Barrier instruction

   - Vectorised implementation of XOR checksumming and CRC32
     optimisations

   - Workaround for Cortex-A76 erratum #1165522

   - Improved compatibility with Clang/LLD

   - Support for TX2 system PMUS for profiling the L3 cache and DMC

   - Reflect read-only permissions in the linear map by default

   - Ensure MMIO reads are ordered with subsequent calls to Xdelay()

   - Initial support for memory hotplug

   - Tweak the threshold when we invalidate the TLB by-ASID, so that
     mremap() performance is improved for ranges spanning multiple PMDs.

   - Minor refactoring and cleanups"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
  arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
  arm64: sysreg: Use _BITUL() when defining register bits
  arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
  arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
  arm64: docs: document pointer authentication
  arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
  arm64: enable pointer authentication
  arm64: add prctl control for resetting ptrauth keys
  arm64: perf: strip PAC when unwinding userspace
  arm64: expose user PAC bit positions via ptrace
  arm64: add basic pointer authentication support
  arm64/cpufeature: detect pointer authentication
  arm64: Don't trap host pointer auth use to EL2
  arm64/kvm: hide ptrauth from guests
  arm64/kvm: consistently handle host HCR_EL2 flags
  arm64: add pointer authentication register bits
  arm64: add comments about EC exception levels
  arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
  arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
  arm64: enable per-task stack canaries
  ...
2018-12-25 17:41:56 -08:00
Will Deacon
1e013d0612 arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
Open-coding the pointer-auth HWCAPs is a mess and can be avoided by
reusing the multi-cap logic from the CPU errata framework.

Move the multi_entry_cap_matches code to cpufeature.h and reuse it for
the pointer auth HWCAPs.

Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:47 +00:00
Will Deacon
a56005d321 arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
We can easily avoid defining the two meta-capabilities for the address
and generic keys, so remove them and instead just check both of the
architected and impdef capabilities when determining the level of system
support.

Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:47 +00:00
Mark Rutland
7503197562 arm64: add basic pointer authentication support
This patch adds basic support for pointer authentication, allowing
userspace to make use of APIAKey, APIBKey, APDAKey, APDBKey, and
APGAKey. The kernel maintains key values for each process (shared by all
threads within), which are initialised to random values at exec() time.

The ID_AA64ISAR1_EL1.{APA,API,GPA,GPI} fields are exposed to userspace,
to describe that pointer authentication instructions are available and
that the kernel is managing the keys. Two new hwcaps are added for the
same reason: PACA (for address authentication) and PACG (for generic
authentication).

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Tested-by: Adam Wallis <awallis@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: Fix sizeof() usage and unroll address key initialisation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:46 +00:00
Mark Rutland
6984eb47d5 arm64/cpufeature: detect pointer authentication
So that we can dynamically handle the presence of pointer authentication
functionality, wire up probing code in cpufeature.c.

From ARMv8.3 onwards, ID_AA64ISAR1 is no longer entirely RES0, and now
has four fields describing the presence of pointer authentication
functionality:

* APA - address authentication present, using an architected algorithm
* API - address authentication present, using an IMP DEF algorithm
* GPA - generic authentication present, using an architected algorithm
* GPI - generic authentication present, using an IMP DEF algorithm

This patch checks for both address and generic authentication,
separately. It is assumed that if all CPUs support an IMP DEF algorithm,
the same algorithm is used across all CPUs.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:46 +00:00
Will Deacon
2a355ec257 arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
While the CSV3 field of the ID_AA64_PFR0 CPU ID register can be checked
to see if a CPU is susceptible to Meltdown and therefore requires kpti
to be enabled, existing CPUs do not implement this field.

We therefore whitelist all unaffected Cortex-A CPUs that do not implement
the CSV3 field.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 14:14:21 +00:00
Will Deacon
bd4fb6d270 arm64: Add support for SB barrier and patch in over DSB; ISB sequences
We currently use a DSB; ISB sequence to inhibit speculation in set_fs().
Whilst this works for current CPUs, future CPUs may implement a new SB
barrier instruction which acts as an architected speculation barrier.

On CPUs that support it, patch in an SB; NOP sequence over the DSB; ISB
sequence and advertise the presence of the new instruction to userspace.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 16:47:04 +00:00
Suzuki K Poulose
0b587c84e4 arm64: capabilities: Batch cpu_enable callbacks
We use a stop_machine call for each available capability to
enable it on all the CPUs available at boot time. Instead
we could batch the cpu_enable callbacks to a single stop_machine()
call to save us some time.

Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 15:12:26 +00:00
Suzuki K Poulose
606f8e7b27 arm64: capabilities: Use linear array for detection and verification
Use the sorted list of capability entries for the detection and
verification.

Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 15:12:26 +00:00
Suzuki K Poulose
f7bfc14a08 arm64: capabilities: Optimize this_cpu_has_cap
Make use of the sorted capability list to access the capability
entry in this_cpu_has_cap() to avoid iterating over the two
tables.

Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 15:12:25 +00:00
Suzuki K Poulose
82a3a21b23 arm64: capabilities: Speed up capability lookup
We maintain two separate tables of capabilities, errata and features,
which decide the system capabilities. We iterate over each of these
tables for various operations (e.g, detection, verification etc.).
We do not have a way to map a system "capability" to its entry,
(i.e, cap -> struct arm64_cpu_capabilities) which is needed for
this_cpu_has_cap(). So we iterate over the table one by one to
find the entry and then do the operation. Also, this prevents
us from optimizing the way we "enable" the capabilities on the
CPUs, where we now issue a stop_machine() for each available
capability.

One solution is to merge the two tables into a single table,
sorted by the capability. But this is has the following
disadvantages:
  - We loose the "classification" of an errata vs. feature
  - It is quite easy to make a mistake when adding an entry,
    unless we sort the table at runtime.

So we maintain a list of pointers to the capability entry, sorted
by the "cap number" in a separate array, initialized at boot time.
The only restriction is that we can have one "entry" per capability.
While at it, remove the duplicate declaration of arm64_errata table.

Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06 15:12:25 +00:00
Will Deacon
4f9f49646a arm64: cpufeature: Fix mismerge of CONFIG_ARM64_SSBD block
When merging support for SSBD and the CRC32 instructions, the conflict
resolution for the new capability entries in arm64_features[]
inadvertedly predicated the availability of the CRC32 instructions on
CONFIG_ARM64_SSBD, despite the functionality being entirely unrelated.

Move the #ifdef CONFIG_ARM64_SSBD down so that it only covers the SSBD
capability.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-11-23 18:44:16 +00:00
Suzuki K Poulose
1602df02f3 arm64: cpufeature: Fix handling of CTR_EL0.IDC field
CTR_EL0.IDC reports the data cache clean requirements for instruction
to data coherence. However, if the field is 0, we need to check the
CLIDR_EL1 fields to detect the status of the feature. Currently we
don't do this and generate a warning with tainting the kernel, when
there is a mismatch in the field among the CPUs. Also the userspace
doesn't have a reliable way to check the CLIDR_EL1 register to check
the status.

This patch fixes the problem by checking the CLIDR_EL1 fields, when
(CTR_EL0.IDC == 0) and updates the kernel's copy of the CTR_EL0 for
the CPU with the actual status of the feature. This would allow the
sanity check infrastructure to do the proper checking of the fields
and also allow the CTR_EL0 emulation code to supply the real status
of the feature.

Now, if a CPU has raw CTR_EL0.IDC == 0 and effective IDC == 1 (with
overall system wide IDC == 1), we need to expose the real value to
the user. So, we trap CTR_EL0 access on the CPU which reports incorrect
CTR_EL0.IDC.

Fixes: commit 6ae4b6e057888 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-16 11:53:31 +01:00
Suzuki K Poulose
8ab66cbe63 arm64: cpufeature: ctr: Fix cpu capability check for late CPUs
The matches() routine for a capability must honor the "scope"
passed to it and return the proper results.
i.e, when passed with SCOPE_LOCAL_CPU, it should check the
status of the capability on the current CPU. This is used by
verify_local_cpu_capabilities() on a late secondary CPU to make
sure that it's compliant with the established system features.
However, ARM64_HAS_CACHE_{IDC/DIC} always checks the system wide
registers and this could mean that a late secondary CPU could return
"true" (since the CPU hasn't updated the system wide registers yet)
and thus lead the system in an inconsistent state, where
the system assumes it has IDC/DIC feature, while the new CPU
doesn't.

Fixes: commit 6ae4b6e0578886eb36 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-16 11:53:28 +01:00
Anshuman Khandual
520ad98871 arm64/cpufeatures: Factorize emulate_mrs()
MRS emulation gets triggered with exception class (0x00 or 0x18) eventually
calling the function emulate_mrs() which fetches the user space instruction
and analyses it's encodings (OP0, OP1, OP2, CRN, CRM, RT). The kernel tries
to emulate the given instruction looking into the encoding details. Going
forward these encodings can also be parsed from ESR_ELx.ISS fields without
requiring to fetch/decode faulting userspace instruction which can improve
performance. This factorizes emulate_mrs() function in a way that it can be
called directly with MRS encodings (OP0, OP1, OP2, CRN, CRM) for any given
target register which can then be used directly from 0x18 exception class.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-21 11:05:58 +01:00
Vladimir Murzin
5ffdfaedfa arm64: mm: Support Common Not Private translations
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.

CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.

For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().

There are a few cases we need to care of changes in TTBR0_EL1:
  - a switch to idmap
  - software emulated PAN

we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.

Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-18 12:02:27 +01:00
Suzuki K Poulose
74e248286e arm64: sysreg: Clean up instructions for modifying PSTATE fields
Instructions for modifying the PSTATE fields which were not supported
in the older toolchains (e.g, PAN, UAO) are generated using macros.
We have so far used the normal sys_reg() helper for defining the PSTATE
fields. While this works fine, it is really difficult to correlate the
code with the Arm ARM definition.

As per Arm ARM, the PSTATE fields are defined only using Op1, Op2 fields,
with fixed values for Op0, CRn. Also the CRm field has been reserved
for the Immediate value for the instruction. So using the sys_reg()
looks quite confusing.

This patch cleans up the instruction helpers by bringing them
in line with the Arm ARM definitions to make it easier to correlate
code with the document. No functional changes.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-17 14:56:01 +01:00
Will Deacon
b8925ee2e1 arm64: cpu: Move errata and feature enable callbacks closer to callers
The cpu errata and feature enable callbacks are only called via their
respective arm64_cpu_capabilities structure and therefore shouldn't
exist in the global namespace.

Move the PAN, RAS and cache maintenance emulation enable callbacks into
the same files as their corresponding arm64_cpu_capabilities structures,
making them static in the process.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-14 17:46:22 +01:00
Will Deacon
8f04e8e6e2 arm64: ssbd: Add support for PSTATE.SSBS rather than trapping to EL3
On CPUs with support for PSTATE.SSBS, the kernel can toggle the SSBD
state without needing to call into firmware.

This patch hooks into the existing SSBD infrastructure so that SSBS is
used on CPUs that support it, but it's all made horribly complicated by
the very real possibility of big/little systems that don't uniformly
provide the new capability.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-14 17:46:19 +01:00
Will Deacon
d71be2b6c0 arm64: cpufeature: Detect SSBS and advertise to userspace
Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass
Safe (SSBS) which can be used as a mitigation against Spectre variant 4.

Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS
directly, so that userspace can toggle the SSBS control without trapping
to the kernel.

This patch probes for the existence of SSBS and advertise the new instructions
to userspace if they exist.

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-14 17:46:01 +01:00
Ard Biesheuvel
86d0dd34ea arm64: cpufeature: add feature for CRC32 instructions
Add a CRC32 feature bit and wire it up to the CPU id register so we
will be able to use alternatives patching for CRC32 operations.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-10 16:10:09 +01:00
Paolo Bonzini
631989303b KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
 - Cache management optimizations for ARMv8.4 systems
 - Userspace interface for RAS, allowing error retrival and injection
 - Fault path optimization
 - Emulated physical timer fixes
 - Random cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
 ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
 JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
 zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
 7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
 GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
 8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
 NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
 WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
 TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
 AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
 cWKsrQUYcLGKZPRN
 =b6+A
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 4.19

- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
2018-08-22 14:07:56 +02:00
Linus Torvalds
1202f4fdbc arm64 updates for 4.19
A bunch of good stuff in here:
 
 - Wire up support for qspinlock, replacing our trusty ticket lock code
 
 - Add an IPI to flush_icache_range() to ensure that stale instructions
   fetched into the pipeline are discarded along with the I-cache lines
 
 - Support for the GCC "stackleak" plugin
 
 - Support for restartable sequences, plus an arm64 port for the selftest
 
 - Kexec/kdump support on systems booting with ACPI
 
 - Rewrite of our syscall entry code in C, which allows us to zero the
   GPRs on entry from userspace
 
 - Support for chained PMU counters, allowing 64-bit event counters to be
   constructed on current CPUs
 
 - Ensure scheduler topology information is kept up-to-date with CPU
   hotplug events
 
 - Re-enable support for huge vmalloc/IO mappings now that the core code
   has the correct hooks to use break-before-make sequences
 
 - Miscellaneous, non-critical fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJbbV41AAoJELescNyEwWM0WoEIALhrKtsIn6vqFlSs/w6aDuJL
 cMWmFxjTaKLmIq2+cJIdFLOJ3CH80Pu9gB+nEv/k+cZdCTfUVKfRf28HTpmYWsht
 bb4AhdHMC7yFW752BHk+mzJspeC8h/2Rm8wMuNVplZ3MkPrwo3vsiuJTofLhVL/y
 BihlU3+5sfBvCYIsWnuEZIev+/I/s/qm1ASiqIcKSrFRZP6VTt5f9TC75vFI8seW
 7yc3odKb0CArexB8yBjiPNziehctQF42doxQyL45hezLfWw4qdgHOSiwyiOMxEz9
 Fwwpp8Tx33SKLNJgqoqYznGW9PhYJ7n2Kslv19uchJrEV+mds82vdDNaWRULld4=
 =kQn6
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "A bunch of good stuff in here. Worth noting is that we've pulled in
  the x86/mm branch from -tip so that we can make use of the core
  ioremap changes which allow us to put down huge mappings in the
  vmalloc area without screwing up the TLB. Much of the positive
  diffstat is because of the rseq selftest for arm64.

  Summary:

   - Wire up support for qspinlock, replacing our trusty ticket lock
     code

   - Add an IPI to flush_icache_range() to ensure that stale
     instructions fetched into the pipeline are discarded along with the
     I-cache lines

   - Support for the GCC "stackleak" plugin

   - Support for restartable sequences, plus an arm64 port for the
     selftest

   - Kexec/kdump support on systems booting with ACPI

   - Rewrite of our syscall entry code in C, which allows us to zero the
     GPRs on entry from userspace

   - Support for chained PMU counters, allowing 64-bit event counters to
     be constructed on current CPUs

   - Ensure scheduler topology information is kept up-to-date with CPU
     hotplug events

   - Re-enable support for huge vmalloc/IO mappings now that the core
     code has the correct hooks to use break-before-make sequences

   - Miscellaneous, non-critical fixes and cleanups"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (90 commits)
  arm64: alternative: Use true and false for boolean values
  arm64: kexec: Add comment to explain use of __flush_icache_range()
  arm64: sdei: Mark sdei stack helper functions as static
  arm64, kaslr: export offset in VMCOREINFO ELF notes
  arm64: perf: Add cap_user_time aarch64
  efi/libstub: Only disable stackleak plugin for arm64
  arm64: drop unused kernel_neon_begin_partial() macro
  arm64: kexec: machine_kexec should call __flush_icache_range
  arm64: svc: Ensure hardirq tracing is updated before return
  arm64: mm: Export __sync_icache_dcache() for xen-privcmd
  drivers/perf: arm-ccn: Use devm_ioremap_resource() to map memory
  arm64: Add support for STACKLEAK gcc plugin
  arm64: Add stack information to on_accessible_stack
  drivers/perf: hisi: update the sccl_id/ccl_id when MT is supported
  arm64: fix ACPI dependencies
  rseq/selftests: Add support for arm64
  arm64: acpi: fix alignment fault in accessing ACPI
  efi/arm: map UEFI memory map even w/o runtime services enabled
  efi/arm: preserve early mapping of UEFI memory map longer for BGRT
  drivers: acpi: add dependency of EFI for arm64
  ...
2018-08-14 16:39:13 -07:00
Dirk Mueller
dc0e36581e arm64: Check for errata before evaluating cpu features
Since commit d3aec8a28be3b8 ("arm64: capabilities: Restrict KPTI
detection to boot-time CPUs") we rely on errata flags being already
populated during feature enumeration. The order of errata and
features was flipped as part of commit ed478b3f9e4a ("arm64:
capabilities: Group handling of features and errata workarounds").

Return to the orginal order of errata and feature evaluation to
ensure errata flags are present during feature evaluation.

Fixes: ed478b3f9e4a ("arm64: capabilities: Group handling of
    features and errata workarounds")
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
CC: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Dirk Mueller <dmueller@suse.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-25 13:30:04 +01:00
Marc Zyngier
e48d53a91f arm64: KVM: Add support for Stage-2 control of memory types and cacheability
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages.  This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.

ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.

On such a system, we can then safely sidestep any form of dcache
management.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09 11:37:41 +01:00
Mark Rutland
d64567f678 arm64: use PSR_AA32 definitions
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.

To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-05 17:24:14 +01:00
Suzuki K Poulose
4c4a39dd5f arm64: Fix mismatched cache line size detection
If there is a mismatch in the I/D min line size, we must
always use the system wide safe value both in applications
and in the kernel, while performing cache operations. However,
we have been checking more bits than just the min line sizes,
which triggers false negatives. We may need to trap the user
accesses in such cases, but not necessarily patch the kernel.

This patch fixes the check to do the right thing as advertised.
A new capability will be added to check mismatches in other
fields and ensure we trap the CTR accesses.

Fixes: be68a8aaf925 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-05 10:19:57 +01:00
Will Deacon
b5b7dd647f arm64: kpti: Use early_param for kpti= command-line option
We inspect __kpti_forced early on as part of the cpufeature enable
callback which remaps the swapper page table using non-global entries.

Ensure that __kpti_forced has been updated to reflect the kpti=
command-line option before we start using it.

Fixes: ea1e3de85e94 ("arm64: entry: Add fake CPU feature for unmapping the kernel at EL0")
Cc: <stable@vger.kernel.org> # 4.16.x-
Reported-by: Wei Xu <xuwei5@hisilicon.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Wei Xu <xuwei5@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-06-22 17:23:26 +01:00
Dave Martin
94b07c1f8c arm64: signal: Report signal frame size to userspace via auxv
Stateful CPU architecture extensions may require the signal frame
to grow to a size that exceeds the arch's MINSIGSTKSZ #define.
However, changing this #define is an ABI break.

To allow userspace the option of determining the signal frame size
in a more forwards-compatible way, this patch adds a new auxv entry
tagged with AT_MINSIGSTKSZ, which provides the maximum signal frame
size that the process can observe during its lifetime.

If AT_MINSIGSTKSZ is absent from the aux vector, the caller can
assume that the MINSIGSTKSZ #define is sufficient.  This allows for
a consistent interface with older kernels that do not provide
AT_MINSIGSTKSZ.

The idea is that libc could expose this via sysconf() or some
similar mechanism.

There is deliberately no AT_SIGSTKSZ.  The kernel knows nothing
about userspace's own stack overheads and should not pretend to
know.

For arm64:

The primary motivation for this interface is the Scalable Vector
Extension, which can require at least 4KB or so of extra space
in the signal frame for the largest hardware implementations.

To determine the correct value, a "Christmas tree" mode (via the
add_all argument) is added to setup_sigframe_layout(), to simulate
addition of all possible records to the signal frame at maximum
possible size.

If this procedure goes wrong somehow, resulting in a stupidly large
frame layout and hence failure of sigframe_alloc() to allocate a
record to the frame, then this is indicative of a kernel bug.  In
this case, we WARN() and no attempt is made to populate
AT_MINSIGSTKSZ for userspace.

For arm64 SVE:

The SVE context block in the signal frame needs to be considered
too when computing the maximum possible signal frame size.

Because the size of this block depends on the vector length, this
patch computes the size based not on the thread's current vector
length but instead on the maximum possible vector length: this
determines the maximum size of SVE context block that can be
observed in any signal frame for the lifetime of the process.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-06-01 15:53:10 +01:00
Catalin Marinas
ebc7e21e0f arm64: Increase ARCH_DMA_MINALIGN to 128
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the
currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves
the fallback in cache_line_size() from L1_CACHE_BYTES to this constant.
In addition, it warns (and taints) if the CWG is larger than
ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-15 13:29:55 +01:00
Mark Rutland
71c751f2a4 arm64: add sentinel to kpti_safe_list
We're missing a sentinel entry in kpti_safe_list. Thus is_midr_in_range_list()
can walk past the end of kpti_safe_list. Depending on the contents of memory,
this could erroneously match a CPU's MIDR, cause a data abort, or other bad
outcomes.

Add the sentinel entry to avoid this.

Fixes: be5b299830c63ed7 ("arm64: capabilities: Add support for checks based on a list of MIDRs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Tested-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-23 17:27:20 +01:00
Linus Torvalds
d8312a3f61 ARM:
- VHE optimizations
 - EL2 address space randomization
 - speculative execution mitigations ("variant 3a", aka execution past invalid
 privilege register access)
 - bugfixes and cleanups
 
 PPC:
 - improvements for the radix page fault handler for HV KVM on POWER9
 
 s390:
 - more kvm stat counters
 - virtio gpu plumbing
 - documentation
 - facilities improvements
 
 x86:
 - support for VMware magic I/O port and pseudo-PMCs
 - AMD pause loop exiting
 - support for AMD core performance extensions
 - support for synchronous register access
 - expose nVMX capabilities to userspace
 - support for Hyper-V signaling via eventfd
 - use Enlightened VMCS when running on Hyper-V
 - allow userspace to disable MWAIT/HLT/PAUSE vmexits
 - usual roundup of optimizations and nested virtualization bugfixes
 
 Generic:
 - API selftest infrastructure (though the only tests are for x86 as of now)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
 rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
 N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
 kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
 UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
 Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
 =bPlD
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - VHE optimizations

   - EL2 address space randomization

   - speculative execution mitigations ("variant 3a", aka execution past
     invalid privilege register access)

   - bugfixes and cleanups

  PPC:
   - improvements for the radix page fault handler for HV KVM on POWER9

  s390:
   - more kvm stat counters

   - virtio gpu plumbing

   - documentation

   - facilities improvements

  x86:
   - support for VMware magic I/O port and pseudo-PMCs

   - AMD pause loop exiting

   - support for AMD core performance extensions

   - support for synchronous register access

   - expose nVMX capabilities to userspace

   - support for Hyper-V signaling via eventfd

   - use Enlightened VMCS when running on Hyper-V

   - allow userspace to disable MWAIT/HLT/PAUSE vmexits

   - usual roundup of optimizations and nested virtualization bugfixes

  Generic:
   - API selftest infrastructure (though the only tests are for x86 as
     of now)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
  kvm: x86: fix a prototype warning
  kvm: selftests: add sync_regs_test
  kvm: selftests: add API testing infrastructure
  kvm: x86: fix a compile warning
  KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
  KVM: X86: Introduce handle_ud()
  KVM: vmx: unify adjacent #ifdefs
  x86: kvm: hide the unused 'cpu' variable
  KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
  Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
  kvm: Add emulation for movups/movupd
  KVM: VMX: raise internal error for exception during invalid protected mode state
  KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
  KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
  KVM: x86: Fix misleading comments on handling pending exceptions
  KVM: x86: Rename interrupt.pending to interrupt.injected
  KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
  x86/kvm: use Enlightened VMCS when running on Hyper-V
  x86/hyper-v: detect nested features
  x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
  ...
2018-04-09 11:42:31 -07:00
Will Deacon
3f251cf0ab Revert "arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)"
This reverts commit 1f85b42a691cd8329ba82dbcaeec80ac1231b32a.

The internal dma-direct.h API has changed in -next, which collides with
us trying to use it to manage non-coherent DMA devices on systems with
unreasonably large cache writeback granules.

This isn't at all trivial to resolve, so revert our changes for now and
we can revisit this after the merge window. Effectively, this just
restores our behaviour back to that of 4.16.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-27 12:04:51 +01:00
Will Deacon
12eb369125 arm64: cpufeature: Avoid warnings due to unused symbols
An allnoconfig build complains about unused symbols due to functions
that are called via conditional cpufeature and cpu_errata table entries.

Annotate these as __maybe_unused if they are likely to be generic, or
predicate their compilation on the same option as the table entry if
they are specific to a given alternative.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-27 11:51:12 +01:00
Suzuki K Poulose
ece1397cbc arm64: Add work around for Arm Cortex-A55 Erratum 1024718
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:44 +01:00
Suzuki K Poulose
05abb595bb arm64: Delay enabling hardware DBM feature
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.

The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.

To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:44 +01:00
Suzuki K Poulose
ba7d9233c2 arm64: capabilities: Handle shared entries
Some capabilities have different criteria for detection and associated
actions based on the matching criteria, even though they all share the
same capability bit. So far we have used multiple entries with the same
capability bit to handle this. This is prone to errors, as the
cpu_enable is invoked for each entry, irrespective of whether the
detection rule applies to the CPU or not. And also this complicates
other helpers, e.g, __this_cpu_has_cap.

This patch adds a wrapper entry to cover all the possible variations
of a capability by maintaining list of matches + cpu_enable callbacks.
To avoid complicating the prototypes for the "matches()", we use
arm64_cpu_capabilities maintain the list and we ignore all the other
fields except the matches & cpu_enable.

This ensures :

 1) The capabilitiy is set when at least one of the entry detects
 2) Action is only taken for the entries that "matches".

This avoids explicit checks in the cpu_enable() take some action.
The only constraint here is that, all the entries should have the
same "type" (i.e, scope and conflict rules).

If a cpu_enable() method is associated with multiple matches for a
single capability, care should be taken that either the match criteria
are mutually exclusive, or that the method is robust against being
called multiple times.

This also reverts the changes introduced by commit 67948af41f2e6818ed
("arm64: capabilities: Handle duplicate entries for a capability").

Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:43 +01:00
Suzuki K Poulose
be5b299830 arm64: capabilities: Add support for checks based on a list of MIDRs
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:42 +01:00
Suzuki K Poulose
830dcc9f9a arm64: capabilities: Change scope of VHE to Boot CPU feature
We expect all CPUs to be running at the same EL inside the kernel
with or without VHE enabled and we have strict checks to ensure
that any mismatch triggers a kernel panic. If VHE is enabled,
we use the feature based on the boot CPU and all other CPUs
should follow. This makes it a perfect candidate for a capability
based on the boot CPU,  which should be matched by all the CPUs
(both when is ON and OFF). This saves us some not-so-pretty
hooks and special code, just for verifying the conflict.

The patch also makes the VHE capability entry depend on
CONFIG_ARM64_VHE.

Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:41 +01:00
Suzuki K Poulose
fd9d63da17 arm64: capabilities: Add support for features enabled early
The kernel detects and uses some of the features based on the boot
CPU and expects that all the following CPUs conform to it. e.g,
with VHE and the boot CPU running at EL2, the kernel decides to
keep the kernel running at EL2. If another CPU is brought up without
this capability, we use custom hooks (via check_early_cpu_features())
to handle it. To handle such capabilities add support for detecting
and enabling capabilities based on the boot CPU.

A bit is added to indicate if the capability should be detected
early on the boot CPU. The infrastructure then ensures that such
capabilities are probed and "enabled" early on in the boot CPU
and, enabled on the subsequent CPUs.

Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:41 +01:00
Suzuki K Poulose
d3aec8a28b arm64: capabilities: Restrict KPTI detection to boot-time CPUs
KPTI is treated as a system wide feature and is only detected if all
the CPUs in the sysetm needs the defense, unless it is forced via kernel
command line. This leaves a system with a mix of CPUs with and without
the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not
activated at boot time, the CPU is currently allowed to boot, which is a
potential security vulnerability.
This patch ensures that the KPTI is turned on if at least one CPU detects
the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late
CPU, if it requires the defense, when the system hasn't enabled it,

Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:40 +01:00