IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The limbo and overflow code picks a CPU to use from the domain's list of online
CPUs. Work is then scheduled on these CPUs to maintain the limbo list and any
counters that may overflow.
cpumask_any() may pick a CPU that is marked nohz_full, which will either
penalise the work that CPU was dedicated to, or delay the processing of limbo
list or counters that may overflow. Perhaps indefinitely. Delaying the overflow
handling will skew the bandwidth values calculated by mba_sc, which expects to
be called once a second.
Add cpumask_any_housekeeping() as a replacement for cpumask_any() that prefers
housekeeping CPUs. This helper will still return a nohz_full CPU if that is the
only option. The CPU to use is re-evaluated each time the limbo/overflow work
runs. This ensures the work will move off a nohz_full CPU once a housekeeping
CPU is available.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-13-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When switching tasks, the CLOSID and RMID that the new task should use
are stored in struct task_struct. For x86 the CLOSID known by resctrl,
the value in task_struct, and the value written to the CPU register are
all the same thing.
MPAM's CPU interface has two different PARTIDs - one for data accesses
the other for instruction fetch. Storing resctrl's CLOSID value in
struct task_struct implies the arch code knows whether resctrl is using
CDP.
Move the matching and setting of the struct task_struct properties to
use helpers. This allows arm64 to store the hardware format of the
register, instead of having to convert it each time.
__rdtgroup_move_task()s use of READ_ONCE()/WRITE_ONCE() ensures torn
values aren't seen as another CPU may schedule the task being moved
while the value is being changed. MPAM has an additional corner-case
here as the PMG bits extend the PARTID space.
If the scheduler sees a new-CLOSID but old-RMID, the task will dirty an
RMID that the limbo code is not watching causing an inaccurate count.
x86's RMID are independent values, so the limbo code will still be
watching the old-RMID in this circumstance.
To avoid this, arm64 needs both the CLOSID/RMID WRITE_ONCE()d together.
Both values must be provided together.
Because MPAM's RMID values are not unique, the CLOSID must be provided
when matching the RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-12-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be used
for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Instead of allocating the first free CLOSID, on architectures where
CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is enabled, search
closid_num_dirty_rmid[] to find the cleanest CLOSID.
The CLOSID found is returned to closid_alloc() for the free list
to be updated.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-11-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The resctrl CLOSID allocator uses a single 32bit word to track which
CLOSID are free. The setting and clearing of bits is open coded.
Convert the existing open coded bit manipulations of closid_free_map
to use __set_bit() and friends. These don't need to be atomic as this
list is protected by the mutex.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-10-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be
used for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Keep track of the number of RMID held in limbo each CLOSID has. This will
allow a future helper to find the 'cleanest' CLOSID when allocating.
The array is only needed when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is
defined. This will never be the case on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-9-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAMs RMID values are not unique unless the CLOSID is considered as well.
alloc_rmid() expects the RMID to be an independent number.
Pass the CLOSID in to alloc_rmid(). Use this to compare indexes when
allocating. If the CLOSID is not relevant to the index, this ends up comparing
the free RMID with itself, and the first free entry will be used. With MPAM the
CLOSID is included in the index, so this becomes a walk of the free RMID
entries, until one that matches the supplied CLOSID is found.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-8-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
x86 systems identify traffic using the CLOSID and RMID. The CLOSID is
used to lookup the control policy, the RMID is used for monitoring. For
x86 these are independent numbers.
Arm's MPAM has equivalent features PARTID and PMG, where the PARTID is
used to lookup the control policy. The PMG in contrast is a small number
of bits that are used to subdivide PARTID when monitoring. The
cache-occupancy monitors require the PARTID to be specified when
monitoring.
This means MPAM's PMG field is not unique. There are multiple PMG-0, one
per allocated CLOSID/PARTID. If PMG is treated as equivalent to RMID, it
cannot be allocated as an independent number. Bitmaps like rmid_busy_llc
need to be sized by the number of unique entries for this resource.
Treat the combined CLOSID and RMID as an index, and provide architecture
helpers to pack and unpack an index. This makes the MPAM values unique.
The domain's rmid_busy_llc and rmid_ptrs[] are then sized by index, as
are domain mbm_local[] and mbm_total[].
x86 can ignore the CLOSID field when packing and unpacking an index, and
report as many indexes as RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-7-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
x86's RMID are independent of the CLOSID. An RMID can be allocated,
used and freed without considering the CLOSID.
MPAM's equivalent feature is PMG, which is not an independent number,
it extends the CLOSID/PARTID space. For MPAM, only PMG-bits worth of
'RMID' can be allocated for a single CLOSID.
i.e. if there is 1 bit of PMG space, then each CLOSID can have two
monitor groups.
To allow resctrl to disambiguate RMID values for different CLOSID,
everything in resctrl that keeps an RMID value needs to know the CLOSID
too. This will always be ignored on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-6-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
RMIDs are allocated for each monitor or control group directory, because
each of these needs its own RMID. For control groups,
rdtgroup_mkdir_ctrl_mon() later goes on to allocate the CLOSID.
MPAM's equivalent of RMID is not an independent number, so can't be
allocated until the CLOSID is known. An RMID allocation for one CLOSID
may fail, whereas another may succeed depending on how many monitor
groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been
allocated.
Move the RMID allocation out of mkdir_rdt_prepare() to occur in its caller,
after the mkdir_rdt_prepare() call. This allows the RMID allocator to
know the CLOSID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-5-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When monitoring is supported, each monitor and control group is allocated an
RMID. For control groups, rdtgroup_mkdir_ctrl_mon() later goes on to allocate
the CLOSID.
MPAM's equivalent of RMID are not an independent number, so can't be allocated
until the CLOSID is known. An RMID allocation for one CLOSID may fail, whereas
another may succeed depending on how many monitor groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been allocated.
Move the RMID allocation and mondata dir creation to a helper.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-4-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
rmid_ptrs[] is allocated from dom_data_init() but never free()d.
While the exit text ends up in the linker script's DISCARD section,
the direction of travel is for resctrl to be/have loadable modules.
Add resctrl_put_mon_l3_config() to cleanup any memory allocated
by rdt_get_mon_l3_config().
There is no reason to backport this to a stable kernel.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-3-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
tick_nohz_full_mask lists the CPUs that are nohz_full. This is only needed when
CONFIG_NO_HZ_FULL is defined. tick_nohz_full_cpu() allows a specific CPU to be
tested against the mask, and evaluates to false when CONFIG_NO_HZ_FULL is not
defined.
The resctrl code needs to pick a CPU to run some work on, a new helper prefers
housekeeping CPUs by examining the tick_nohz_full_mask. Hiding the declaration
behind #ifdef CONFIG_NO_HZ_FULL forces all the users to be behind an #ifdef
too.
Move the tick_nohz_full_mask declaration, this lets callers drop the #ifdef,
and guard access to tick_nohz_full_mask with IS_ENABLED() or something like
tick_nohz_full_cpu().
The definition does not need to be moved as any callers should be removed at
compile time unless CONFIG_NO_HZ_FULL is defined.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com> # for resctrl dependency
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-2-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The kernel test robot reported the following warning after commit
54e35eb8611c ("x86/resctrl: Read supported bandwidth sources from CPUID").
even though the issue is present even in the original commit
92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
which added this function. The reported warning is:
$ make C=1 CHECK=scripts/coccicheck arch/x86/kernel/cpu/resctrl/rdtgroup.o
...
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1621:5-8: Unneeded variable: "ret". Return "0" on line 1655
Remove the local variable 'ret'.
[ bp: Massage commit message, make mbm_config_write_domain() void. ]
Fixes: 92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202401241810.jbd8Ipa1-lkp@intel.com/
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/202401241810.jbd8Ipa1-lkp@intel.com
The mba_MBps feedback loop increases throttling when a group is using
more bandwidth than the target set by the user in the schemata file, and
decreases throttling when below target.
To avoid possibly stepping throttling up and down on every poll a flag
"delta_comp" is set whenever throttling is changed to indicate that the
actual change in bandwidth should be recorded on the next poll in
"delta_bw". Throttling is only reduced if the current bandwidth plus
delta_bw is below the user target.
This algorithm works well if the workload has steady bandwidth needs.
But it can go badly wrong if the workload moves to a different phase
just as the throttling level changed. E.g. if the workload becomes
essentially idle right as throttling level is increased, the value
calculated for delta_bw will be more or less the old bandwidth level.
If the workload then resumes, Linux may never reduce throttling because
current bandwidth plus delta_bw is above the target set by the user.
Implement a simpler heuristic by assuming that in the worst case the
currently measured bandwidth is being controlled by the current level of
throttling. Compute how much it may increase if throttling is relaxed to
the next higher level. If that is still below the user target, then it
is ok to reduce the amount of throttling.
Fixes: ba0f26d8529c ("x86/intel_rdt/mba_sc: Prepare for feedback loop")
Reported-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Xiaochen Shen <xiaochen.shen@intel.com>
Link: https://lore.kernel.org/r/20240122180807.70518-1-tony.luck@intel.com
If the BMEC (Bandwidth Monitoring Event Configuration) feature is
supported, the bandwidth events can be configured. The maximum supported
bandwidth bitmask can be read from CPUID:
CPUID_Fn80000020_ECX_x03 [Platform QoS Monitoring Bandwidth Event Configuration]
Bits Description
31:7 Reserved
6:0 Identifies the bandwidth sources that can be tracked.
While at it, move the mask checking to mon_config_write() before
iterating over all the domains. Also, print the valid bitmask when the
user tries to configure invalid event configuration value.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag.
Fixes: dc2a3e857981 ("x86/resctrl: Add interface to read mbm_total_bytes_config")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/669896fa512c7451319fa5ca2fdb6f7e015b5635.1705359148.git.babu.moger@amd.com
The QOS Memory Bandwidth Enforcement Limit is reported by
CPUID_Fn80000020_EAX_x01 and CPUID_Fn80000020_EAX_x02:
Bits Description
31:0 BW_LEN: Size of the QOS Memory Bandwidth Enforcement Limit.
Newer processors can support higher bandwidth limit than the current
hard-coded value. Remove latter and detect using CPUID instead. Also,
update the register variables eax and edx to match the AMD CPUID
definition.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag below.
Fixes: 4d05bf71f157 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/c26a8ca79d399ed076cf8bf2e9fbc58048808289.1705359148.git.babu.moger@amd.com
In a "W=1" build gcc throws a warning:
arch/x86/kernel/cpu/resctrl/core.c: In function ‘cache_alloc_hsw_probe’:
arch/x86/kernel/cpu/resctrl/core.c:139:16: warning: variable ‘h’ set but not used
Switch from wrmsr_safe() to wrmsrl_safe(), and from rdmsr() to rdmsrl()
using a single u64 argument for the MSR value instead of the pair of u32
for the high and low halves.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/ZULCd/TGJL9Dmncf@agluck-desk3
- assorted prep work for disk space accounting rewrite
- BTREE_TRIGGER_ATOMIC: after combining our trigger callbacks, this
makes our trigger context more explicit
- A few fixes to avoid excessive transaction restarts on multithreaded
workloads: fstests (in addition to ktest tests) are now checking
slowpath counters, and that's shaking out a few bugs
- Assorted tracepoint improvements
- Starting to break up bcachefs_format.h and move on disk types so
they're with the code they belong to; this will make room to start
documenting the on disk format better.
- A few minor fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWtjOsACgkQE6szbY3K
bnbyXRAAsx+yM81TFqsLzRRqf8oocRwf2dj5XzExz9Ig/lYQS5LIVROS2OxwDsAc
DeaYQSTcph9dkOswCrNR96bBnEgmmZ1ClfVI6WRXvm6vs4rjhSMNbNaVyySrMUVn
5p/Lsn1/RKl0lWMYlHrdryo+106zRcr6z1Hiv9QCXkXhzdkV8wFYDkfbMveShUsu
KobC29wvd2EfZr04nqsIXS/y/iRIXhtZqJmFCiAguN70UWrwUwArpELHI5Ve+WPZ
9VjgFXW6Ka3QxJs/20tX+t24DrC+eDXR44DzQmxwG5mPBBpXkcSk5UgRw/EUag5U
5+mDZQ5Ei3gvZvUwrilMosVy3pIw0IuvqeqwDGFoFXs1cce01QCMN+NG/dBTQw9i
KGGxJw5sOrZ8fIiFnypk1M+r9NVtA8MjriLNR5bJjCWPSpWqzkT2HzxFXc6HmTZu
vsE/AxwC1RLA6B2HZlDEqLOdHE3cofkDiIzWM5ABvb4p118iyk9hE6HhAufk5UdE
HaG646kGB8pUY/sCxBIOD6K2pgthDFv+fftTM7X+uIazD3bovvPQCEInu48/KAHn
/KmslSPO0txyjnRFMbXFJvd4Fgfo44GcBCeqGpy3B79aEJ3nroyRZ0qNnnsqj0Gl
picUWjTn4W561Q1zBXuE/6cLWEp+sfaqYQcM8L3CCitRTVDPaCQ=
=yd+F
-----END PGP SIGNATURE-----
Merge tag 'bcachefs-2024-01-21' of https://evilpiepirate.org/git/bcachefs
Pull more bcachefs updates from Kent Overstreet:
"Some fixes, Some refactoring, some minor features:
- Assorted prep work for disk space accounting rewrite
- BTREE_TRIGGER_ATOMIC: after combining our trigger callbacks, this
makes our trigger context more explicit
- A few fixes to avoid excessive transaction restarts on
multithreaded workloads: fstests (in addition to ktest tests) are
now checking slowpath counters, and that's shaking out a few bugs
- Assorted tracepoint improvements
- Starting to break up bcachefs_format.h and move on disk types so
they're with the code they belong to; this will make room to start
documenting the on disk format better.
- A few minor fixes"
* tag 'bcachefs-2024-01-21' of https://evilpiepirate.org/git/bcachefs: (46 commits)
bcachefs: Improve inode_to_text()
bcachefs: logged_ops_format.h
bcachefs: reflink_format.h
bcachefs; extents_format.h
bcachefs: ec_format.h
bcachefs: subvolume_format.h
bcachefs: snapshot_format.h
bcachefs: alloc_background_format.h
bcachefs: xattr_format.h
bcachefs: dirent_format.h
bcachefs: inode_format.h
bcachefs; quota_format.h
bcachefs: sb-counters_format.h
bcachefs: counters.c -> sb-counters.c
bcachefs: comment bch_subvolume
bcachefs: bch_snapshot::btime
bcachefs: add missing __GFP_NOWARN
bcachefs: opts->compression can now also be applied in the background
bcachefs: Prep work for variable size btree node buffers
bcachefs: grab s_umount only if snapshotting
...
- A fix for the idle and iowait time accounting vs. CPU hotplug.
The time is reset on CPU hotplug which makes the accumulated
systemwide time jump backwards.
- Assorted fixes and improvements for clocksource/event drivers
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmWtTLgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUXiD/4uN4Ntps8TwxSdg1X11M6++rizg9q9
EmIfwWcfQQJDM5Ss5FE88ye55NxIOwJ1brYo08+yTAXjnnZ/yNP1BBegHbMNiGil
NCHye7tYKZle25+hErdgfBB9n6brPz7dPOvV04/wRRWW+9p2ejt/5nEvojkyco9Y
S9KgBCxkvUqScMbdKKFW1UsThWh2euxwQXRGiWhTPPkbKcVynPvQJjvVyRxn01NS
eEhTn8YUNcAPT+1YApouGXrSCxo/IzBJ36CxOoCoUfaXcJ6FG1LLeAjNxKZ26Dfs
Ah0e3Hhyv6KOsBvBNwwabXDwryd6L8rZd8yL2KakI1vIC51uS2wneFy8GCieDVGh
xmy3U/tfkS0L7pmN+dQW2l4k9PHRNrwvbISKhs0UAHSOgGIMHZcjE6aFbYKru5i4
1W+dEjiktlceZ94mrEHbLpKmxWH2z5P8m0BzUs4kt3nkaOf6CTUKqa/qdAiU5dv+
lovKT26L8HBrMXf48I70UpgW/bYzOUGk55sR6hiLTXAelz1z02D1uYHFkshc0NCO
/O4wvHcgvMM46CtWVbim42AlRcyyWCr+FrY+jvfiG2icOcHPLqc81iHL8EKj7pJl
IxLgyPHVckgnE5gx+GQ8aDkg/qwCZnj4rFWgub8QMYtjI+pO+9T9kPAYPCxFhP7J
gmcJxZAB2RnKXA==
=RD6E
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Updates for time and clocksources:
- A fix for the idle and iowait time accounting vs CPU hotplug.
The time is reset on CPU hotplug which makes the accumulated
systemwide time jump backwards.
- Assorted fixes and improvements for clocksource/event drivers"
* tag 'timers-core-2024-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug
clocksource/drivers/ep93xx: Fix error handling during probe
clocksource/drivers/cadence-ttc: Fix some kernel-doc warnings
clocksource/drivers/timer-ti-dm: Fix make W=n kerneldoc warnings
clocksource/timer-riscv: Add riscv_clock_shutdown callback
dt-bindings: timer: Add StarFive JH8100 clint
dt-bindings: timer: thead,c900-aclint-mtimer: separate mtime and mtimecmp regs
- 18f14afe2816 powerpc/64s: Increase default stack size to 32KB BY: Michael Ellerman
Thanks to:
Michael Ellerman
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTYs9CDOrDQRwKRmtrJvCLnGrjHVgUCZayxkgAKCRDJvCLnGrjH
Vv2hAQDwvyYydFw64D7bnaFJDLvOwi3SL02OBaFYV1JTr8rf/QEA8NcTuqXis5o5
NedFYVE5PhYGWfyPD63aL+JpUKxsXwc=
=Ud9v
-----END PGP SIGNATURE-----
Merge tag 'powerpc-6.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Aneesh Kumar:
- Increase default stack size to 32KB for Book3S
Thanks to Michael Ellerman.
* tag 'powerpc-6.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Increase default stack size to 32KB
Add a field to bch_snapshot for creation time; this will be important
when we start exposing the snapshot tree to userspace.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The "apply this compression method in the background" paths now use the
compression option if background_compression is not set; this means that
setting or changing the compression option will cause existing data to
be compressed accordingly in the background.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
bcachefs btree nodes are big - typically 256k - and btree roots are
pinned in memory. As we're now up to 18 btrees, we now have significant
memory overhead in mostly empty btree roots.
And in the future we're going to start enforcing that certain btree node
boundaries exist, to solve lock contention issues - analagous to XFS's
AGIs.
Thus, we need to start allocating smaller btree node buffers when we
can. This patch changes code that refers to the filesystem constant
c->opts.btree_node_size to refer to the btree node buffer size -
btree_buf_bytes() - where appropriate.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The variable tmp is being assigned a value but it isn't being
read afterwards. The assignment is redundant and so tmp can be
removed.
Cleans up clang scan build warning:
warning: Although the value stored to 'ret' is used in the enclosing
expression, the value is never actually read from 'ret'
[deadcode.DeadStores]
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
drop_locks_do() should not be used in a fastpath without first trying
the do in nonblocking mode - the unlock and relock will cause excessive
transaction restarts and potentially livelocking with other threads that
are contending for the same locks.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Factor out bch2_journal_bufs_to_text(), and use it in the
journal_entry_full() tracepoint; when we can't get a journal reservation
we need to know the outstanding journal entry sizes to know if the
problem is due to excessive flushing.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>