1058237 Commits

Author SHA1 Message Date
Christian Brauner
c24cc476ac pnode: terminate at peers of source
commit 11933cf1d91d57da9e5c53822a540bbdc2656c16 upstream.

The propagate_mnt() function handles mount propagation when creating
mounts and propagates the source mount tree @source_mnt to all
applicable nodes of the destination propagation mount tree headed by
@dest_mnt.

Unfortunately it contains a bug where it fails to terminate at peers of
@source_mnt when looking up copies of the source mount that become
masters for copies of the source mount tree mounted on top of slaves in
the destination propagation tree causing a NULL dereference.

Once the mechanics of the bug are understood it's easy to trigger.
Because of unprivileged user namespaces it is available to unprivileged
users.

While fixing this bug we've gotten confused multiple times due to
unclear terminology or missing concepts. So let's start this with some
clarifications:

* The terms "master" or "peer" denote a shared mount. A shared mount
  belongs to a peer group.

* A peer group is a set of shared mounts that propagate to each other.
  They are identified by a peer group id. The peer group id is available
  in @shared_mnt->mnt_group_id.
  Shared mounts within the same peer group have the same peer group id.
  The peers in a peer group can be reached via @shared_mnt->mnt_share.

* The terms "slave mount" or "dependent mount" denote a mount that
  receives propagation from a peer in a peer group. IOW, shared mounts
  may have slave mounts and slave mounts have shared mounts as their
  master. Slave mounts of a given peer in a peer group are listed on
  that peers slave list available at @shared_mnt->mnt_slave_list.

* The term "master mount" denotes a mount in a peer group. IOW, it
  denotes a shared mount or a peer mount in a peer group. The term
  "master mount" - or "master" for short - is mostly used when talking
  in the context of slave mounts that receive propagation from a master
  mount. A master mount of a slave identifies the closest peer group a
  slave mount receives propagation from. The master mount of a slave can
  be identified via @slave_mount->mnt_master. Different slaves may point
  to different masters in the same peer group.

* Multiple peers in a peer group can have non-empty ->mnt_slave_lists.
  Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to
  ensure all slave mounts of a peer group are visited the
  ->mnt_slave_lists of all peers in a peer group have to be walked.

* Slave mounts point to a peer in the closest peer group they receive
  propagation from via @slave_mnt->mnt_master (see above). Together with
  these peers they form a propagation group (see below). The closest
  peer group can thus be identified through the peer group id
  @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave
  mount receives propagation from.

* A shared-slave mount is a slave mount to a peer group pg1 while also
  a peer in another peer group pg2. IOW, a peer group may receive
  propagation from another peer group.

  If a peer group pg1 is a slave to another peer group pg2 then all
  peers in peer group pg1 point to the same peer in peer group pg2 via
  ->mnt_master. IOW, all peers in peer group pg1 appear on the same
  ->mnt_slave_list. IOW, they cannot be slaves to different peer groups.

* A pure slave mount is a slave mount that is a slave to a peer group
  but is not a peer in another peer group.

* A propagation group denotes the set of mounts consisting of a single
  peer group pg1 and all slave mounts and shared-slave mounts that point
  to a peer in that peer group via ->mnt_master. IOW, all slave mounts
  such that @slave_mnt->mnt_master->mnt_group_id is equal to
  @shared_mnt->mnt_group_id.

  The concept of a propagation group makes it easier to talk about a
  single propagation level in a propagation tree.

  For example, in propagate_mnt() the immediate peers of @dest_mnt and
  all slaves of @dest_mnt's peer group form a propagation group propg1.
  So a shared-slave mount that is a slave in propg1 and that is a peer
  in another peer group pg2 forms another propagation group propg2
  together with all slaves that point to that shared-slave mount in
  their ->mnt_master.

* A propagation tree refers to all mounts that receive propagation
  starting from a specific shared mount.

  For example, for propagate_mnt() @dest_mnt is the start of a
  propagation tree. The propagation tree ecompasses all mounts that
  receive propagation from @dest_mnt's peer group down to the leafs.

With that out of the way let's get to the actual algorithm.

We know that @dest_mnt is guaranteed to be a pure shared mount or a
shared-slave mount. This is guaranteed by a check in
attach_recursive_mnt(). So propagate_mnt() will first propagate the
source mount tree to all peers in @dest_mnt's peer group:

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
               goto out;
}

Notice, that the peer propagation loop of propagate_mnt() doesn't
propagate @dest_mnt itself. @dest_mnt is mounted directly in
attach_recursive_mnt() after we propagated to the destination
propagation tree.

The mount that will be mounted on top of @dest_mnt is @source_mnt. This
copy was created earlier even before we entered attach_recursive_mnt()
and doesn't concern us a lot here.

It's just important to notice that when propagate_mnt() is called
@source_mnt will not yet have been mounted on top of @dest_mnt. Thus,
@source_mnt->mnt_parent will either still point to @source_mnt or - in
the case @source_mnt is moved and thus already attached - still to its
former parent.

For each peer @m in @dest_mnt's peer group propagate_one() will create a
new copy of the source mount tree and mount that copy @child on @m such
that @child->mnt_parent points to @m after propagate_one() returns.

propagate_one() will stash the last destination propagation node @m in
@last_dest and the last copy it created for the source mount tree in
@last_source.

Hence, if we call into propagate_one() again for the next destination
propagation node @m, @last_dest will point to the previous destination
propagation node and @last_source will point to the previous copy of the
source mount tree and mounted on @last_dest.

Each new copy of the source mount tree is created from the previous copy
of the source mount tree. This will become important later.

The peer loop in propagate_mnt() is straightforward. We iterate through
the peers copying and updating @last_source and @last_dest as we go
through them and mount each copy of the source mount tree @child on a
peer @m in @dest_mnt's peer group.

After propagate_mnt() handled the peers in @dest_mnt's peer group
propagate_mnt() will propagate the source mount tree down the
propagation tree that @dest_mnt's peer group propagates to:

for (m = next_group(dest_mnt, dest_mnt); m;
                m = next_group(m, dest_mnt)) {
        /* everything in that slave group */
        n = m;
        do {
                ret = propagate_one(n);
                if (ret)
                        goto out;
                n = next_peer(n);
        } while (n != m);
}

The next_group() helper will recursively walk the destination
propagation tree, descending into each propagation group of the
propagation tree.

The important part is that it takes care to propagate the source mount
tree to all peers in the peer group of a propagation group before it
propagates to the slaves to those peers in the propagation group. IOW,
it creates and mounts copies of the source mount tree that become
masters before it creates and mounts copies of the source mount tree
that become slaves to these masters.

It is important to remember that propagating the source mount tree to
each mount @m in the destination propagation tree simply means that we
create and mount new copies @child of the source mount tree on @m such
that @child->mnt_parent points to @m.

Since we know that each node @m in the destination propagation tree
headed by @dest_mnt's peer group will be overmounted with a copy of the
source mount tree and since we know that the propagation properties of
each copy of the source mount tree we create and mount at @m will mostly
mirror the propagation properties of @m. We can use that information to
create and mount the copies of the source mount tree that become masters
before their slaves.

The easy case is always when @m and @last_dest are peers in a peer group
of a given propagation group. In that case we know that we can simply
copy @last_source without having to figure out what the master for the
new copy @child of the source mount tree needs to be as we've done that
in a previous call to propagate_one().

The hard case is when we're dealing with a slave mount or a shared-slave
mount @m in a destination propagation group that we need to create and
mount a copy of the source mount tree on.

For each propagation group in the destination propagation tree we
propagate the source mount tree to we want to make sure that the copies
@child of the source mount tree we create and mount on slaves @m pick an
ealier copy of the source mount tree that we mounted on a master @m of
the destination propagation group as their master. This is a mouthful
but as far as we can tell that's the core of it all.

But, if we keep track of the masters in the destination propagation tree
@m we can use the information to find the correct master for each copy
of the source mount tree we create and mount at the slaves in the
destination propagation tree @m.

Let's walk through the base case as that's still fairly easy to grasp.

If we're dealing with the first slave in the propagation group that
@dest_mnt is in then we don't yet have marked any masters in the
destination propagation tree.

We know the master for the first slave to @dest_mnt's peer group is
simple @dest_mnt. So we expect this algorithm to yield a copy of the
source mount tree that was mounted on a peer in @dest_mnt's peer group
as the master for the copy of the source mount tree we want to mount at
the first slave @m:

for (n = m; ; n = p) {
        p = n->mnt_master;
        if (p == dest_master || IS_MNT_MARKED(p))
                break;
}

For the first slave we walk the destination propagation tree all the way
up to a peer in @dest_mnt's peer group. IOW, the propagation hierarchy
can be walked by walking up the @mnt->mnt_master hierarchy of the
destination propagation tree @m. We will ultimately find a peer in
@dest_mnt's peer group and thus ultimately @dest_mnt->mnt_master.

Btw, here the assumption we listed at the beginning becomes important.
Namely, that peers in a peer group pg1 that are slaves in another peer
group pg2 appear on the same ->mnt_slave_list. IOW, all slaves who are
peers in peer group pg1 point to the same peer in peer group pg2 via
their ->mnt_master. Otherwise the termination condition in the code
above would be wrong and next_group() would be broken too.

So the first iteration sets:

n = m;
p = n->mnt_master;

such that @p now points to a peer or @dest_mnt itself. We walk up one
more level since we don't have any marked mounts. So we end up with:

n = dest_mnt;
p = dest_mnt->mnt_master;

If @dest_mnt's peer group is not slave to another peer group then @p is
now NULL. If @dest_mnt's peer group is a slave to another peer group
then @p now points to @dest_mnt->mnt_master points which is a master
outside the propagation tree we're dealing with.

Now we need to figure out the master for the copy of the source mount
tree we're about to create and mount on the first slave of @dest_mnt's
peer group:

do {
        struct mount *parent = last_source->mnt_parent;
        if (last_source == first_source)
                break;
        done = parent->mnt_master == p;
        if (done && peers(n, parent))
                break;
        last_source = last_source->mnt_master;
} while (!done);

We know that @last_source->mnt_parent points to @last_dest and
@last_dest is the last peer in @dest_mnt's peer group we propagated to
in the peer loop in propagate_mnt().

Consequently, @last_source is the last copy we created and mount on that
last peer in @dest_mnt's peer group. So @last_source is the master we
want to pick.

We know that @last_source->mnt_parent->mnt_master points to
@last_dest->mnt_master. We also know that @last_dest->mnt_master is
either NULL or points to a master outside of the destination propagation
tree and so does @p. Hence:

done = parent->mnt_master == p;

is trivially true in the base condition.

We also know that for the first slave mount of @dest_mnt's peer group
that @last_dest either points @dest_mnt itself because it was
initialized to:

last_dest = dest_mnt;

at the beginning of propagate_mnt() or it will point to a peer of
@dest_mnt in its peer group. In both cases it is guaranteed that on the
first iteration @n and @parent are peers (Please note the check for
peers here as that's important.):

if (done && peers(n, parent))
        break;

So, as we expected, we select @last_source, which referes to the last
copy of the source mount tree we mounted on the last peer in @dest_mnt's
peer group, as the master of the first slave in @dest_mnt's peer group.
The rest is taken care of by clone_mnt(last_source, ...). We'll skip
over that part otherwise this becomes a blogpost.

At the end of propagate_mnt() we now mark @m->mnt_master as the first
master in the destination propagation tree that is distinct from
@dest_mnt->mnt_master. IOW, we mark @dest_mnt itself as a master.

By marking @dest_mnt or one of it's peers we are able to easily find it
again when we later lookup masters for other copies of the source mount
tree we mount copies of the source mount tree on slaves @m to
@dest_mnt's peer group. This, in turn allows us to find the master we
selected for the copies of the source mount tree we mounted on master in
the destination propagation tree again.

The important part is to realize that the code makes use of the fact
that the last copy of the source mount tree stashed in @last_source was
mounted on top of the previous destination propagation node @last_dest.
What this means is that @last_source allows us to walk the destination
propagation hierarchy the same way each destination propagation node @m
does.

If we take @last_source, which is the copy of @source_mnt we have
mounted on @last_dest in the previous iteration of propagate_one(), then
we know @last_source->mnt_parent points to @last_dest but we also know
that as we walk through the destination propagation tree that
@last_source->mnt_master will point to an earlier copy of the source
mount tree we mounted one an earlier destination propagation node @m.

IOW, @last_source->mnt_parent will be our hook into the destination
propagation tree and each consecutive @last_source->mnt_master will lead
us to an earlier propagation node @m via
@last_source->mnt_master->mnt_parent.

Hence, by walking up @last_source->mnt_master, each of which is mounted
on a node that is a master @m in the destination propagation tree we can
also walk up the destination propagation hierarchy.

So, for each new destination propagation node @m we use the previous
copy of @last_source and the fact it's mounted on the previous
propagation node @last_dest via @last_source->mnt_master->mnt_parent to
determine what the master of the new copy of @last_source needs to be.

The goal is to find the _closest_ master that the new copy of the source
mount tree we are about to create and mount on a slave @m in the
destination propagation tree needs to pick. IOW, we want to find a
suitable master in the propagation group.

As the propagation structure of the source mount propagation tree we
create mirrors the propagation structure of the destination propagation
tree we can find @m's closest master - i.e., a marked master - which is
a peer in the closest peer group that @m receives propagation from. We
store that closest master of @m in @p as before and record the slave to
that master in @n

We then search for this master @p via @last_source by walking up the
master hierarchy starting from the last copy of the source mount tree
stored in @last_source that we created and mounted on the previous
destination propagation node @m.

We will try to find the master by walking @last_source->mnt_master and
by comparing @last_source->mnt_master->mnt_parent->mnt_master to @p. If
we find @p then we can figure out what earlier copy of the source mount
tree needs to be the master for the new copy of the source mount tree
we're about to create and mount at the current destination propagation
node @m.

If @last_source->mnt_master->mnt_parent and @n are peers then we know
that the closest master they receive propagation from is
@last_source->mnt_master->mnt_parent->mnt_master. If not then the
closest immediate peer group that they receive propagation from must be
one level higher up.

This builds on the earlier clarification at the beginning that all peers
in a peer group which are slaves of other peer groups all point to the
same ->mnt_master, i.e., appear on the same ->mnt_slave_list, of the
closest peer group that they receive propagation from.

However, terminating the walk has corner cases.

If the closest marked master for a given destination node @m cannot be
found by walking up the master hierarchy via @last_source->mnt_master
then we need to terminate the walk when we encounter @source_mnt again.

This isn't an arbitrary termination. It simply means that the new copy
of the source mount tree we're about to create has a copy of the source
mount tree we created and mounted on a peer in @dest_mnt's peer group as
its master. IOW, @source_mnt is the peer in the closest peer group that
the new copy of the source mount tree receives propagation from.

We absolutely have to stop @source_mnt because @last_source->mnt_master
either points outside the propagation hierarchy we're dealing with or it
is NULL because @source_mnt isn't a shared-slave.

So continuing the walk past @source_mnt would cause a NULL dereference
via @last_source->mnt_master->mnt_parent. And so we have to stop the
walk when we encounter @source_mnt again.

One scenario where this can happen is when we first handled a series of
slaves of @dest_mnt's peer group and then encounter peers in a new peer
group that is a slave to @dest_mnt's peer group. We handle them and then
we encounter another slave mount to @dest_mnt that is a pure slave to
@dest_mnt's peer group. That pure slave will have a peer in @dest_mnt's
peer group as its master. Consequently, the new copy of the source mount
tree will need to have @source_mnt as it's master. So we walk the
propagation hierarchy all the way up to @source_mnt based on
@last_source->mnt_master.

So terminate on @source_mnt, easy peasy. Except, that the check misses
something that the rest of the algorithm already handles.

If @dest_mnt has peers in it's peer group the peer loop in
propagate_mnt():

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
                goto out;
}

will consecutively update @last_source with each previous copy of the
source mount tree we created and mounted at the previous peer in
@dest_mnt's peer group. So after that loop terminates @last_source will
point to whatever copy of the source mount tree was created and mounted
on the last peer in @dest_mnt's peer group.

Furthermore, if there is even a single additional peer in @dest_mnt's
peer group then @last_source will __not__ point to @source_mnt anymore.
Because, as we mentioned above, @dest_mnt isn't even handled in this
loop but directly in attach_recursive_mnt(). So it can't even accidently
come last in that peer loop.

So the first time we handle a slave mount @m of @dest_mnt's peer group
the copy of the source mount tree we create will make the __last copy of
the source mount tree we created and mounted on the last peer in
@dest_mnt's peer group the master of the new copy of the source mount
tree we create and mount on the first slave of @dest_mnt's peer group__.

But this means that the termination condition that checks for
@source_mnt is wrong. The @source_mnt cannot be found anymore by
propagate_one(). Instead it will find the last copy of the source mount
tree we created and mounted for the last peer of @dest_mnt's peer group
again. And that is a peer of @source_mnt not @source_mnt itself.

IOW, we fail to terminate the loop correctly and ultimately dereference
@last_source->mnt_master->mnt_parent. When @source_mnt's peer group
isn't slave to another peer group then @last_source->mnt_master is NULL
causing the splat below.

For example, assume @dest_mnt is a pure shared mount and has three peers
in its peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
(@dest_mnt) mnt_master[216]              309        297               shared:216
    \
     (@source_mnt) mnt_master[218]:      609        609               shared:218

(1) mnt_master[216]:                     607        605               shared:216
    \
     (P1) mnt_master[218]:               624        607               shared:218

(2) mnt_master[216]:                     576        574               shared:216
    \
     (P2) mnt_master[218]:               625        576               shared:218

(3) mnt_master[216]:                     545        543               shared:216
    \
     (P3) mnt_master[218]:               626        545               shared:218

After this sequence has been processed @last_source will point to (P3),
the copy generated for the third peer in @dest_mnt's peer group we
handled. So the copy of the source mount tree (P4) we create and mount
on the first slave of @dest_mnt's peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
    mnt_master[216]                      309        297               shared:216
   /
  /
(S0) mnt_slave                           483        481               master:216
  \
   \    (P3) mnt_master[218]             626        545               shared:218
    \  /
     \/
    (P4) mnt_slave                       627        483               master:218

will pick the last copy of the source mount tree (P3) as master, not (S0).

When walking the propagation hierarchy via @last_source's master
hierarchy we encounter (P3) but not (S0), i.e., @source_mnt.

We can fix this in multiple ways:

(1) By setting @last_source to @source_mnt after we processed the peers
    in @dest_mnt's peer group right after the peer loop in
    propagate_mnt().

(2) By changing the termination condition that relies on finding exactly
    @source_mnt to finding a peer of @source_mnt.

(3) By only moving @last_source when we actually venture into a new peer
    group or some clever variant thereof.

The first two options are minimally invasive and what we want as a fix.
The third option is more intrusive but something we'd like to explore in
the near future.

This passes all LTP tests and specifically the mount propagation
testsuite part of it. It also holds up against all known reproducers of
this issues.

Final words.
First, this is a clever but __worringly__ underdocumented algorithm.
There isn't a single detailed comment to be found in next_group(),
propagate_one() or anywhere else in that file for that matter. This has
been a giant pain to understand and work through and a bug like this is
insanely difficult to fix without a detailed understanding of what's
happening. Let's not talk about the amount of time that was sunk into
fixing this.

Second, all the cool kids with access to
unshare --mount --user --map-root --propagation=unchanged
are going to have a lot of fun. IOW, triggerable by unprivileged users
while namespace_lock() lock is held.

[  115.848393] BUG: kernel NULL pointer dereference, address: 0000000000000010
[  115.848967] #PF: supervisor read access in kernel mode
[  115.849386] #PF: error_code(0x0000) - not-present page
[  115.849803] PGD 0 P4D 0
[  115.850012] Oops: 0000 [#1] PREEMPT SMP PTI
[  115.850354] CPU: 0 PID: 15591 Comm: mount Not tainted 6.1.0-rc7 #3
[  115.850851] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS
VirtualBox 12/01/2006
[  115.851510] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.851924] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.853441] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.853865] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.854458] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.855044] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.855693] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.856304] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.856859] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.857531] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.858006] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.858598] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.859393] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  115.860099] Call Trace:
[  115.860358]  <TASK>
[  115.860535]  propagate_mnt+0x14d/0x190
[  115.860848]  attach_recursive_mnt+0x274/0x3e0
[  115.861212]  path_mount+0x8c8/0xa60
[  115.861503]  __x64_sys_mount+0xf6/0x140
[  115.861819]  do_syscall_64+0x5b/0x80
[  115.862117]  ? do_faccessat+0x123/0x250
[  115.862435]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.862826]  ? do_syscall_64+0x67/0x80
[  115.863133]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.863527]  ? do_syscall_64+0x67/0x80
[  115.863835]  ? do_syscall_64+0x67/0x80
[  115.864144]  ? do_syscall_64+0x67/0x80
[  115.864452]  ? exc_page_fault+0x70/0x170
[  115.864775]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  115.865187] RIP: 0033:0x7f92c92b0ebe
[  115.865480] Code: 48 8b 0d 75 4f 0c 00 f7 d8 64 89 01 48 83 c8 ff
c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00
00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 42 4f 0c 00 f7 d8 64 89
01 48
[  115.866984] RSP: 002b:00007fff000aa728 EFLAGS: 00000246 ORIG_RAX:
00000000000000a5
[  115.867607] RAX: ffffffffffffffda RBX: 000055a77888d6b0 RCX: 00007f92c92b0ebe
[  115.868240] RDX: 000055a77888d8e0 RSI: 000055a77888e6e0 RDI: 000055a77888e620
[  115.868823] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[  115.869403] R10: 0000000000001000 R11: 0000000000000246 R12: 000055a77888e620
[  115.869994] R13: 000055a77888d8e0 R14: 00000000ffffffff R15: 00007f92c93e4076
[  115.870581]  </TASK>
[  115.870763] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6
nf_defrag_ipv4 ip_set rfkill nf_tables nfnetlink qrtr snd_intel8x0
sunrpc snd_ac97_codec ac97_bus snd_pcm snd_timer intel_rapl_msr
intel_rapl_common snd vboxguest intel_powerclamp video rapl joydev
soundcore i2c_piix4 wmi fuse zram xfs vmwgfx crct10dif_pclmul
crc32_pclmul crc32c_intel polyval_clmulni polyval_generic
drm_ttm_helper ttm e1000 ghash_clmulni_intel serio_raw ata_generic
pata_acpi scsi_dh_rdac scsi_dh_emc scsi_dh_alua dm_multipath
[  115.875288] CR2: 0000000000000010
[  115.875641] ---[ end trace 0000000000000000 ]---
[  115.876135] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.876551] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.878086] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.878511] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.879128] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.879715] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.880359] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.880962] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.881548] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.882234] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.882713] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.883314] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.883966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fixes: f2ebb3a921c1 ("smarter propagate_mnt()")
Fixes: 5ec0811d3037 ("propogate_mnt: Handle the first propogated copy being a slave")
Cc: <stable@vger.kernel.org>
Reported-by: Ditang Chen <ditang.c@gmail.com>
Signed-off-by: Seth Forshee (Digital Ocean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:47 +01:00
Artem Egorkine
0c9118e381 ALSA: line6: fix stack overflow in line6_midi_transmit
commit b8800d324abb50160560c636bfafe2c81001b66c upstream.

Correctly calculate available space including the size of the chunk
buffer. This fixes a buffer overflow when multiple MIDI sysex
messages are sent to a PODxt device.

Signed-off-by: Artem Egorkine <arteme@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20221225105728.1153989-2-arteme@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:47 +01:00
Artem Egorkine
ac4b4fdf32 ALSA: line6: correct midi status byte when receiving data from podxt
commit 8508fa2e7472f673edbeedf1b1d2b7a6bb898ecc upstream.

A PODxt device sends 0xb2, 0xc2 or 0xf2 as a status byte for MIDI
messages over USB that should otherwise have a 0xb0, 0xc0 or 0xf0
status byte. This is usually corrected by the driver on other OSes.

This fixes MIDI sysex messages sent by PODxt.

[ tiwai: fixed white spaces ]

Signed-off-by: Artem Egorkine <arteme@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20221225105728.1153989-1-arteme@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:47 +01:00
Zhang Tianci
83c44f0ebf ovl: Use ovl mounter's fsuid and fsgid in ovl_link()
commit 5b0db51215e895a361bc63132caa7cca36a53d6a upstream.

There is a wrong case of link() on overlay:
  $ mkdir /lower /fuse /merge
  $ mount -t fuse /fuse
  $ mkdir /fuse/upper /fuse/work
  $ mount -t overlay /merge -o lowerdir=/lower,upperdir=/fuse/upper,\
    workdir=work
  $ touch /merge/file
  $ chown bin.bin /merge/file // the file's caller becomes "bin"
  $ ln /merge/file /merge/lnkfile

Then we will get an error(EACCES) because fuse daemon checks the link()'s
caller is "bin", it denied this request.

In the changing history of ovl_link(), there are two key commits:

The first is commit bb0d2b8ad296 ("ovl: fix sgid on directory") which
overrides the cred's fsuid/fsgid using the new inode. The new inode's
owner is initialized by inode_init_owner(), and inode->fsuid is
assigned to the current user. So the override fsuid becomes the
current user. We know link() is actually modifying the directory, so
the caller must have the MAY_WRITE permission on the directory. The
current caller may should have this permission. This is acceptable
to use the caller's fsuid.

The second is commit 51f7e52dc943 ("ovl: share inode for hard link")
which removed the inode creation in ovl_link(). This commit move
inode_init_owner() into ovl_create_object(), so the ovl_link() just
give the old inode to ovl_create_or_link(). Then the override fsuid
becomes the old inode's fsuid, neither the caller nor the overlay's
mounter! So this is incorrect.

Fix this bug by using ovl mounter's fsuid/fsgid to do underlying
fs's link().

Link: https://lore.kernel.org/all/20220817102952.xnvesg3a7rbv576x@wittgenstein/T
Link: https://lore.kernel.org/lkml/20220825130552.29587-1-zhangtianci.1997@bytedance.com/t
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Fixes: 51f7e52dc943 ("ovl: share inode for hard link")
Cc: <stable@vger.kernel.org> # v4.8
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:46 +01:00
Wang Yufen
fcb94283e0 binfmt: Fix error return code in load_elf_fdpic_binary()
commit e7f703ff2507f4e9f496da96cd4b78fd3026120c upstream.

Fix to return a negative error code from create_elf_fdpic_tables()
instead of 0.

Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/1669945261-30271-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:46 +01:00
Aditya Garg
ed9947277b hfsplus: fix bug causing custom uid and gid being unable to be assigned with mount
commit 9f2b5debc07073e6dfdd774e3594d0224b991927 upstream.

Despite specifying UID and GID in mount command, the specified UID and GID
were not being assigned. This patch fixes this issue.

Link: https://lkml.kernel.org/r/C0264BF5-059C-45CF-B8DA-3A3BD2C803A2@live.com
Signed-off-by: Aditya Garg <gargaditya08@live.com>
Reviewed-by: Viacheslav Dubeyko <slava@dubeyko.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:46 +01:00
Qiujun Huang
76d52b5412 pstore/zone: Use GFP_ATOMIC to allocate zone buffer
commit 99b3b837855b987563bcfb397cf9ddd88262814b upstream.

There is a case found when triggering a panic_on_oom, pstore fails to dump
kmsg. Because psz_kmsg_write_record can't get the new buffer.

Handle this by using GFP_ATOMIC to allocate a buffer at lower watermark.

Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Fixes: 335426c6dcdd ("pstore/zone: Provide way to skip "broken" zone for MTD devices")
Cc: WeiXiong Liao <gmpy.liaowx@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/CAJRQjofRCF7wjrYmw3D7zd5QZnwHQq+F8U-mJDJ6NZ4bddYdLA@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:46 +01:00
Luca Stefani
74b0a2fcc3 pstore: Properly assign mem_type property
commit beca3e311a49cd3c55a056096531737d7afa4361 upstream.

If mem-type is specified in the device tree
it would end up overriding the record_size
field instead of populating mem_type.

As record_size is currently parsed after the
improper assignment with default size 0 it
continued to work as expected regardless of the
value found in the device tree.

Simply changing the target field of the struct
is enough to get mem-type working as expected.

Fixes: 9d843e8fafc7 ("pstore: Add mem_type property DT parsing support")
Cc: stable@vger.kernel.org
Signed-off-by: Luca Stefani <luca@osomprivacy.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222131049.286288-1-luca@osomprivacy.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:46 +01:00
Terry Junge
d25aac3489 HID: plantronics: Additional PIDs for double volume key presses quirk
[ Upstream commit 3d57f36c89d8ba32b2c312f397a37fd1a2dc7cfc ]

I no longer work for Plantronics (aka Poly, aka HP) and do not have
access to the headsets in order to test. However, as noted by Maxim,
the other 32xx models that share the same base code set as the 3220
would need the same quirk. This patch adds the PIDs for the rest of
the Blackwire 32XX product family that require the quirk.

Plantronics Blackwire 3210 Series (047f:c055)
Plantronics Blackwire 3215 Series (047f:c057)
Plantronics Blackwire 3225 Series (047f:c058)

Quote from previous patch by Maxim Mikityanskiy
Plantronics Blackwire 3220 Series (047f:c056) sends HID reports twice
for each volume key press. This patch adds a quirk to hid-plantronics
for this product ID, which will ignore the second volume key press if
it happens within 5 ms from the last one that was handled.

The patch was tested on the mentioned model only, it shouldn't affect
other models, however, this quirk might be needed for them too.
Auto-repeat (when a key is held pressed) is not affected, because the
rate is about 3 times per second, which is far less frequent than once
in 5 ms.
End quote

Signed-off-by: Terry Junge <linuxhid@cosmicgizmosystems.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:46 +01:00
José Expósito
9d4294545c HID: multitouch: fix Asus ExpertBook P2 P2451FA trackpoint
[ Upstream commit 4eab1c2fe06c98a4dff258dd64800b6986c101e9 ]

The HID descriptor of this device contains two mouse collections, one
for mouse emulation and the other for the trackpoint.

Both collections get merged and, because the first one defines X and Y,
the movemenent events reported by the trackpoint collection are
ignored.

Set the MT_CLS_WIN_8_FORCE_MULTI_INPUT class for this device to be able
to receive its reports.

This fix is similar to/based on commit 40d5bb87377a ("HID: multitouch:
enable multi-input as a quirk for some devices").

Link: https://gitlab.freedesktop.org/libinput/libinput/-/issues/825
Reported-by: Akito <the@akito.ooo>
Tested-by: Akito <the@akito.ooo>
Signed-off-by: José Expósito <jose.exposito89@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:46 +01:00
Nathan Lynch
7280fdb80b powerpc/rtas: avoid scheduling in rtas_os_term()
[ Upstream commit 6c606e57eecc37d6b36d732b1ff7e55b7dc32dd4 ]

It's unsafe to use rtas_busy_delay() to handle a busy status from
the ibm,os-term RTAS function in rtas_os_term():

Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
BUG: sleeping function called from invalid context at arch/powerpc/kernel/rtas.c:618
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
CPU: 7 PID: 1 Comm: swapper/0 Tainted: G      D            6.0.0-rc5-02182-gf8553a572277-dirty #9
Call Trace:
[c000000007b8f000] [c000000001337110] dump_stack_lvl+0xb4/0x110 (unreliable)
[c000000007b8f040] [c0000000002440e4] __might_resched+0x394/0x3c0
[c000000007b8f0e0] [c00000000004f680] rtas_busy_delay+0x120/0x1b0
[c000000007b8f100] [c000000000052d04] rtas_os_term+0xb8/0xf4
[c000000007b8f180] [c0000000001150fc] pseries_panic+0x50/0x68
[c000000007b8f1f0] [c000000000036354] ppc_panic_platform_handler+0x34/0x50
[c000000007b8f210] [c0000000002303c4] notifier_call_chain+0xd4/0x1c0
[c000000007b8f2b0] [c0000000002306cc] atomic_notifier_call_chain+0xac/0x1c0
[c000000007b8f2f0] [c0000000001d62b8] panic+0x228/0x4d0
[c000000007b8f390] [c0000000001e573c] do_exit+0x140c/0x1420
[c000000007b8f480] [c0000000001e586c] make_task_dead+0xdc/0x200

Use rtas_busy_delay_time() instead, which signals without side effects
whether to attempt the ibm,os-term RTAS call again.

Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221118150751.469393-5-nathanl@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:46 +01:00
Nathan Lynch
d8939315b7 powerpc/rtas: avoid device tree lookups in rtas_os_term()
[ Upstream commit ed2213bfb192ab51f09f12e9b49b5d482c6493f3 ]

rtas_os_term() is called during panic. Its behavior depends on a couple
of conditions in the /rtas node of the device tree, the traversal of
which entails locking and local IRQ state changes. If the kernel panics
while devtree_lock is held, rtas_os_term() as currently written could
hang.

Instead of discovering the relevant characteristics at panic time,
cache them in file-static variables at boot. Note the lookup for
"ibm,extended-os-term" is converted to of_property_read_bool() since it
is a boolean property, not an RTAS function token.

Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
[mpe: Incorporate suggested change from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221118150751.469393-4-nathanl@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Christophe Leroy
23a249b118 objtool: Fix SEGFAULT
[ Upstream commit efb11fdb3e1a9f694fa12b70b21e69e55ec59c36 ]

find_insn() will return NULL in case of failure. Check insn in order
to avoid a kernel Oops for NULL pointer dereference.

Tested-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221114175754.1131267-9-sv@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Yin Xiujiang
ed686e7a26 fs/ntfs3: Fix slab-out-of-bounds in r_page
[ Upstream commit ecfbd57cf9c5ca225184ae266ce44ae473792132 ]

When PAGE_SIZE is 64K, if read_log_page is called by log_read_rst for
the first time, the size of *buffer would be equal to
DefaultLogPageSize(4K).But for *buffer operations like memcpy,
if the memory area size(n) which being assigned to buffer is larger
than 4K (log->page_size(64K) or bytes(64K-page_off)), it will cause
an out of boundary error.
 Call trace:
  [...]
  kasan_report+0x44/0x130
  check_memory_region+0xf8/0x1a0
  memcpy+0xc8/0x100
  ntfs_read_run_nb+0x20c/0x460
  read_log_page+0xd0/0x1f4
  log_read_rst+0x110/0x75c
  log_replay+0x1e8/0x4aa0
  ntfs_loadlog_and_replay+0x290/0x2d0
  ntfs_fill_super+0x508/0xec0
  get_tree_bdev+0x1fc/0x34c
  [...]

Fix this by setting variable r_page to NULL in log_read_rst.

Signed-off-by: Yin Xiujiang <yinxiujiang@kylinos.cn>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Dan Carpenter
dd34665cb0 fs/ntfs3: Delete duplicate condition in ntfs_read_mft()
[ Upstream commit 658015167a8432b88f5d032e9d85d8fd50e5bf2c ]

There were two patches which addressed the same bug and added the same
condition:

commit 6db620863f85 ("fs/ntfs3: Validate data run offset")
commit 887bfc546097 ("fs/ntfs3: Fix slab-out-of-bounds read in run_unpack")

Delete one condition.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Tetsuo Handa
a9847a11b6 fs/ntfs3: Use __GFP_NOWARN allocation at ntfs_fill_super()
[ Upstream commit 59bfd7a483da36bd202532a3d9ea1f14f3bf3aaf ]

syzbot is reporting too large allocation at ntfs_fill_super() [1], for a
crafted filesystem can contain bogus inode->i_size. Add __GFP_NOWARN in
order to avoid too large allocation warning, than exhausting memory by
using kvmalloc().

Link: https://syzkaller.appspot.com/bug?extid=33f3faaa0c08744f7d40 [1]
Reported-by: syzot <syzbot+33f3faaa0c08744f7d40@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Tetsuo Handa
abd2ee2cf4 fs/ntfs3: Use __GFP_NOWARN allocation at wnd_init()
[ Upstream commit 0d0f659bf713662fabed973f9996b8f23c59ca51 ]

syzbot is reporting too large allocation at wnd_init() [1], for a crafted
filesystem can become wnd->nwnd close to UINT_MAX. Add __GFP_NOWARN in
order to avoid too large allocation warning, than exhausting memory by
using kvcalloc().

Link: https://syzkaller.appspot.com/bug?extid=fa4648a5446460b7b963 [1]
Reported-by: syzot <syzbot+fa4648a5446460b7b963@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Edward Lo
d7ce7bb688 fs/ntfs3: Validate index root when initialize NTFS security
[ Upstream commit bfcdbae0523bd95eb75a739ffb6221a37109881e ]

This enhances the sanity check for $SDH and $SII while initializing NTFS
security, guarantees these index root are legit.

[  162.459513] BUG: KASAN: use-after-free in hdr_find_e.isra.0+0x10c/0x320
[  162.460176] Read of size 2 at addr ffff8880037bca99 by task mount/243
[  162.460851]
[  162.461252] CPU: 0 PID: 243 Comm: mount Not tainted 6.0.0-rc7 #42
[  162.461744] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  162.462609] Call Trace:
[  162.462954]  <TASK>
[  162.463276]  dump_stack_lvl+0x49/0x63
[  162.463822]  print_report.cold+0xf5/0x689
[  162.464608]  ? unwind_get_return_address+0x3a/0x60
[  162.465766]  ? hdr_find_e.isra.0+0x10c/0x320
[  162.466975]  kasan_report+0xa7/0x130
[  162.467506]  ? _raw_spin_lock_irq+0xc0/0xf0
[  162.467998]  ? hdr_find_e.isra.0+0x10c/0x320
[  162.468536]  __asan_load2+0x68/0x90
[  162.468923]  hdr_find_e.isra.0+0x10c/0x320
[  162.469282]  ? cmp_uints+0xe0/0xe0
[  162.469557]  ? cmp_sdh+0x90/0x90
[  162.469864]  ? ni_find_attr+0x214/0x300
[  162.470217]  ? ni_load_mi+0x80/0x80
[  162.470479]  ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  162.470931]  ? ntfs_bread_run+0x190/0x190
[  162.471307]  ? indx_get_root+0xe4/0x190
[  162.471556]  ? indx_get_root+0x140/0x190
[  162.471833]  ? indx_init+0x1e0/0x1e0
[  162.472069]  ? fnd_clear+0x115/0x140
[  162.472363]  ? _raw_spin_lock_irqsave+0x100/0x100
[  162.472731]  indx_find+0x184/0x470
[  162.473461]  ? sysvec_apic_timer_interrupt+0x57/0xc0
[  162.474429]  ? indx_find_buffer+0x2d0/0x2d0
[  162.474704]  ? do_syscall_64+0x3b/0x90
[  162.474962]  dir_search_u+0x196/0x2f0
[  162.475381]  ? ntfs_nls_to_utf16+0x450/0x450
[  162.475661]  ? ntfs_security_init+0x3d6/0x440
[  162.475906]  ? is_sd_valid+0x180/0x180
[  162.476191]  ntfs_extend_init+0x13f/0x2c0
[  162.476496]  ? ntfs_fix_post_read+0x130/0x130
[  162.476861]  ? iput.part.0+0x286/0x320
[  162.477325]  ntfs_fill_super+0x11e0/0x1b50
[  162.477709]  ? put_ntfs+0x1d0/0x1d0
[  162.477970]  ? vsprintf+0x20/0x20
[  162.478258]  ? set_blocksize+0x95/0x150
[  162.478538]  get_tree_bdev+0x232/0x370
[  162.478789]  ? put_ntfs+0x1d0/0x1d0
[  162.479038]  ntfs_fs_get_tree+0x15/0x20
[  162.479374]  vfs_get_tree+0x4c/0x130
[  162.479729]  path_mount+0x654/0xfe0
[  162.480124]  ? putname+0x80/0xa0
[  162.480484]  ? finish_automount+0x2e0/0x2e0
[  162.480894]  ? putname+0x80/0xa0
[  162.481467]  ? kmem_cache_free+0x1c4/0x440
[  162.482280]  ? putname+0x80/0xa0
[  162.482714]  do_mount+0xd6/0xf0
[  162.483264]  ? path_mount+0xfe0/0xfe0
[  162.484782]  ? __kasan_check_write+0x14/0x20
[  162.485593]  __x64_sys_mount+0xca/0x110
[  162.486024]  do_syscall_64+0x3b/0x90
[  162.486543]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  162.487141] RIP: 0033:0x7f9d374e948a
[  162.488324] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[  162.489728] RSP: 002b:00007ffe30e73d18 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[  162.490971] RAX: ffffffffffffffda RBX: 0000561cdb43a060 RCX: 00007f9d374e948a
[  162.491669] RDX: 0000561cdb43a260 RSI: 0000561cdb43a2e0 RDI: 0000561cdb442af0
[  162.492050] RBP: 0000000000000000 R08: 0000561cdb43a280 R09: 0000000000000020
[  162.492459] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000561cdb442af0
[  162.493183] R13: 0000561cdb43a260 R14: 0000000000000000 R15: 00000000ffffffff
[  162.493644]  </TASK>
[  162.493908]
[  162.494214] The buggy address belongs to the physical page:
[  162.494761] page:000000003e38a3d5 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x37bc
[  162.496064] flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff)
[  162.497278] raw: 000fffffc0000000 ffffea00000df1c8 ffffea00000df008 0000000000000000
[  162.498928] raw: 0000000000000000 0000000000240000 00000000ffffffff 0000000000000000
[  162.500542] page dumped because: kasan: bad access detected
[  162.501057]
[  162.501242] Memory state around the buggy address:
[  162.502230]  ffff8880037bc980: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[  162.502977]  ffff8880037bca00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[  162.503522] >ffff8880037bca80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[  162.503963]                             ^
[  162.504370]  ffff8880037bcb00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[  162.504766]  ffff8880037bcb80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:45 +01:00
Pierre-Louis Bossart
f29676cc3a soundwire: dmi-quirks: add quirk variant for LAPBC710 NUC15
[ Upstream commit f74495761df10c25a98256d16ea7465191b6e2cd ]

Some NUC15 LAPBC710 devices don't expose the same DMI information as
the Intel reference, add additional entry in the match table.

BugLink: https://github.com/thesofproject/linux/issues/3885
Signed-off-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Reviewed-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Signed-off-by: Bard Liao <yung-chuan.liao@linux.intel.com>
Link: https://lore.kernel.org/r/20221018012500.1592994-1-yung-chuan.liao@linux.intel.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Hawkins Jiawei
9c8471a17f fs/ntfs3: Fix slab-out-of-bounds read in run_unpack
[ Upstream commit 887bfc546097fbe8071dac13b2fef73b77920899 ]

Syzkaller reports slab-out-of-bounds bug as follows:
==================================================================
BUG: KASAN: slab-out-of-bounds in run_unpack+0x8b7/0x970 fs/ntfs3/run.c:944
Read of size 1 at addr ffff88801bbdff02 by task syz-executor131/3611

[...]
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
 print_address_description mm/kasan/report.c:317 [inline]
 print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
 kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
 run_unpack+0x8b7/0x970 fs/ntfs3/run.c:944
 run_unpack_ex+0xb0/0x7c0 fs/ntfs3/run.c:1057
 ntfs_read_mft fs/ntfs3/inode.c:368 [inline]
 ntfs_iget5+0xc20/0x3280 fs/ntfs3/inode.c:501
 ntfs_loadlog_and_replay+0x124/0x5d0 fs/ntfs3/fsntfs.c:272
 ntfs_fill_super+0x1eff/0x37f0 fs/ntfs3/super.c:1018
 get_tree_bdev+0x440/0x760 fs/super.c:1323
 vfs_get_tree+0x89/0x2f0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x1326/0x1e20 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
 [...]
 </TASK>

The buggy address belongs to the physical page:
page:ffffea00006ef600 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1bbd8
head:ffffea00006ef600 order:3 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88801bbdfe00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff88801bbdfe80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88801bbdff00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
                   ^
 ffff88801bbdff80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff88801bbe0000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================

Kernel will tries to read record and parse MFT from disk in
ntfs_read_mft().

Yet the problem is that during enumerating attributes in record,
kernel doesn't check whether run_off field loading from the disk
is a valid value.

To be more specific, if attr->nres.run_off is larger than attr->size,
kernel will passes an invalid argument run_buf_size in
run_unpack_ex(), which having an integer overflow. Then this invalid
argument will triggers the slab-out-of-bounds Read bug as above.

This patch solves it by adding the sanity check between
the offset to packed runs and attribute size.

link: https://lore.kernel.org/all/0000000000009145fc05e94bd5c3@google.com/#t
Reported-and-tested-by: syzbot+8d6fbb27a6aded64b25b@syzkaller.appspotmail.com
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Edward Lo
3a52f17867 fs/ntfs3: Validate resident attribute name
[ Upstream commit 54e45702b648b7c0000e90b3e9b890e367e16ea8 ]

Though we already have some sanity checks while enumerating attributes,
resident attribute names aren't included. This patch checks the resident
attribute names are in the valid ranges.

[  259.209031] BUG: KASAN: slab-out-of-bounds in ni_create_attr_list+0x1e1/0x850
[  259.210770] Write of size 426 at addr ffff88800632f2b2 by task exp/255
[  259.211551]
[  259.212035] CPU: 0 PID: 255 Comm: exp Not tainted 6.0.0-rc6 #37
[  259.212955] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  259.214387] Call Trace:
[  259.214640]  <TASK>
[  259.214895]  dump_stack_lvl+0x49/0x63
[  259.215284]  print_report.cold+0xf5/0x689
[  259.215565]  ? kasan_poison+0x3c/0x50
[  259.215778]  ? kasan_unpoison+0x28/0x60
[  259.215991]  ? ni_create_attr_list+0x1e1/0x850
[  259.216270]  kasan_report+0xa7/0x130
[  259.216481]  ? ni_create_attr_list+0x1e1/0x850
[  259.216719]  kasan_check_range+0x15a/0x1d0
[  259.216939]  memcpy+0x3c/0x70
[  259.217136]  ni_create_attr_list+0x1e1/0x850
[  259.217945]  ? __rcu_read_unlock+0x5b/0x280
[  259.218384]  ? ni_remove_attr+0x2e0/0x2e0
[  259.218712]  ? kernel_text_address+0xcf/0xe0
[  259.219064]  ? __kernel_text_address+0x12/0x40
[  259.219434]  ? arch_stack_walk+0x9e/0xf0
[  259.219668]  ? __this_cpu_preempt_check+0x13/0x20
[  259.219904]  ? sysvec_apic_timer_interrupt+0x57/0xc0
[  259.220140]  ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
[  259.220561]  ni_ins_attr_ext+0x52c/0x5c0
[  259.220984]  ? ni_create_attr_list+0x850/0x850
[  259.221532]  ? run_deallocate+0x120/0x120
[  259.221972]  ? vfs_setxattr+0x128/0x300
[  259.222688]  ? setxattr+0x126/0x140
[  259.222921]  ? path_setxattr+0x164/0x180
[  259.223431]  ? __x64_sys_setxattr+0x6d/0x80
[  259.223828]  ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  259.224417]  ? mi_find_attr+0x3c/0xf0
[  259.224772]  ni_insert_attr+0x1ba/0x420
[  259.225216]  ? ni_ins_attr_ext+0x5c0/0x5c0
[  259.225504]  ? ntfs_read_ea+0x119/0x450
[  259.225775]  ni_insert_resident+0xc0/0x1c0
[  259.226316]  ? ni_insert_nonresident+0x400/0x400
[  259.227001]  ? __kasan_kmalloc+0x88/0xb0
[  259.227468]  ? __kmalloc+0x192/0x320
[  259.227773]  ntfs_set_ea+0x6bf/0xb30
[  259.228216]  ? ftrace_graph_ret_addr+0x2a/0xb0
[  259.228494]  ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  259.228838]  ? ntfs_read_ea+0x450/0x450
[  259.229098]  ? is_bpf_text_address+0x24/0x40
[  259.229418]  ? kernel_text_address+0xcf/0xe0
[  259.229681]  ? __kernel_text_address+0x12/0x40
[  259.229948]  ? unwind_get_return_address+0x3a/0x60
[  259.230271]  ? write_profile+0x270/0x270
[  259.230537]  ? arch_stack_walk+0x9e/0xf0
[  259.230836]  ntfs_setxattr+0x114/0x5c0
[  259.231099]  ? ntfs_set_acl_ex+0x2e0/0x2e0
[  259.231529]  ? evm_protected_xattr_common+0x6d/0x100
[  259.231817]  ? posix_xattr_acl+0x13/0x80
[  259.232073]  ? evm_protect_xattr+0x1f7/0x440
[  259.232351]  __vfs_setxattr+0xda/0x120
[  259.232635]  ? xattr_resolve_name+0x180/0x180
[  259.232912]  __vfs_setxattr_noperm+0x93/0x300
[  259.233219]  __vfs_setxattr_locked+0x141/0x160
[  259.233492]  ? kasan_poison+0x3c/0x50
[  259.233744]  vfs_setxattr+0x128/0x300
[  259.234002]  ? __vfs_setxattr_locked+0x160/0x160
[  259.234837]  do_setxattr+0xb8/0x170
[  259.235567]  ? vmemdup_user+0x53/0x90
[  259.236212]  setxattr+0x126/0x140
[  259.236491]  ? do_setxattr+0x170/0x170
[  259.236791]  ? debug_smp_processor_id+0x17/0x20
[  259.237232]  ? kasan_quarantine_put+0x57/0x180
[  259.237605]  ? putname+0x80/0xa0
[  259.237870]  ? __kasan_slab_free+0x11c/0x1b0
[  259.238234]  ? putname+0x80/0xa0
[  259.238500]  ? preempt_count_sub+0x18/0xc0
[  259.238775]  ? __mnt_want_write+0xaa/0x100
[  259.238990]  ? mnt_want_write+0x8b/0x150
[  259.239290]  path_setxattr+0x164/0x180
[  259.239605]  ? setxattr+0x140/0x140
[  259.239849]  ? debug_smp_processor_id+0x17/0x20
[  259.240174]  ? fpregs_assert_state_consistent+0x67/0x80
[  259.240411]  __x64_sys_setxattr+0x6d/0x80
[  259.240715]  do_syscall_64+0x3b/0x90
[  259.240934]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  259.241697] RIP: 0033:0x7fc6b26e4469
[  259.242647] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088
[  259.244512] RSP: 002b:00007ffc3c7841f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000bc
[  259.245086] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc6b26e4469
[  259.246025] RDX: 00007ffc3c784380 RSI: 00007ffc3c7842e0 RDI: 00007ffc3c784238
[  259.246961] RBP: 00007ffc3c788410 R08: 0000000000000001 R09: 00007ffc3c7884f8
[  259.247775] R10: 000000000000007f R11: 0000000000000217 R12: 00000000004004e0
[  259.248534] R13: 00007ffc3c7884f0 R14: 0000000000000000 R15: 0000000000000000
[  259.249368]  </TASK>
[  259.249644]
[  259.249888] Allocated by task 255:
[  259.250283]  kasan_save_stack+0x26/0x50
[  259.250957]  __kasan_kmalloc+0x88/0xb0
[  259.251826]  __kmalloc+0x192/0x320
[  259.252745]  ni_create_attr_list+0x11e/0x850
[  259.253298]  ni_ins_attr_ext+0x52c/0x5c0
[  259.253685]  ni_insert_attr+0x1ba/0x420
[  259.253974]  ni_insert_resident+0xc0/0x1c0
[  259.254311]  ntfs_set_ea+0x6bf/0xb30
[  259.254629]  ntfs_setxattr+0x114/0x5c0
[  259.254859]  __vfs_setxattr+0xda/0x120
[  259.255155]  __vfs_setxattr_noperm+0x93/0x300
[  259.255445]  __vfs_setxattr_locked+0x141/0x160
[  259.255862]  vfs_setxattr+0x128/0x300
[  259.256251]  do_setxattr+0xb8/0x170
[  259.256522]  setxattr+0x126/0x140
[  259.256911]  path_setxattr+0x164/0x180
[  259.257308]  __x64_sys_setxattr+0x6d/0x80
[  259.257637]  do_syscall_64+0x3b/0x90
[  259.257970]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  259.258550]
[  259.258772] The buggy address belongs to the object at ffff88800632f000
[  259.258772]  which belongs to the cache kmalloc-1k of size 1024
[  259.260190] The buggy address is located 690 bytes inside of
[  259.260190]  1024-byte region [ffff88800632f000, ffff88800632f400)
[  259.261412]
[  259.261743] The buggy address belongs to the physical page:
[  259.262354] page:0000000081e8cac9 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x632c
[  259.263722] head:0000000081e8cac9 order:2 compound_mapcount:0 compound_pincount:0
[  259.264284] flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
[  259.265312] raw: 000fffffc0010200 ffffea0000060d00 dead000000000004 ffff888001041dc0
[  259.265772] raw: 0000000000000000 0000000080080008 00000001ffffffff 0000000000000000
[  259.266305] page dumped because: kasan: bad access detected
[  259.266588]
[  259.266728] Memory state around the buggy address:
[  259.267225]  ffff88800632f300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  259.267841]  ffff88800632f380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  259.269111] >ffff88800632f400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[  259.269626]                    ^
[  259.270162]  ffff88800632f480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[  259.270810]  ffff88800632f500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Edward Lo
3cd9e5b41b fs/ntfs3: Validate buffer length while parsing index
[ Upstream commit 4d42ecda239cc13738d6fd84d098a32e67b368b9 ]

indx_read is called when we have some NTFS directory operations that
need more information from the index buffers. This adds a sanity check
to make sure the returned index buffer length is legit, or we may have
some out-of-bound memory accesses.

[  560.897595] BUG: KASAN: slab-out-of-bounds in hdr_find_e.isra.0+0x10c/0x320
[  560.898321] Read of size 2 at addr ffff888009497238 by task exp/245
[  560.898760]
[  560.899129] CPU: 0 PID: 245 Comm: exp Not tainted 6.0.0-rc6 #37
[  560.899505] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  560.900170] Call Trace:
[  560.900407]  <TASK>
[  560.900732]  dump_stack_lvl+0x49/0x63
[  560.901108]  print_report.cold+0xf5/0x689
[  560.901395]  ? hdr_find_e.isra.0+0x10c/0x320
[  560.901716]  kasan_report+0xa7/0x130
[  560.901950]  ? hdr_find_e.isra.0+0x10c/0x320
[  560.902208]  __asan_load2+0x68/0x90
[  560.902427]  hdr_find_e.isra.0+0x10c/0x320
[  560.902846]  ? cmp_uints+0xe0/0xe0
[  560.903363]  ? cmp_sdh+0x90/0x90
[  560.903883]  ? ntfs_bread_run+0x190/0x190
[  560.904196]  ? rwsem_down_read_slowpath+0x750/0x750
[  560.904969]  ? ntfs_fix_post_read+0xe0/0x130
[  560.905259]  ? __kasan_check_write+0x14/0x20
[  560.905599]  ? up_read+0x1a/0x90
[  560.905853]  ? indx_read+0x22c/0x380
[  560.906096]  indx_find+0x2ef/0x470
[  560.906352]  ? indx_find_buffer+0x2d0/0x2d0
[  560.906692]  ? __kasan_kmalloc+0x88/0xb0
[  560.906977]  dir_search_u+0x196/0x2f0
[  560.907220]  ? ntfs_nls_to_utf16+0x450/0x450
[  560.907464]  ? __kasan_check_write+0x14/0x20
[  560.907747]  ? mutex_lock+0x8f/0xe0
[  560.907970]  ? __mutex_lock_slowpath+0x20/0x20
[  560.908214]  ? kmem_cache_alloc+0x143/0x4b0
[  560.908459]  ntfs_lookup+0xe0/0x100
[  560.908788]  __lookup_slow+0x116/0x220
[  560.909050]  ? lookup_fast+0x1b0/0x1b0
[  560.909309]  ? lookup_fast+0x13f/0x1b0
[  560.909601]  walk_component+0x187/0x230
[  560.909944]  link_path_walk.part.0+0x3f0/0x660
[  560.910285]  ? handle_lookup_down+0x90/0x90
[  560.910618]  ? path_init+0x642/0x6e0
[  560.911084]  ? percpu_counter_add_batch+0x6e/0xf0
[  560.912559]  ? __alloc_file+0x114/0x170
[  560.913008]  path_openat+0x19c/0x1d10
[  560.913419]  ? getname_flags+0x73/0x2b0
[  560.913815]  ? kasan_save_stack+0x3a/0x50
[  560.914125]  ? kasan_save_stack+0x26/0x50
[  560.914542]  ? __kasan_slab_alloc+0x6d/0x90
[  560.914924]  ? kmem_cache_alloc+0x143/0x4b0
[  560.915339]  ? getname_flags+0x73/0x2b0
[  560.915647]  ? getname+0x12/0x20
[  560.916114]  ? __x64_sys_open+0x4c/0x60
[  560.916460]  ? path_lookupat.isra.0+0x230/0x230
[  560.916867]  ? __isolate_free_page+0x2e0/0x2e0
[  560.917194]  do_filp_open+0x15c/0x1f0
[  560.917448]  ? may_open_dev+0x60/0x60
[  560.917696]  ? expand_files+0xa4/0x3a0
[  560.917923]  ? __kasan_check_write+0x14/0x20
[  560.918185]  ? _raw_spin_lock+0x88/0xdb
[  560.918409]  ? _raw_spin_lock_irqsave+0x100/0x100
[  560.918783]  ? _find_next_bit+0x4a/0x130
[  560.919026]  ? _raw_spin_unlock+0x19/0x40
[  560.919276]  ? alloc_fd+0x14b/0x2d0
[  560.919635]  do_sys_openat2+0x32a/0x4b0
[  560.920035]  ? file_open_root+0x230/0x230
[  560.920336]  ? __rcu_read_unlock+0x5b/0x280
[  560.920813]  do_sys_open+0x99/0xf0
[  560.921208]  ? filp_open+0x60/0x60
[  560.921482]  ? exit_to_user_mode_prepare+0x49/0x180
[  560.921867]  __x64_sys_open+0x4c/0x60
[  560.922128]  do_syscall_64+0x3b/0x90
[  560.922369]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  560.923030] RIP: 0033:0x7f7dff2e4469
[  560.923681] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088
[  560.924451] RSP: 002b:00007ffd41a210b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000002
[  560.925168] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7dff2e4469
[  560.925655] RDX: 0000000000000000 RSI: 0000000000000002 RDI: 00007ffd41a211f0
[  560.926085] RBP: 00007ffd41a252a0 R08: 00007f7dff60fba0 R09: 00007ffd41a25388
[  560.926405] R10: 0000000000400b80 R11: 0000000000000206 R12: 00000000004004e0
[  560.926867] R13: 00007ffd41a25380 R14: 0000000000000000 R15: 0000000000000000
[  560.927241]  </TASK>
[  560.927491]
[  560.927755] Allocated by task 245:
[  560.928409]  kasan_save_stack+0x26/0x50
[  560.929271]  __kasan_kmalloc+0x88/0xb0
[  560.929778]  __kmalloc+0x192/0x320
[  560.930023]  indx_read+0x249/0x380
[  560.930224]  indx_find+0x2a2/0x470
[  560.930695]  dir_search_u+0x196/0x2f0
[  560.930892]  ntfs_lookup+0xe0/0x100
[  560.931115]  __lookup_slow+0x116/0x220
[  560.931323]  walk_component+0x187/0x230
[  560.931570]  link_path_walk.part.0+0x3f0/0x660
[  560.931791]  path_openat+0x19c/0x1d10
[  560.932008]  do_filp_open+0x15c/0x1f0
[  560.932226]  do_sys_openat2+0x32a/0x4b0
[  560.932413]  do_sys_open+0x99/0xf0
[  560.932709]  __x64_sys_open+0x4c/0x60
[  560.933417]  do_syscall_64+0x3b/0x90
[  560.933776]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  560.934235]
[  560.934486] The buggy address belongs to the object at ffff888009497000
[  560.934486]  which belongs to the cache kmalloc-512 of size 512
[  560.935239] The buggy address is located 56 bytes to the right of
[  560.935239]  512-byte region [ffff888009497000, ffff888009497200)
[  560.936153]
[  560.937326] The buggy address belongs to the physical page:
[  560.938228] page:0000000062a3dfae refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x9496
[  560.939616] head:0000000062a3dfae order:1 compound_mapcount:0 compound_pincount:0
[  560.940219] flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
[  560.942702] raw: 000fffffc0010200 ffffea0000164f80 dead000000000005 ffff888001041c80
[  560.943932] raw: 0000000000000000 0000000080080008 00000001ffffffff 0000000000000000
[  560.944568] page dumped because: kasan: bad access detected
[  560.945735]
[  560.946112] Memory state around the buggy address:
[  560.946870]  ffff888009497100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  560.947242]  ffff888009497180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[  560.947611] >ffff888009497200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[  560.947915]                                         ^
[  560.948249]  ffff888009497280: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[  560.948687]  ffff888009497300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Edward Lo
c878a915bc fs/ntfs3: Validate attribute name offset
[ Upstream commit 4f1dc7d9756e66f3f876839ea174df2e656b7f79 ]

Although the attribute name length is checked before comparing it to
some common names (e.g., $I30), the offset isn't. This adds a sanity
check for the attribute name offset, guarantee the validity and prevent
possible out-of-bound memory accesses.

[  191.720056] BUG: unable to handle page fault for address: ffffebde00000008
[  191.721060] #PF: supervisor read access in kernel mode
[  191.721586] #PF: error_code(0x0000) - not-present page
[  191.722079] PGD 0 P4D 0
[  191.722571] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
[  191.723179] CPU: 0 PID: 244 Comm: mount Not tainted 6.0.0-rc4 #28
[  191.723749] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  191.724832] RIP: 0010:kfree+0x56/0x3b0
[  191.725870] Code: 80 48 01 d8 0f 82 65 03 00 00 48 c7 c2 00 00 00 80 48 2b 15 2c 06 dd 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 0a 069
[  191.727375] RSP: 0018:ffff8880076f7878 EFLAGS: 00000286
[  191.727897] RAX: ffffebde00000000 RBX: 0000000000000040 RCX: ffffffff8528d5b9
[  191.728531] RDX: 0000777f80000000 RSI: ffffffff8522d49c RDI: 0000000000000040
[  191.729183] RBP: ffff8880076f78a0 R08: 0000000000000000 R09: 0000000000000000
[  191.729628] R10: ffff888008949fd8 R11: ffffed10011293fd R12: 0000000000000040
[  191.730158] R13: ffff888008949f98 R14: ffff888008949ec0 R15: ffff888008949fb0
[  191.730645] FS:  00007f3520cd7e40(0000) GS:ffff88805ba00000(0000) knlGS:0000000000000000
[  191.731328] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  191.731667] CR2: ffffebde00000008 CR3: 0000000009704000 CR4: 00000000000006f0
[  191.732568] Call Trace:
[  191.733231]  <TASK>
[  191.733860]  kvfree+0x2c/0x40
[  191.734632]  ni_clear+0x180/0x290
[  191.735085]  ntfs_evict_inode+0x45/0x70
[  191.735495]  evict+0x199/0x280
[  191.735996]  iput.part.0+0x286/0x320
[  191.736438]  iput+0x32/0x50
[  191.736811]  iget_failed+0x23/0x30
[  191.737270]  ntfs_iget5+0x337/0x1890
[  191.737629]  ? ntfs_clear_mft_tail+0x20/0x260
[  191.738201]  ? ntfs_get_block_bmap+0x70/0x70
[  191.738482]  ? ntfs_objid_init+0xf6/0x140
[  191.738779]  ? ntfs_reparse_init+0x140/0x140
[  191.739266]  ntfs_fill_super+0x121b/0x1b50
[  191.739623]  ? put_ntfs+0x1d0/0x1d0
[  191.739984]  ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
[  191.740466]  ? put_ntfs+0x1d0/0x1d0
[  191.740787]  ? sb_set_blocksize+0x6a/0x80
[  191.741272]  get_tree_bdev+0x232/0x370
[  191.741829]  ? put_ntfs+0x1d0/0x1d0
[  191.742669]  ntfs_fs_get_tree+0x15/0x20
[  191.743132]  vfs_get_tree+0x4c/0x130
[  191.743457]  path_mount+0x654/0xfe0
[  191.743938]  ? putname+0x80/0xa0
[  191.744271]  ? finish_automount+0x2e0/0x2e0
[  191.744582]  ? putname+0x80/0xa0
[  191.745053]  ? kmem_cache_free+0x1c4/0x440
[  191.745403]  ? putname+0x80/0xa0
[  191.745616]  do_mount+0xd6/0xf0
[  191.745887]  ? path_mount+0xfe0/0xfe0
[  191.746287]  ? __kasan_check_write+0x14/0x20
[  191.746582]  __x64_sys_mount+0xca/0x110
[  191.746850]  do_syscall_64+0x3b/0x90
[  191.747122]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  191.747517] RIP: 0033:0x7f351fee948a
[  191.748332] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[  191.749341] RSP: 002b:00007ffd51cf3af8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[  191.749960] RAX: ffffffffffffffda RBX: 000055b903733060 RCX: 00007f351fee948a
[  191.750589] RDX: 000055b903733260 RSI: 000055b9037332e0 RDI: 000055b90373bce0
[  191.751115] RBP: 0000000000000000 R08: 000055b903733280 R09: 0000000000000020
[  191.751537] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 000055b90373bce0
[  191.751946] R13: 000055b903733260 R14: 0000000000000000 R15: 00000000ffffffff
[  191.752519]  </TASK>
[  191.752782] Modules linked in:
[  191.753785] CR2: ffffebde00000008
[  191.754937] ---[ end trace 0000000000000000 ]---
[  191.755429] RIP: 0010:kfree+0x56/0x3b0
[  191.755725] Code: 80 48 01 d8 0f 82 65 03 00 00 48 c7 c2 00 00 00 80 48 2b 15 2c 06 dd 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 0a 069
[  191.756744] RSP: 0018:ffff8880076f7878 EFLAGS: 00000286
[  191.757218] RAX: ffffebde00000000 RBX: 0000000000000040 RCX: ffffffff8528d5b9
[  191.757580] RDX: 0000777f80000000 RSI: ffffffff8522d49c RDI: 0000000000000040
[  191.758016] RBP: ffff8880076f78a0 R08: 0000000000000000 R09: 0000000000000000
[  191.758570] R10: ffff888008949fd8 R11: ffffed10011293fd R12: 0000000000000040
[  191.758957] R13: ffff888008949f98 R14: ffff888008949ec0 R15: ffff888008949fb0
[  191.759317] FS:  00007f3520cd7e40(0000) GS:ffff88805ba00000(0000) knlGS:0000000000000000
[  191.759711] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  191.760118] CR2: ffffebde00000008 CR3: 0000000009704000 CR4: 00000000000006f0

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Edward Lo
f62506f5e4 fs/ntfs3: Add null pointer check for inode operations
[ Upstream commit c1ca8ef0262b25493631ecbd9cb8c9893e1481a1 ]

This adds a sanity check for the i_op pointer of the inode which is
returned after reading Root directory MFT record. We should check the
i_op is valid before trying to create the root dentry, otherwise we may
encounter a NPD while mounting a image with a funny Root directory MFT
record.

[  114.484325] BUG: kernel NULL pointer dereference, address: 0000000000000008
[  114.484811] #PF: supervisor read access in kernel mode
[  114.485084] #PF: error_code(0x0000) - not-present page
[  114.485606] PGD 0 P4D 0
[  114.485975] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
[  114.486570] CPU: 0 PID: 237 Comm: mount Tainted: G    B              6.0.0-rc4 #28
[  114.486977] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  114.488169] RIP: 0010:d_flags_for_inode+0xe0/0x110
[  114.488816] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241
[  114.490326] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296
[  114.490695] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea
[  114.490986] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff87abd020
[  114.491364] RBP: ffff8880065e7ac8 R08: 0000000000000001 R09: fffffbfff0f57a05
[  114.491675] R10: ffffffff87abd027 R11: fffffbfff0f57a04 R12: 0000000000000000
[  114.491954] R13: 0000000000000008 R14: 0000000000000000 R15: ffff888008ccd750
[  114.492397] FS:  00007fdc8a627e40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[  114.492797] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  114.493150] CR2: 0000000000000008 CR3: 00000000013ba000 CR4: 00000000000006f0
[  114.493671] Call Trace:
[  114.493890]  <TASK>
[  114.494075]  __d_instantiate+0x24/0x1c0
[  114.494505]  d_instantiate.part.0+0x35/0x50
[  114.494754]  d_make_root+0x53/0x80
[  114.494998]  ntfs_fill_super+0x1232/0x1b50
[  114.495260]  ? put_ntfs+0x1d0/0x1d0
[  114.495499]  ? vsprintf+0x20/0x20
[  114.495723]  ? set_blocksize+0x95/0x150
[  114.495964]  get_tree_bdev+0x232/0x370
[  114.496272]  ? put_ntfs+0x1d0/0x1d0
[  114.496502]  ntfs_fs_get_tree+0x15/0x20
[  114.496859]  vfs_get_tree+0x4c/0x130
[  114.497099]  path_mount+0x654/0xfe0
[  114.497507]  ? putname+0x80/0xa0
[  114.497933]  ? finish_automount+0x2e0/0x2e0
[  114.498362]  ? putname+0x80/0xa0
[  114.498571]  ? kmem_cache_free+0x1c4/0x440
[  114.498819]  ? putname+0x80/0xa0
[  114.499069]  do_mount+0xd6/0xf0
[  114.499343]  ? path_mount+0xfe0/0xfe0
[  114.499683]  ? __kasan_check_write+0x14/0x20
[  114.500133]  __x64_sys_mount+0xca/0x110
[  114.500592]  do_syscall_64+0x3b/0x90
[  114.500930]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  114.501294] RIP: 0033:0x7fdc898e948a
[  114.501542] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[  114.502716] RSP: 002b:00007ffd793e58f8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[  114.503175] RAX: ffffffffffffffda RBX: 0000564b2228f060 RCX: 00007fdc898e948a
[  114.503588] RDX: 0000564b2228f260 RSI: 0000564b2228f2e0 RDI: 0000564b22297ce0
[  114.504925] RBP: 0000000000000000 R08: 0000564b2228f280 R09: 0000000000000020
[  114.505484] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564b22297ce0
[  114.505823] R13: 0000564b2228f260 R14: 0000000000000000 R15: 00000000ffffffff
[  114.506562]  </TASK>
[  114.506887] Modules linked in:
[  114.507648] CR2: 0000000000000008
[  114.508884] ---[ end trace 0000000000000000 ]---
[  114.509675] RIP: 0010:d_flags_for_inode+0xe0/0x110
[  114.510140] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241
[  114.511762] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296
[  114.512401] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea
[  114.513103] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff87abd020
[  114.513512] RBP: ffff8880065e7ac8 R08: 0000000000000001 R09: fffffbfff0f57a05
[  114.513831] R10: ffffffff87abd027 R11: fffffbfff0f57a04 R12: 0000000000000000
[  114.514757] R13: 0000000000000008 R14: 0000000000000000 R15: ffff888008ccd750
[  114.515411] FS:  00007fdc8a627e40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[  114.515794] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  114.516208] CR2: 0000000000000008 CR3: 00000000013ba000 CR4: 00000000000006f0

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Shigeru Yoshida
2dd9ccfb06 fs/ntfs3: Fix memory leak on ntfs_fill_super() error path
[ Upstream commit 51e76a232f8c037f1d9e9922edc25b003d5f3414 ]

syzbot reported kmemleak as below:

BUG: memory leak
unreferenced object 0xffff8880122f1540 (size 32):
  comm "a.out", pid 6664, jiffies 4294939771 (age 25.500s)
  hex dump (first 32 bytes):
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00 00 00 00 00 00 00 00 ed ff ed ff 00 00 00 00  ................
  backtrace:
    [<ffffffff81b16052>] ntfs_init_fs_context+0x22/0x1c0
    [<ffffffff8164aaa7>] alloc_fs_context+0x217/0x430
    [<ffffffff81626dd4>] path_mount+0x704/0x1080
    [<ffffffff81627e7c>] __x64_sys_mount+0x18c/0x1d0
    [<ffffffff84593e14>] do_syscall_64+0x34/0xb0
    [<ffffffff84600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

This patch fixes this issue by freeing mount options on error path of
ntfs_fill_super().

Reported-by: syzbot+9d67170b20e8f94351c8@syzkaller.appspotmail.com
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:44 +01:00
Edward Lo
ea6b359840 fs/ntfs3: Add null pointer check to attr_load_runs_vcn
[ Upstream commit 2681631c29739509eec59cc0b34e977bb04c6cf1 ]

Some metadata files are handled before MFT. This adds a null pointer
check for some corner cases that could lead to NPD while reading these
metadata files for a malformed NTFS image.

[  240.190827] BUG: kernel NULL pointer dereference, address: 0000000000000158
[  240.191583] #PF: supervisor read access in kernel mode
[  240.191956] #PF: error_code(0x0000) - not-present page
[  240.192391] PGD 0 P4D 0
[  240.192897] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
[  240.193805] CPU: 0 PID: 242 Comm: mount Tainted: G    B             5.19.0+ #17
[  240.194477] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  240.195152] RIP: 0010:ni_find_attr+0xae/0x300
[  240.195679] Code: c8 48 c7 45 88 c0 4e 5e 86 c7 00 f1 f1 f1 f1 c7 40 04 00 f3 f3 f3 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 e8 e2 d9f
[  240.196642] RSP: 0018:ffff88800812f690 EFLAGS: 00000286
[  240.197019] RAX: 0000000000000001 RBX: 0000000000000000 RCX: ffffffff85ef037a
[  240.197523] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff88e95f60
[  240.197877] RBP: ffff88800812f738 R08: 0000000000000001 R09: fffffbfff11d2bed
[  240.198292] R10: ffffffff88e95f67 R11: fffffbfff11d2bec R12: 0000000000000000
[  240.198647] R13: 0000000000000080 R14: 0000000000000000 R15: 0000000000000000
[  240.199410] FS:  00007f233c33be40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[  240.199895] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  240.200314] CR2: 0000000000000158 CR3: 0000000004d32000 CR4: 00000000000006f0
[  240.200839] Call Trace:
[  240.201104]  <TASK>
[  240.201502]  ? ni_load_mi+0x80/0x80
[  240.202297]  ? ___slab_alloc+0x465/0x830
[  240.202614]  attr_load_runs_vcn+0x8c/0x1a0
[  240.202886]  ? __kasan_slab_alloc+0x32/0x90
[  240.203157]  ? attr_data_write_resident+0x250/0x250
[  240.203543]  mi_read+0x133/0x2c0
[  240.203785]  mi_get+0x70/0x140
[  240.204012]  ni_load_mi_ex+0xfa/0x190
[  240.204346]  ? ni_std5+0x90/0x90
[  240.204588]  ? __kasan_kmalloc+0x88/0xb0
[  240.204859]  ni_enum_attr_ex+0xf1/0x1c0
[  240.205107]  ? ni_fname_type.part.0+0xd0/0xd0
[  240.205600]  ? ntfs_load_attr_list+0xbe/0x300
[  240.205864]  ? ntfs_cmp_names_cpu+0x125/0x180
[  240.206157]  ntfs_iget5+0x56c/0x1870
[  240.206510]  ? ntfs_get_block_bmap+0x70/0x70
[  240.206776]  ? __kasan_kmalloc+0x88/0xb0
[  240.207030]  ? set_blocksize+0x95/0x150
[  240.207545]  ntfs_fill_super+0xb8f/0x1e20
[  240.207839]  ? put_ntfs+0x1d0/0x1d0
[  240.208069]  ? vsprintf+0x20/0x20
[  240.208467]  ? mutex_unlock+0x81/0xd0
[  240.208846]  ? set_blocksize+0x95/0x150
[  240.209221]  get_tree_bdev+0x232/0x370
[  240.209804]  ? put_ntfs+0x1d0/0x1d0
[  240.210519]  ntfs_fs_get_tree+0x15/0x20
[  240.210991]  vfs_get_tree+0x4c/0x130
[  240.211455]  path_mount+0x645/0xfd0
[  240.211806]  ? putname+0x80/0xa0
[  240.212112]  ? finish_automount+0x2e0/0x2e0
[  240.212559]  ? kmem_cache_free+0x110/0x390
[  240.212906]  ? putname+0x80/0xa0
[  240.213329]  do_mount+0xd6/0xf0
[  240.213829]  ? path_mount+0xfd0/0xfd0
[  240.214246]  ? __kasan_check_write+0x14/0x20
[  240.214774]  __x64_sys_mount+0xca/0x110
[  240.215080]  do_syscall_64+0x3b/0x90
[  240.215442]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  240.215811] RIP: 0033:0x7f233b4e948a
[  240.216104] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[  240.217615] RSP: 002b:00007fff02211ec8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[  240.218718] RAX: ffffffffffffffda RBX: 0000561cdc35b060 RCX: 00007f233b4e948a
[  240.219556] RDX: 0000561cdc35b260 RSI: 0000561cdc35b2e0 RDI: 0000561cdc363af0
[  240.219975] RBP: 0000000000000000 R08: 0000561cdc35b280 R09: 0000000000000020
[  240.220403] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000561cdc363af0
[  240.220803] R13: 0000561cdc35b260 R14: 0000000000000000 R15: 00000000ffffffff
[  240.221256]  </TASK>
[  240.221567] Modules linked in:
[  240.222028] CR2: 0000000000000158
[  240.223291] ---[ end trace 0000000000000000 ]---
[  240.223669] RIP: 0010:ni_find_attr+0xae/0x300
[  240.224058] Code: c8 48 c7 45 88 c0 4e 5e 86 c7 00 f1 f1 f1 f1 c7 40 04 00 f3 f3 f3 65 48 8b 04 25 28 00 00 00 48 89 45 d0 31 c0 e8 e2 d9f
[  240.225033] RSP: 0018:ffff88800812f690 EFLAGS: 00000286
[  240.225968] RAX: 0000000000000001 RBX: 0000000000000000 RCX: ffffffff85ef037a
[  240.226624] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff88e95f60
[  240.227307] RBP: ffff88800812f738 R08: 0000000000000001 R09: fffffbfff11d2bed
[  240.227816] R10: ffffffff88e95f67 R11: fffffbfff11d2bec R12: 0000000000000000
[  240.228330] R13: 0000000000000080 R14: 0000000000000000 R15: 0000000000000000
[  240.228729] FS:  00007f233c33be40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[  240.229281] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  240.230298] CR2: 0000000000000158 CR3: 0000000004d32000 CR4: 00000000000006f0

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Edward Lo
de5e095524 fs/ntfs3: Validate data run offset
[ Upstream commit 6db620863f8528ed9a9aa5ad323b26554a17881d ]

This adds sanity checks for data run offset. We should make sure data
run offset is legit before trying to unpack them, otherwise we may
encounter use-after-free or some unexpected memory access behaviors.

[   82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570
[   82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240
[   82.941670]
[   82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15
[   82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[   82.943720] Call Trace:
[   82.944204]  <TASK>
[   82.944471]  dump_stack_lvl+0x49/0x63
[   82.944908]  print_report.cold+0xf5/0x67b
[   82.945141]  ? __wait_on_bit+0x106/0x120
[   82.945750]  ? run_unpack+0x2e3/0x570
[   82.946626]  kasan_report+0xa7/0x120
[   82.947046]  ? run_unpack+0x2e3/0x570
[   82.947280]  __asan_load1+0x51/0x60
[   82.947483]  run_unpack+0x2e3/0x570
[   82.947709]  ? memcpy+0x4e/0x70
[   82.947927]  ? run_pack+0x7a0/0x7a0
[   82.948158]  run_unpack_ex+0xad/0x3f0
[   82.948399]  ? mi_enum_attr+0x14a/0x200
[   82.948717]  ? run_unpack+0x570/0x570
[   82.949072]  ? ni_enum_attr_ex+0x1b2/0x1c0
[   82.949332]  ? ni_fname_type.part.0+0xd0/0xd0
[   82.949611]  ? mi_read+0x262/0x2c0
[   82.949970]  ? ntfs_cmp_names_cpu+0x125/0x180
[   82.950249]  ntfs_iget5+0x632/0x1870
[   82.950621]  ? ntfs_get_block_bmap+0x70/0x70
[   82.951192]  ? evict+0x223/0x280
[   82.951525]  ? iput.part.0+0x286/0x320
[   82.951969]  ntfs_fill_super+0x1321/0x1e20
[   82.952436]  ? put_ntfs+0x1d0/0x1d0
[   82.952822]  ? vsprintf+0x20/0x20
[   82.953188]  ? mutex_unlock+0x81/0xd0
[   82.953379]  ? set_blocksize+0x95/0x150
[   82.954001]  get_tree_bdev+0x232/0x370
[   82.954438]  ? put_ntfs+0x1d0/0x1d0
[   82.954700]  ntfs_fs_get_tree+0x15/0x20
[   82.955049]  vfs_get_tree+0x4c/0x130
[   82.955292]  path_mount+0x645/0xfd0
[   82.955615]  ? putname+0x80/0xa0
[   82.955955]  ? finish_automount+0x2e0/0x2e0
[   82.956310]  ? kmem_cache_free+0x110/0x390
[   82.956723]  ? putname+0x80/0xa0
[   82.957023]  do_mount+0xd6/0xf0
[   82.957411]  ? path_mount+0xfd0/0xfd0
[   82.957638]  ? __kasan_check_write+0x14/0x20
[   82.957948]  __x64_sys_mount+0xca/0x110
[   82.958310]  do_syscall_64+0x3b/0x90
[   82.958719]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[   82.959341] RIP: 0033:0x7fd0d1ce948a
[   82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[   82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[   82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a
[   82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0
[   82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020
[   82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0
[   82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff

Signed-off-by: Edward Lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
edward lo
d4489ba8fb fs/ntfs3: Add overflow check for attribute size
[ Upstream commit e19c6277652efba203af4ecd8eed4bd30a0054c9 ]

The offset addition could overflow and pass the used size check given an
attribute with very large size (e.g., 0xffffff7f) while parsing MFT
attributes. This could lead to out-of-bound memory R/W if we try to
access the next attribute derived by Add2Ptr(attr, asize)

[   32.963847] BUG: unable to handle page fault for address: ffff956a83c76067
[   32.964301] #PF: supervisor read access in kernel mode
[   32.964526] #PF: error_code(0x0000) - not-present page
[   32.964893] PGD 4dc01067 P4D 4dc01067 PUD 0
[   32.965316] Oops: 0000 [#1] PREEMPT SMP NOPTI
[   32.965727] CPU: 0 PID: 243 Comm: mount Not tainted 5.19.0+ #6
[   32.966050] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[   32.966628] RIP: 0010:mi_enum_attr+0x44/0x110
[   32.967239] Code: 89 f0 48 29 c8 48 89 c1 39 c7 0f 86 94 00 00 00 8b 56 04 83 fa 17 0f 86 88 00 00 00 89 d0 01 ca 48 01 f0 8d 4a 08 39 f9a
[   32.968101] RSP: 0018:ffffba15c06a7c38 EFLAGS: 00000283
[   32.968364] RAX: ffff956a83c76067 RBX: ffff956983c76050 RCX: 000000000000006f
[   32.968651] RDX: 0000000000000067 RSI: ffff956983c760e8 RDI: 00000000000001c8
[   32.968963] RBP: ffffba15c06a7c38 R08: 0000000000000064 R09: 00000000ffffff7f
[   32.969249] R10: 0000000000000007 R11: ffff956983c760e8 R12: ffff95698225e000
[   32.969870] R13: 0000000000000000 R14: ffffba15c06a7cd8 R15: ffff95698225e170
[   32.970655] FS:  00007fdab8189e40(0000) GS:ffff9569fdc00000(0000) knlGS:0000000000000000
[   32.971098] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   32.971378] CR2: ffff956a83c76067 CR3: 0000000002c58000 CR4: 00000000000006f0
[   32.972098] Call Trace:
[   32.972842]  <TASK>
[   32.973341]  ni_enum_attr_ex+0xda/0xf0
[   32.974087]  ntfs_iget5+0x1db/0xde0
[   32.974386]  ? slab_post_alloc_hook+0x53/0x270
[   32.974778]  ? ntfs_fill_super+0x4c7/0x12a0
[   32.975115]  ntfs_fill_super+0x5d6/0x12a0
[   32.975336]  get_tree_bdev+0x175/0x270
[   32.975709]  ? put_ntfs+0x150/0x150
[   32.975956]  ntfs_fs_get_tree+0x15/0x20
[   32.976191]  vfs_get_tree+0x2a/0xc0
[   32.976374]  ? capable+0x19/0x20
[   32.976572]  path_mount+0x484/0xaa0
[   32.977025]  ? putname+0x57/0x70
[   32.977380]  do_mount+0x80/0xa0
[   32.977555]  __x64_sys_mount+0x8b/0xe0
[   32.978105]  do_syscall_64+0x3b/0x90
[   32.978830]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[   32.979311] RIP: 0033:0x7fdab72e948a
[   32.980015] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[   32.981251] RSP: 002b:00007ffd15b87588 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[   32.981832] RAX: ffffffffffffffda RBX: 0000557de0aaf060 RCX: 00007fdab72e948a
[   32.982234] RDX: 0000557de0aaf260 RSI: 0000557de0aaf2e0 RDI: 0000557de0ab7ce0
[   32.982714] RBP: 0000000000000000 R08: 0000557de0aaf280 R09: 0000000000000020
[   32.983046] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000557de0ab7ce0
[   32.983494] R13: 0000557de0aaf260 R14: 0000000000000000 R15: 00000000ffffffff
[   32.984094]  </TASK>
[   32.984352] Modules linked in:
[   32.984753] CR2: ffff956a83c76067
[   32.985911] ---[ end trace 0000000000000000 ]---
[   32.986555] RIP: 0010:mi_enum_attr+0x44/0x110
[   32.987217] Code: 89 f0 48 29 c8 48 89 c1 39 c7 0f 86 94 00 00 00 8b 56 04 83 fa 17 0f 86 88 00 00 00 89 d0 01 ca 48 01 f0 8d 4a 08 39 f9a
[   32.988232] RSP: 0018:ffffba15c06a7c38 EFLAGS: 00000283
[   32.988532] RAX: ffff956a83c76067 RBX: ffff956983c76050 RCX: 000000000000006f
[   32.988916] RDX: 0000000000000067 RSI: ffff956983c760e8 RDI: 00000000000001c8
[   32.989356] RBP: ffffba15c06a7c38 R08: 0000000000000064 R09: 00000000ffffff7f
[   32.989994] R10: 0000000000000007 R11: ffff956983c760e8 R12: ffff95698225e000
[   32.990415] R13: 0000000000000000 R14: ffffba15c06a7cd8 R15: ffff95698225e170
[   32.991011] FS:  00007fdab8189e40(0000) GS:ffff9569fdc00000(0000) knlGS:0000000000000000
[   32.991524] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   32.991936] CR2: ffff956a83c76067 CR3: 0000000002c58000 CR4: 00000000000006f0

This patch adds an overflow check

Signed-off-by: edward lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
edward lo
af7a195dea fs/ntfs3: Validate BOOT record_size
[ Upstream commit 0b66046266690454dc04e6307bcff4a5605b42a1 ]

When the NTFS BOOT record_size field < 0, it represents a
shift value. However, there is no sanity check on the shift result
and the sbi->record_bits calculation through blksize_bits() assumes
the size always > 256, which could lead to NPD while mounting a
malformed NTFS image.

[  318.675159] BUG: kernel NULL pointer dereference, address: 0000000000000158
[  318.675682] #PF: supervisor read access in kernel mode
[  318.675869] #PF: error_code(0x0000) - not-present page
[  318.676246] PGD 0 P4D 0
[  318.676502] Oops: 0000 [#1] PREEMPT SMP NOPTI
[  318.676934] CPU: 0 PID: 259 Comm: mount Not tainted 5.19.0 #5
[  318.677289] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[  318.678136] RIP: 0010:ni_find_attr+0x2d/0x1c0
[  318.678656] Code: 89 ca 4d 89 c7 41 56 41 55 41 54 41 89 cc 55 48 89 fd 53 48 89 d3 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 44 24 180
[  318.679848] RSP: 0018:ffffa6c8c0297bd8 EFLAGS: 00000246
[  318.680104] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000080
[  318.680790] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[  318.681679] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[  318.682577] R10: 0000000000000000 R11: 0000000000000005 R12: 0000000000000080
[  318.683015] R13: ffff8d5582e68400 R14: 0000000000000100 R15: 0000000000000000
[  318.683618] FS:  00007fd9e1c81e40(0000) GS:ffff8d55fdc00000(0000) knlGS:0000000000000000
[  318.684280] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  318.684651] CR2: 0000000000000158 CR3: 0000000002e1a000 CR4: 00000000000006f0
[  318.685623] Call Trace:
[  318.686607]  <TASK>
[  318.686872]  ? ntfs_alloc_inode+0x1a/0x60
[  318.687235]  attr_load_runs_vcn+0x2b/0xa0
[  318.687468]  mi_read+0xbb/0x250
[  318.687576]  ntfs_iget5+0x114/0xd90
[  318.687750]  ntfs_fill_super+0x588/0x11b0
[  318.687953]  ? put_ntfs+0x130/0x130
[  318.688065]  ? snprintf+0x49/0x70
[  318.688164]  ? put_ntfs+0x130/0x130
[  318.688256]  get_tree_bdev+0x16a/0x260
[  318.688407]  vfs_get_tree+0x20/0xb0
[  318.688519]  path_mount+0x2dc/0x9b0
[  318.688877]  do_mount+0x74/0x90
[  318.689142]  __x64_sys_mount+0x89/0xd0
[  318.689636]  do_syscall_64+0x3b/0x90
[  318.689998]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  318.690318] RIP: 0033:0x7fd9e133c48a
[  318.690687] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[  318.691357] RSP: 002b:00007ffd374406c8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[  318.691632] RAX: ffffffffffffffda RBX: 0000564d0b051080 RCX: 00007fd9e133c48a
[  318.691920] RDX: 0000564d0b051280 RSI: 0000564d0b051300 RDI: 0000564d0b0596a0
[  318.692123] RBP: 0000000000000000 R08: 0000564d0b0512a0 R09: 0000000000000020
[  318.692349] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564d0b0596a0
[  318.692673] R13: 0000564d0b051280 R14: 0000000000000000 R15: 00000000ffffffff
[  318.693007]  </TASK>
[  318.693271] Modules linked in:
[  318.693614] CR2: 0000000000000158
[  318.694446] ---[ end trace 0000000000000000 ]---
[  318.694779] RIP: 0010:ni_find_attr+0x2d/0x1c0
[  318.694952] Code: 89 ca 4d 89 c7 41 56 41 55 41 54 41 89 cc 55 48 89 fd 53 48 89 d3 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 44 24 180
[  318.696042] RSP: 0018:ffffa6c8c0297bd8 EFLAGS: 00000246
[  318.696531] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000080
[  318.698114] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[  318.699286] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[  318.699795] R10: 0000000000000000 R11: 0000000000000005 R12: 0000000000000080
[  318.700236] R13: ffff8d5582e68400 R14: 0000000000000100 R15: 0000000000000000
[  318.700973] FS:  00007fd9e1c81e40(0000) GS:ffff8d55fdc00000(0000) knlGS:0000000000000000
[  318.701688] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  318.702190] CR2: 0000000000000158 CR3: 0000000002e1a000 CR4: 00000000000006f0
[  318.726510] mount (259) used greatest stack depth: 13320 bytes left

This patch adds a sanity check.

Signed-off-by: edward lo <edward.lo@ambergroup.io>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Christoph Hellwig
8e228ac90c nvmet: don't defer passthrough commands with trivial effects to the workqueue
[ Upstream commit 2a459f6933e1c459bffb7cc73fd6c900edc714bd ]

Mask out the "Command Supported" and "Logical Block Content Change" bits
and only defer execution of commands that have non-trivial effects to
the workqueue for synchronous execution.  This allows to execute admin
commands asynchronously on controllers that provide a Command Supported
and Effects log page, and will keep allowing to execute Write commands
asynchronously once command effects on I/O commands are taken into
account.

Fixes: c1fef73f793b ("nvmet: add passthru code to process commands")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Kanchan Joshi <joshi.k@samsung.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Christoph Hellwig
f068a7315a nvme: fix the NVME_CMD_EFFECTS_CSE_MASK definition
[ Upstream commit 685e6311637e46f3212439ce2789f8a300e5050f ]

3 << 16 does not generate the correct mask for bits 16, 17 and 18.
Use the GENMASK macro to generate the correct mask instead.

Fixes: 84fef62d135b ("nvme: check admin passthru command effects")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Kanchan Joshi <joshi.k@samsung.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Adam Vodopjan
576502f25f ata: ahci: Fix PCS quirk application for suspend
[ Upstream commit 37e14e4f3715428b809e4df9a9958baa64c77d51 ]

Since kernel 5.3.4 my laptop (ICH8M controller) does not see Kingston
SV300S37A60G SSD disk connected into a SATA connector on wake from
suspend.  The problem was introduced in c312ef176399 ("libata/ahci: Drop
PCS quirk for Denverton and beyond"): the quirk is not applied on wake
from suspend as it originally was.

It is worth to mention the commit contained another bug: the quirk is
not applied at all to controllers which require it. The fix commit
09d6ac8dc51a ("libata/ahci: Fix PCS quirk application") landed in 5.3.8.
So testing my patch anywhere between commits c312ef176399 and
09d6ac8dc51a is pointless.

Not all disks trigger the problem. For example nothing bad happens with
Western Digital WD5000LPCX HDD.

Test hardware:
- Acer 5920G with ICH8M SATA controller
- sda: some SATA HDD connnected into the DVD drive IDE port with a
  SATA-IDE caddy. It is a boot disk
- sdb: Kingston SV300S37A60G SSD connected into the only SATA port

Sample "dmesg --notime | grep -E '^(sd |ata)'" output on wake:

sd 0:0:0:0: [sda] Starting disk
sd 2:0:0:0: [sdb] Starting disk
ata4: SATA link down (SStatus 4 SControl 300)
ata3: SATA link down (SStatus 4 SControl 300)
ata1.00: ACPI cmd ef/03:0c:00:00:00:a0 (SET FEATURES) filtered out
ata1.00: ACPI cmd ef/03:42:00:00:00:a0 (SET FEATURES) filtered out
ata1: FORCE: cable set to 80c
ata5: SATA link down (SStatus 0 SControl 300)
ata3: SATA link down (SStatus 4 SControl 300)
ata3: SATA link down (SStatus 4 SControl 300)
ata3.00: disabled
sd 2:0:0:0: rejecting I/O to offline device
ata3.00: detaching (SCSI 2:0:0:0)
sd 2:0:0:0: [sdb] Start/Stop Unit failed: Result: hostbyte=DID_NO_CONNECT
	driverbyte=DRIVER_OK
sd 2:0:0:0: [sdb] Synchronizing SCSI cache
sd 2:0:0:0: [sdb] Synchronize Cache(10) failed: Result:
	hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK
sd 2:0:0:0: [sdb] Stopping disk
sd 2:0:0:0: [sdb] Start/Stop Unit failed: Result: hostbyte=DID_BAD_TARGET
	driverbyte=DRIVER_OK

Commit c312ef176399 dropped ahci_pci_reset_controller() which internally
calls ahci_reset_controller() and applies the PCS quirk if needed after
that. It was called each time a reset was required instead of just
ahci_reset_controller(). This patch puts the function back in place.

Fixes: c312ef176399 ("libata/ahci: Drop PCS quirk for Denverton and beyond")
Signed-off-by: Adam Vodopjan <grozzly@protonmail.com>
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Yu Kuai
7949b0df3d block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq
[ Upstream commit 246cf66e300b76099b5dbd3fdd39e9a5dbc53f02 ]

Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'")
will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq()
can free bfqq first, and then call bic_set_bfqq(), which will cause uaf.

Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq().

Fixes: 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'")
Reported-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Link: https://lore.kernel.org/r/20221226030605.1437081-1-yukuai1@huaweicloud.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:43 +01:00
Adrian Freund
ff3d9ab51c ACPI: resource: do IRQ override on Lenovo 14ALC7
[ Upstream commit f3cb9b740869712d448edf3b9ef5952b847caf8b ]

Commit bfcdf58380b1 ("ACPI: resource: do IRQ override on LENOVO IdeaPad")
added an override for Lenovo IdeaPad 5 16ALC7. The 14ALC7 variant also
suffers from a broken touchscreen and trackpad.

Fixes: 9946e39fe8d0 ("ACPI: resource: skip IRQ override on AMD Zen platforms")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216804
Signed-off-by: Adrian Freund <adrian@freund.io>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Erik Schumacher
698a0813ce ACPI: resource: do IRQ override on XMG Core 15
[ Upstream commit 7592b79ba4a91350b38469e05238308bcfe1019b ]

The Schenker XMG CORE 15 (M22) is Ryzen-6 based and needs IRQ overriding
for the keyboard to work. Adding an entry for this laptop to the
override_table makes the internal keyboard functional again.

Signed-off-by: Erik Schumacher <ofenfisch@googlemail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Stable-dep-of: f3cb9b740869 ("ACPI: resource: do IRQ override on Lenovo 14ALC7")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Jiri Slaby (SUSE)
a9ac7633bb ACPI: resource: do IRQ override on LENOVO IdeaPad
[ Upstream commit bfcdf58380b1d9be564a78a9370da722ed1a9965 ]

LENOVO IdeaPad Flex 5 is ryzen-5 based and the commit below removed IRQ
overriding for those. This broke touchscreen and trackpad:
 i2c_designware AMDI0010:00: controller timed out
 i2c_designware AMDI0010:03: controller timed out
 i2c_hid_acpi i2c-MSFT0001:00: failed to reset device: -61
 i2c_designware AMDI0010:03: controller timed out
 ...
 i2c_hid_acpi i2c-MSFT0001:00: can't add hid device: -61
 i2c_hid_acpi: probe of i2c-MSFT0001:00 failed with error -61

White-list this specific model in the override_table.

For this to work, the ZEN test needs to be put below the table walk.

Fixes: 37c81d9f1d1b (ACPI: resource: skip IRQ override on AMD Zen platforms)
Link: https://bugzilla.suse.com/show_bug.cgi?id=1203794
Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Stable-dep-of: f3cb9b740869 ("ACPI: resource: do IRQ override on Lenovo 14ALC7")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Tamim Khan
5fe31f2950 ACPI: resource: Skip IRQ override on Asus Vivobook K3402ZA/K3502ZA
[ Upstream commit e12dee3736731e24b1e7367f87d66ac0fcd73ce7 ]

In the ACPI DSDT table for Asus VivoBook K3402ZA/K3502ZA
IRQ 1 is described as ActiveLow; however, the kernel overrides
it to Edge_High. This prevents the internal keyboard from working
on these laptops. In order to fix this add these laptops to the
skip_override_table so that the kernel does not override IRQ 1 to
Edge_High.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=216158
Reviewed-by: Hui Wang <hui.wang@canonical.com>
Tested-by: Tamim Khan <tamim@fusetak.com>
Tested-by: Sunand <sunandchakradhar@gmail.com>
Signed-off-by: Tamim Khan <tamim@fusetak.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Stable-dep-of: f3cb9b740869 ("ACPI: resource: do IRQ override on Lenovo 14ALC7")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Keith Busch
4c5fee0d88 nvme-pci: fix page size checks
[ Upstream commit 841734234a28fd5cd0889b84bd4d93a0988fa11e ]

The size allocated out of the dma pool is at most NVME_CTRL_PAGE_SIZE,
which may be smaller than the PAGE_SIZE.

Fixes: c61b82c7b7134 ("nvme-pci: fix PRP pool size")
Signed-off-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Keith Busch
9141144b37 nvme-pci: fix mempool alloc size
[ Upstream commit c89a529e823d51dd23c7ec0c047c7a454a428541 ]

Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.

The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.

While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence.

Cc: Jens Axboe <axboe@kernel.dk>
Fixes: 943e942e6266f ("nvme-pci: limit max IO size and segments to avoid high order allocations")
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Kanchan Joshi <joshi.k@samsung.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Klaus Jensen
f17cf8fa2c nvme-pci: fix doorbell buffer value endianness
[ Upstream commit b5f96cb719d8ba220b565ddd3ba4ac0d8bcfb130 ]

When using shadow doorbells, the event index and the doorbell values are
written to host memory. Prior to this patch, the values written would
erroneously be written in host endianness. This causes trouble on
big-endian platforms. Fix this by adding missing endian conversions.

This issue was noticed by Guenter while testing various big-endian
platforms under QEMU[1]. A similar fix required for hw/nvme in QEMU is
up for review as well[2].

  [1]: https://lore.kernel.org/qemu-devel/20221209110022.GA3396194@roeck-us.net/
  [2]: https://lore.kernel.org/qemu-devel/20221212114409.34972-4-its@irrelevant.dk/

Fixes: f9f38e33389c ("nvme: improve performance for virtual NVMe devices")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:42 +01:00
Sasha Levin
ead99ec669 Revert "selftests/bpf: Add test for unstable CT lookup API"
This reverts commit f463a1295c4fa73eac0b16fbfbdfc5726b06445d.

Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:41 +01:00
Paulo Alcantara
bf0543b937 cifs: fix oops during encryption
[ Upstream commit f7f291e14dde32a07b1f0aa06921d28f875a7b54 ]

When running xfstests against Azure the following oops occurred on an
arm64 system

  Unable to handle kernel write to read-only memory at virtual address
  ffff0001221cf000
  Mem abort info:
    ESR = 0x9600004f
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
    FSC = 0x0f: level 3 permission fault
  Data abort info:
    ISV = 0, ISS = 0x0000004f
    CM = 0, WnR = 1
  swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
  [ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
  pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
  Internal error: Oops: 9600004f [#1] PREEMPT SMP
  ...
  pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
  pc : __memcpy+0x40/0x230
  lr : scatterwalk_copychunks+0xe0/0x200
  sp : ffff800014e92de0
  x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
  x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
  x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
  x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
  x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
  x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
  x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
  x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
  x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
  x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
  Call trace:
   __memcpy+0x40/0x230
   scatterwalk_map_and_copy+0x98/0x100
   crypto_ccm_encrypt+0x150/0x180
   crypto_aead_encrypt+0x2c/0x40
   crypt_message+0x750/0x880
   smb3_init_transform_rq+0x298/0x340
   smb_send_rqst.part.11+0xd8/0x180
   smb_send_rqst+0x3c/0x100
   compound_send_recv+0x534/0xbc0
   smb2_query_info_compound+0x32c/0x440
   smb2_set_ea+0x438/0x4c0
   cifs_xattr_set+0x5d4/0x7c0

This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.

To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done.  Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...

Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Cc: stable@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:41 +01:00
Miaoqian Lin
56f6de394f usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init
[ Upstream commit 97a48da1619ba6bd42a0e5da0a03aa490a9496b1 ]

of_icc_get() alloc resources for path handle, we should release it when not
need anymore. Like the release in dwc3_qcom_interconnect_exit() function.
Add icc_put() in error handling to fix this.

Fixes: bea46b981515 ("usb: dwc3: qcom: Add interconnect support in dwc3 driver")
Cc: stable <stable@kernel.org>
Acked-by: Thinh Nguyen <Thinh.Nguyen@synopsys.com>
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Link: https://lore.kernel.org/r/20221206081731.818107-1-linmq006@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:58:41 +01:00
Greg Kroah-Hartman
90ffbb727c Linux 5.15.86
Link: https://lore.kernel.org/r/20221228144256.536395940@linuxfoundation.org
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Slade Watkins <srw@sladewatkins.net>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Tested-by: Ron Economos <re@w6rz.net>
Tested-by: Thierry Reding <treding@nvidia.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Link: https://lore.kernel.org/r/20221230094021.575121238@linuxfoundation.org
Tested-by: Slade Watkins <srw@sladewatkins.net>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Ron Economos <re@w6rz.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
v5.15.86
2022-12-31 13:14:48 +01:00
Steven Price
3082f8705e pwm: tegra: Fix 32 bit build
[ Upstream commit dd1f1da4ada5d8ac774c2ebe97230637820b3323 ]

The value of NSEC_PER_SEC << PWM_DUTY_WIDTH doesn't fix within a 32 bit
integer causing a build warning/error (and the value truncated):

  drivers/pwm/pwm-tegra.c: In function ‘tegra_pwm_config’:
  drivers/pwm/pwm-tegra.c:148:53: error: result of ‘1000000000 << 8’ requires 39 bits to represent, but ‘long int’ only has 32 bits [-Werror=shift-overflow=]
    148 |   required_clk_rate = DIV_ROUND_UP_ULL(NSEC_PER_SEC << PWM_DUTY_WIDTH,
        |                                                     ^~

Explicitly cast to a u64 to ensure the correct result.

Fixes: cfcb68817fb3 ("pwm: tegra: Improve required rate calculation")
Signed-off-by: Steven Price <steven.price@arm.com>
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:48 +01:00
Christophe JAILLET
caa40d1f85 mfd: qcom_rpm: Use devm_of_platform_populate() to simplify code
[ Upstream commit e48dee96046246980d476714b3f6684d45f29c13 ]

Use devm_of_platform_populate() instead of hand-writing it.
This simplifies the code.

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Lee Jones <lee@kernel.org>
Link: https://lore.kernel.org/r/fd997dc92b9cee219e9c55e22959a94f4bbf570b.1668949256.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:48 +01:00
Yassine Oudjana
408dbaa065 extcon: usbc-tusb320: Call the Type-C IRQ handler only if a port is registered
commit 341fd15e2e18c24d5c738496cfc3d7a272241201 upstream.

Commit bf7571c00dca ("extcon: usbc-tusb320: Add USB TYPE-C support")
added an optional Type-C interface to the driver but missed to check
if it is in use when calling the IRQ handler. This causes an oops on
devices currently using the old extcon interface. Check if a Type-C
port is registered before calling the Type-C IRQ handler.

Fixes: bf7571c00dca ("extcon: usbc-tusb320: Add USB TYPE-C support")
Signed-off-by: Yassine Oudjana <y.oudjana@protonmail.com>
Reviewed-by: Marek Vasut <marex@denx.de>
Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20221107153317.657803-1-y.oudjana@protonmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:48 +01:00
Lin Ma
2471a44769 media: dvbdev: fix refcnt bug
commit 3a664569b71b0a52be5ffb9fb87cc4f83d29bd71 upstream.

Previous commit initialize the dvbdev->ref before the template copy,
which will overwrite the reference and cause refcnt bug.

refcount_t: addition on 0; use-after-free.
WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0x17c/0x1f0 lib/refcount.c:25
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0-rc6-next-20221128-syzkaller #0
...
RIP: 0010:refcount_warn_saturate+0x17c/0x1f0 lib/refcount.c:25
RSP: 0000:ffffc900000678d0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff88813ff58000 RSI: ffffffff81660e7c RDI: fffff5200000cf0c
RBP: ffff888022a45010 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000001
FS:  0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff88823ffff000 CR3: 000000000c48e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 __refcount_add include/linux/refcount.h:199 [inline]
 __refcount_inc include/linux/refcount.h:250 [inline]
 refcount_inc include/linux/refcount.h:267 [inline]
 kref_get include/linux/kref.h:45 [inline]
 dvb_device_get drivers/media/dvb-core/dvbdev.c:585 [inline]
 dvb_register_device+0xe83/0x16e0 drivers/media/dvb-core/dvbdev.c:517
...

Just place the kref_init at correct position.

Reported-by: syzbot+fce48a3dd3368645bd6c@syzkaller.appspotmail.com
Fixes: 0fc044b2b5e2 ("media: dvbdev: adopts refcnt to avoid UAF")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:47 +01:00
Lin Ma
579fb0a332 media: dvbdev: fix build warning due to comments
commit 3edfd14bb50fa6f94ed1a37bbb17d9f1c2793b57 upstream.

Previous commit that introduces reference counter does not add proper
comments, which will lead to warning when building htmldocs. Fix them.

Reported-by: "Stephen Rothwell" <sfr@canb.auug.org.au>
Fixes: 0fc044b2b5e2 ("media: dvbdev: adopts refcnt to avoid UAF")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:47 +01:00
Gaosheng Cui
1115e77c4f net: stmmac: fix errno when create_singlethread_workqueue() fails
commit 2cb815cfc78b137ee38bcd65e7c955d6cc2cc250 upstream.

We should set the return value to -ENOMEM explicitly when
create_singlethread_workqueue() fails in stmmac_dvr_probe(),
otherwise we'll lose the error value.

Fixes: a137f3f27f92 ("net: stmmac: fix possible memory leak in stmmac_dvr_probe()")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Link: https://lore.kernel.org/r/20221214080117.3514615-1-cuigaosheng1@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:47 +01:00