IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Now that we can destroy the hierarchy, the code must remove what it
had put in place at the creation. In our case, the cpu hotplug
callbacks.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Link: https://lore.kernel.org/r/20220130210210.549877-6-daniel.lezcano@linaro.org
The release function does not reset the per cpu variable when it is
called. That will prevent creation again as the variable will be
already from the previous creation.
Fix it by resetting them.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Link: https://lore.kernel.org/r/20220130210210.549877-2-daniel.lezcano@linaro.org
Based on the previous DT changes in the core code, use the 'setup'
callback to initialize the CPU DTPM backend.
Code is reorganized to stick to the DTPM table description. No
functional changes.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Link: https://lore.kernel.org/r/20220128163537.212248-4-daniel.lezcano@linaro.org
The init table section is freed after the system booted. However the
next changes will make per module the DTPM description, so the table
won't be accessible when the module is loaded.
In order to fix that, we should move the table to the data section
where there are very few entries and that makes strange to add it
there.
The main goal of the table was to keep self-encapsulated code and we
can keep it almost as it by using an array instead.
Suggested-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20220128163537.212248-2-daniel.lezcano@linaro.org
When the ENERGY_MODEL and DTPM_CPU are enabled but actually without
any energy model, at cpu hotplug time, the dead cpuhp callback fails
leading to the warning.
Actually, the check could be simplified and we only do an action if
the dtpm cpu is enabled, otherwise we bail out without error.
Fixes: 7a89d7eacf8e ("powercap/drivers/dtpm: Simplify the dtpm table")
Reported-by: Kenneth R. Crudup <kenny@panix.com>
Tested-by: Kenneth R. Crudup <kenny@panix.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently the power consumption is based on the current OPP power
assuming the entire performance domain is fully loaded.
That gives very gross power estimation and we can do much better by
using the load to scale the power consumption.
Use the utilization to normalize and scale the power usage over the
max possible power.
Tested on a rock960 with 2 big CPUS, the power consumption estimation
conforms with the expected one.
Before this change:
~$ ~/dhrystone -t 1 -l 10000&
~$ cat /sys/devices/virtual/powercap/dtpm/dtpm:0/dtpm:0:1/constraint_0_max_power_uw
2260000
After this change:
~$ ~/dhrystone -t 1 -l 10000&
~$ cat /sys/devices/virtual/powercap/dtpm/dtpm:0/dtpm:0:1/constraint_0_max_power_uw
1130000
~$ ~/dhrystone -t 2 -l 10000&
~$ cat /sys/devices/virtual/powercap/dtpm/dtpm:0/dtpm:0:1/constraint_0_max_power_uw
2260000
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20210312130411.29833-5-daniel.lezcano@linaro.org
The dtpm framework provides an API to allocate a dtpm node. However
when a backend dtpm driver needs to allocate a dtpm node it must
define its own structure and store the pointer of this structure in
the private field of the dtpm structure.
It is more elegant to use the container_of macro and add the dtpm
structure inside the dtpm backend specific structure. The code will be
able to deal properly with the dtpm structure as a generic entity,
making all this even more self-encapsulated.
The dtpm_alloc() function does no longer make sense as the dtpm
structure will be allocated when allocating the device specific dtpm
structure. The dtpm_init() is provided instead.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20210312130411.29833-4-daniel.lezcano@linaro.org
The dtpm table is an array of pointers, that forces the user of the
table to define initdata along with the declaration of the table
entry. It is more efficient to create an array of dtpm structure, so
the declaration of the table entry can be done by initializing the
different fields.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20210312130411.29833-3-daniel.lezcano@linaro.org
In order to increase the self-encapsulation of the dtpm generic code,
the following changes are adding a power update ops to the dtpm
ops. That allows the generic code to call directly the dtpm backend
function to update the power values.
The power update function does compute the power characteristics when
the function is invoked. In the case of the CPUs, the power
consumption depends on the number of online CPUs. The online CPUs mask
is not up to date at CPUHP_AP_ONLINE_DYN state in the tear down
callback. That is the reason why the online / offline are at separate
state. As there is already an existing state for DTPM, this one is
only moved to the DEAD state, so there is no addition of new state
with these changes. The dtpm node is not removed when the cpu is
unplugged.
That simplifies the code for the next changes and results in a more
self-encapsulated code.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20210312130411.29833-1-daniel.lezcano@linaro.org
The kzalloc allocation for dtpm_cpu is currently allocating the size
of the pointer and not the size of the structure. Fix this by using
the correct sizeof argument.
Addresses-Coverity: ("Wrong sizeof argument")
Fixes: 0e8f68d7f048 ("powercap/drivers/dtpm: Add CPU energy model based support")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the powercap dtpm controller, we are able to plug devices with
power limitation features in the tree.
The following patch introduces the CPU power limitation based on the
energy model and the performance states.
The power limitation is done at the performance domain level. If some
CPUs are unplugged, the corresponding power will be subtracted from
the performance domain total power.
It is up to the platform to initialize the dtpm tree and add the CPU.
Here is an example to create a simple tree with one root node called
"pkg" and the CPU's performance domains.
static int dtpm_register_pkg(struct dtpm_descr *descr)
{
struct dtpm *pkg;
int ret;
pkg = dtpm_alloc(NULL);
if (!pkg)
return -ENOMEM;
ret = dtpm_register(descr->name, pkg, descr->parent);
if (ret)
return ret;
return dtpm_register_cpu(pkg);
}
static struct dtpm_descr descr = {
.name = "pkg",
.init = dtpm_register_pkg,
};
DTPM_DECLARE(descr);
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>