IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Currently, the dw-edma driver enables the runtime_pm for parent device
(chip->dev) and increments/decrements the refcount during alloc/free
chan resources callbacks.
This leads to a problem when the eDMA driver has been probed, but the
channels were not used. This scenario can happen when the DW PCIe driver
probes eDMA driver successfully, but the PCI EPF driver decides not to
use eDMA channels and use iATU instead for PCI transfers.
In this case, the underlying device would be runtime suspended due to
pm_runtime_enable() in dw_edma_probe() and the PCI EPF driver would have
no knowledge of it.
Ideally, the eDMA driver should not be the one doing the runtime PM of
the parent device. The responsibility should instead belong to the client
drivers like PCI EPF.
So let's remove the runtime PM support from eDMA driver.
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Frank Li <Frank.Li@nxp.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Link: https://lore.kernel.org/r/20220910054700.12205-1-manivannan.sadhasivam@linaro.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmLr+2wUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxfZg//eChkC2EUdT6K3zuQDbJJhsGcuOQF
lnZuUyDn4xw7BkEoZf8V6YdAnp7VvgKhLOq1/q3Geu/LBbCaczoEogOCaR/WcVOs
C+MsN0RWZQtgfuZKncQoqp25NeLPK9PFToeiIX/xViAYZF7NVjDY7XQiZHQ6JkEA
/7cUqv/4nS3KCMsKjfmiOxGnqohMWtICiw9qjFvJ40PEDnNB1b53rkiVTxBFePpI
ePfsRfi/C7klE3xNfoiEgrPp+Jfw+oShsCwXUsId7bEL2oLBc7ClqP05ZYZD3bTK
QQYyZ12Cq8TysciYpUGBjBnywUHS5DIO5YaV3wxyVAR2Z+6GY2/QVjOa2kKvoK0o
Hba6TJf8bL58AhSI8Q62pBM0sS7dqJSff+9c2BGpZvII5spP/rQQLlJO56TJjwkw
Dlf0d3thhZOc9vSKjKw+0v0FdAyc4L11EOwUsw95jZeT5WWgqJYGFnWPZwqBI1KM
DI1E5wVO5tA2H3NEn+BTTHbLWL+UppqyXPXBHiW52b2q5Bt8fJWMsFvnEEjclxmG
pYCI7VgF8jqbYKxjobxPFY2x6PH9hfaGMxwzZSdOX6e/Eh+1esgyyaC5APpCO+Pp
e4OkJaOzCmggrD0jYeLWu+yDm5KRrYo5cdfKHrKgAof0Am41lAa1OhJ2iH4ckNqP
1qmHereDOe0zNVw=
=9TAR
-----END PGP SIGNATURE-----
Merge tag 'pci-v5.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
"Enumeration:
- Consolidate duplicated 'next function' scanning and extend to allow
'isolated functions' on s390, similar to existing hypervisors
(Niklas Schnelle)
Resource management:
- Implement pci_iobar_pfn() for sparc, which allows us to remove the
sparc-specific pci_mmap_page_range() and pci_mmap_resource_range().
This removes the ability to map the entire PCI I/O space using
/proc/bus/pci, but we believe that's already been broken since
v2.6.28 (Arnd Bergmann)
- Move common PCI definitions to asm-generic/pci.h and rework others
to be be more specific and more encapsulated in arches that need
them (Stafford Horne)
Power management:
- Convert drivers to new *_PM_OPS macros to avoid need for '#ifdef
CONFIG_PM_SLEEP' or '__maybe_unused' (Bjorn Helgaas)
Virtualization:
- Add ACS quirk for Broadcom BCM5750x multifunction NICs that isolate
the functions but don't advertise an ACS capability (Pavan Chebbi)
Error handling:
- Clear PCI Status register during enumeration in case firmware left
errors logged (Kai-Heng Feng)
- When we have native control of AER, enable error reporting for all
devices that support AER. Previously only a few drivers enabled
this (Stefan Roese)
- Keep AER error reporting enabled for switches. Previously we
enabled this during enumeration but immediately disabled it (Stefan
Roese)
- Iterate over error counters instead of error strings to avoid
printing junk in AER sysfs counters (Mohamed Khalfella)
ASPM:
- Remove pcie_aspm_pm_state_change() so ASPM config changes, e.g.,
via sysfs, are not lost across power state changes (Kai-Heng Feng)
Endpoint framework:
- Don't stop an EPC when unbinding an EPF from it (Shunsuke Mie)
Endpoint embedded DMA controller driver:
- Simplify and clean up support for the DesignWare embedded DMA
(eDMA) controller (Frank Li, Serge Semin)
Broadcom STB PCIe controller driver:
- Avoid config space accesses when link is down because we can't
recover from the CPU aborts these cause (Jim Quinlan)
- Look for power regulators described under Root Ports in DT and
enable them before scanning the secondary bus (Jim Quinlan)
- Disable/enable regulators in suspend/resume (Jim Quinlan)
Freescale i.MX6 PCIe controller driver:
- Simplify and clean up clock and PHY management (Richard Zhu)
- Disable/enable regulators in suspend/resume (Richard Zhu)
- Set PCIE_DBI_RO_WR_EN before writing DBI registers (Richard Zhu)
- Allow speeds faster than Gen2 (Richard Zhu)
- Make link being down a non-fatal error so controller probe doesn't
fail if there are no Endpoints connected (Richard Zhu)
Loongson PCIe controller driver:
- Add ACPI and MCFG support for Loongson LS7A (Huacai Chen)
- Avoid config reads to non-existent LS2K/LS7A devices because a
hardware defect causes machine hangs (Huacai Chen)
- Work around LS7A integrated devices that report incorrect Interrupt
Pin values (Jianmin Lv)
Marvell Aardvark PCIe controller driver:
- Add support for AER and Slot capability on emulated bridge (Pali
Rohár)
MediaTek PCIe controller driver:
- Add Airoha EN7532 to DT binding (John Crispin)
- Allow building of driver for ARCH_AIROHA (Felix Fietkau)
MediaTek PCIe Gen3 controller driver:
- Print decoded LTSSM state when the link doesn't come up (Jianjun
Wang)
NVIDIA Tegra194 PCIe controller driver:
- Convert DT binding to json-schema (Vidya Sagar)
- Add DT bindings and driver support for Tegra234 Root Port and
Endpoint mode (Vidya Sagar)
- Fix some Root Port interrupt handling issues (Vidya Sagar)
- Set default Max Payload Size to 256 bytes (Vidya Sagar)
- Fix Data Link Feature capability programming (Vidya Sagar)
- Extend Endpoint mode support to devices beyond Controller-5 (Vidya
Sagar)
Qualcomm PCIe controller driver:
- Rework clock, reset, PHY power-on ordering to avoid hangs and
improve consistency (Robert Marko, Christian Marangi)
- Move pipe_clk handling to PHY drivers (Dmitry Baryshkov)
- Add IPQ60xx support (Selvam Sathappan Periakaruppan)
- Allow ASPM L1 and substates for 2.7.0 (Krishna chaitanya chundru)
- Add support for more than 32 MSI interrupts (Dmitry Baryshkov)
Renesas R-Car PCIe controller driver:
- Convert DT binding to json-schema (Herve Codina)
- Add Renesas RZ/N1D (R9A06G032) to rcar-gen2 DT binding and driver
(Herve Codina)
Samsung Exynos PCIe controller driver:
- Fix phy-exynos-pcie driver so it follows the 'phy_init() before
phy_power_on()' PHY programming model (Marek Szyprowski)
Synopsys DesignWare PCIe controller driver:
- Simplify and clean up the DWC core extensively (Serge Semin)
- Fix an issue with programming the ATU for regions that cross a 4GB
boundary (Serge Semin)
- Enable the CDM check if 'snps,enable-cdm-check' exists; previously
we skipped it if 'num-lanes' was absent (Serge Semin)
- Allocate a 32-bit DMA-able page to be MSI target instead of using a
driver data structure that may not be addressable with 32-bit
address (Will McVicker)
- Add DWC core support for more than 32 MSI interrupts (Dmitry
Baryshkov)
Xilinx Versal CPM PCIe controller driver:
- Add DT binding and driver support for Versal CPM5 Gen5 Root Port
(Bharat Kumar Gogada)"
* tag 'pci-v5.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (150 commits)
PCI: imx6: Support more than Gen2 speed link mode
PCI: imx6: Set PCIE_DBI_RO_WR_EN before writing DBI registers
PCI: imx6: Reformat suspend callback to keep symmetric with resume
PCI: imx6: Move the imx6_pcie_ltssm_disable() earlier
PCI: imx6: Disable clocks in reverse order of enable
PCI: imx6: Do not hide PHY driver callbacks and refine the error handling
PCI: imx6: Reduce resume time by only starting link if it was up before suspend
PCI: imx6: Mark the link down as non-fatal error
PCI: imx6: Move regulator enable out of imx6_pcie_deassert_core_reset()
PCI: imx6: Turn off regulator when system is in suspend mode
PCI: imx6: Call host init function directly in resume
PCI: imx6: Disable i.MX6QDL clock when disabling ref clocks
PCI: imx6: Propagate .host_init() errors to caller
PCI: imx6: Collect clock enables in imx6_pcie_clk_enable()
PCI: imx6: Factor out ref clock disable to match enable
PCI: imx6: Move imx6_pcie_clk_disable() earlier
PCI: imx6: Move imx6_pcie_enable_ref_clk() earlier
PCI: imx6: Move PHY management functions together
PCI: imx6: Move imx6_pcie_grp_offset(), imx6_pcie_configure_type() earlier
PCI: imx6: Convert to NOIRQ_SYSTEM_SLEEP_PM_OPS()
...
Add a "flags" field to the "struct dw_edma_chip" so that the controller
drivers can pass flags that are relevant to the platform.
DW_EDMA_CHIP_LOCAL - Used by the controller drivers accessing eDMA
locally. Local eDMA access doesn't require generating MSIs to the remote.
Link: https://lore.kernel.org/r/20220524152159.2370739-8-Frank.Li@nxp.com
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Acked-By: Vinod Koul <vkoul@kernel.org>
In accordance with [1, 2] the DW eDMA controller has been created to be
part of the DW PCIe Root Port and DW PCIe End-point controllers and to
offload the transferring of large blocks of data between application and
remote PCIe domains leaving the system CPU free for other tasks. In the
first case (eDMA being part of DW PCIe Root Port) the eDMA controller is
always accessible via the CPU DBI interface and never over the PCIe wire.
The latter case is more complex. Depending on the DW PCIe End-Point IP-core
synthesize parameters it's possible to have the eDMA registers accessible
not only from the application CPU side, but also via mapping the eDMA CSRs
over a dedicated endpoint BAR. So based on the specifics denoted above the
eDMA driver is supposed to support two types of the DMA controller setups:
1) eDMA embedded into the DW PCIe Root Port/End-point and accessible over
the local CPU from the application side.
2) eDMA embedded into the DW PCIe End-point and accessible via the PCIe
wire with MWr/MRd TLPs generated by the CPU PCIe host controller.
Since the CPU memory resides different sides in these cases the semantics
of the MEM_TO_DEV and DEV_TO_MEM operations is flipped with respect to the
Tx and Rx DMA channels. So MEM_TO_DEV/DEV_TO_MEM corresponds to the Tx/Rx
channels in setup 1) and to the Rx/Tx channels in case of setup 2).
The DW eDMA driver has supported the case 2) since e63d79d1ff
("dmaengine: Add Synopsys eDMA IP core driver") in the framework of the
drivers/dma/dw-edma/dw-edma-pcie.c driver.
The case 1) support was added later by bd96f1b2f4 ("dmaengine: dw-edma:
support local dma device transfer semantics"). Afterwards the driver was
supposed to cover the both possible eDMA setups, but the latter commit
turned out to be not fully correct.
The problem was that the commit together with the new functionality support
also changed the channel direction semantics so the eDMA Read-channel
(corresponding to the DMA_DEV_TO_MEM direction for case 1) now uses the
sgl/cyclic base addresses as the Source addresses of the DMA transfers and
dma_slave_config.dst_addr as the Destination address of the DMA transfers.
Similarly the eDMA Write-channel (corresponding to the DMA_MEM_TO_DEV
direction for case 1) now uses dma_slave_config.src_addr as a source
address of the DMA transfers and sgl/cyclic base address as the Destination
address of the DMA transfers. This contradicts the logic of the
DMA-interface, which implies that DEV side is supposed to belong to the
PCIe device memory and MEM - to the CPU/Application memory. Indeed it seems
irrational to have the SG-list defined in the PCIe bus space, while
expecting a contiguous buffer allocated in the CPU memory. Moreover the
passed SG-list and cyclic DMA buffers are supposed to be mapped in a way so
to be seen by the DW eDMA Application (CPU) interface.
So in order to have the correct DW eDMA interface we need to invert the
eDMA Rd/Wr-channels and DMA-slave directions semantics by selecting the
src/dst addresses based on the DMA transfer direction instead of using the
channel direction capability.
[1] DesignWare Cores PCI Express Controller Databook - DWC PCIe Root Port,
v.5.40a, March 2019, p.1092
[2] DesignWare Cores PCI Express Controller Databook - DWC PCIe Endpoint,
v.5.40a, March 2019, p.1189
Co-developed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Fixes: bd96f1b2f4 ("dmaengine: dw-edma: support local dma device transfer semantics")
Link: https://lore.kernel.org/r/20220524152159.2370739-7-Frank.Li@nxp.com
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-By: Vinod Koul <vkoul@kernel.org>
The dma_slave_config.direction field usage in the DW eDMA driver was
introduced by bd96f1b2f4 ("dmaengine: dw-edma: support local dma device
transfer semantics"). Mainly the change introduced there was correct
(indeed DEV_TO_MEM means using RD-channel and MEM_TO_DEV - WR-channel for
the case of having eDMA accessed locally from CPU/Application side), but
providing an additional MEM_TO_MEM/DEV_TO_DEV-based semantics was quite
redundant if not to say potentially harmful (when it comes to removing the
denoted field). First of all since the dma_slave_config.direction field has
been marked as obsolete (see [1] and the struct dma_slave_config [2]) and
will be discarded in future, using it especially in a non-standard way is
discouraged. Secondly in accordance with the commit denoted above the
default dw_edma_device_transfer() semantics has been changed despite what
its message said. So claiming that the method was left backward compatible
was wrong.
Fix the problems denoted above and simplify the dw_edma_device_transfer()
method by dropping the parsing of the DMA-channel direction field. Instead
of having that implicit dma_slave_config.direction field semantic, use the
recently added DW_EDMA_CHIP_LOCAL flag to distinguish between the local and
remote DW eDMA setups thus preserving support for both cases. Add an ASCII
figure to clarify the situation.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/driver-api/dmaengine/provider.rst?id=v5.18#n478
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/dmaengine.h?id=v5.18#n389
[bhelgaas: convert references to specific URLs]
Co-developed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Link: https://lore.kernel.org/r/20220524152159.2370739-6-Frank.Li@nxp.com
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-By: Vinod Koul <vkoul@kernel.org>
The struct dw_edma contains wr(rd)_ch_cnt fields. The EDMA driver gets
write(read) channel number from register, then saves these into dw_edma.
The wr(rd)_ch_cnt in dw_edma_chip actually means how many link list memory
are available in ll_region_wr(rd)[EDMA_MAX_WR_CH]. Rename it to
ll_wr(rd)_cnt to indicate actual usage.
Link: https://lore.kernel.org/r/20220524152159.2370739-5-Frank.Li@nxp.com
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Acked-By: Vinod Koul <vkoul@kernel.org>
struct dw_edma_region rg_region included virtual address, physical address
and size information. But only the virtual address is used by EDMA driver.
Change it to void __iomem *reg_base to clean up code.
Link: https://lore.kernel.org/r/20220524152159.2370739-4-Frank.Li@nxp.com
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Acked-By: Vinod Koul <vkoul@kernel.org>
"struct dw_edma_chip" contains an internal structure "struct dw_edma" that
is used by the eDMA core internally and should not be touched by the eDMA
controller drivers themselves. But currently, the eDMA controller drivers
like "dw-edma-pci" allocate and populate this internal structure before
passing it on to the eDMA core. The eDMA core further populates the
structure and uses it. This is wrong!
Hence, move all the "struct dw_edma" specifics from controller drivers to
the eDMA core.
Link: https://lore.kernel.org/r/20220524152159.2370739-3-Frank.Li@nxp.com
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Acked-By: Vinod Koul <vkoul@kernel.org>
After adding commit 8fc5133d6d ("dmaengine: dw-edma: Fix unaligned
64bit access") two branches under macro conditional become identical,
thus the code can be simplified without any functional change.
Signed-off-by: Vladimir Zapolskiy <vladimir.zapolskiy@linaro.org>
Acked-by: Herve Codina <herve.codina@bootlin.com>
Link: https://lore.kernel.org/r/20220610100700.2295522-1-vladimir.zapolskiy@linaro.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
The commit in the Fixes: tag has changed the logic of the code and now it
is likely that the probe will return an early success (0), even if not
completely executed.
This should lead to a crash or similar issue later on when the code
accesses to some never allocated resources.
Change the '!err' into a 'err' when checking if
'dma_set_mask_and_coherent()' has failed or not.
While at it, simplify the code and remove the "can't success code" related
to 32 DMA mask.
As stated in [1], 'dma_set_mask_and_coherent(DMA_BIT_MASK(64))' can't fail
if 'dev->dma_mask' is non-NULL. And if it is NULL, it would fail for the
same reason when tried with DMA_BIT_MASK(32).
[1]: https://lkml.org/lkml/2021/6/7/398
Fixes: ecb8c88bd3 ("dmaengine: dw-edma-pcie: switch from 'pci_' to 'dma_' API")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/935fbb40ae930c5fe87482a41dcb73abf2257973.1636492127.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Vinod Koul <vkoul@kernel.org>
The wrappers in include/linux/pci-dma-compat.h should go away.
pci_set_dma_mask()/pci_set_consistent_dma_mask() should be
replaced with dma_set_mask()/dma_set_coherent_mask(),
and use dma_set_mask_and_coherent() for both.
Signed-off-by: Wang Qing <wangqing@vivo.com>
Link: https://lore.kernel.org/r/1633663733-47199-2-git-send-email-wangqing@vivo.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Currently, is missing a null check on a pcim_iomap_table() return value
and this can lead to a null pointer dereference if the desired BAR
wasn't mapped previously.
Fix this by adding a null check and returning -ENOMEM.
Addresses-Coverity: ("Dereference null return")
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/bc5e6b8632c84660bb6dae454980e9419992ed14.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
When the driver is compiled as a module and loaded if we try to unload
it, the Kernel shows a crash log. This Kernel crash is due to the
dma_async_device_unregister() call done after deleting the channels,
this patch fixes this issue.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/4aa850c035cf7ee488f1d3fb6dee0e37be0dce0a.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Changes the linked list and data blocks offset and sizes to follow the
recommendation given by the hardware team for the IPK solution.
Although the previous data blocks offset and sizes are still valid and
functional, using them that might present some issues related to the IPK
solution, since this solution is based on FPGA and might be subjected to
timmings constrains.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/f682e7f7f06dc6b2efdd431481d6fb4d762c2c05.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
In the previous implementation, the driver assumed that there existed
only two memory spaces that would equally distribute the amount of
read/write channels.
This might not be the case on some other implementations, therefore this
patch change this requirement so that each write/read channel has
its own linked list and data space well defined, which allows
different sizes and locations.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/2e316cb983f8a1e09ce929029f87619dc92a52de.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
In the driver code structure, I tried to keep the code style consistency
by writing the write channels instructions first, and then follow by the
read channels instructions, mimicking the hardware implementation.
However, this code style failed in some cases. This patch fixes that and
no functional changes are expected.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/9bd1f86f19df8bb5de502fb85a0c5dc07978a9ba.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Add support for the HDMA feature.
This new feature enables the current eDMA IP to use a deeper prefetch
of the linked list, which reduces the algorithm execution latency
observed when loading the elements of the list, causing more stable
and higher data transfer.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/5f40f89ef7d6255a12d5b23f34e6e59dcd28861e.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Add writeq() and readq() for 64 bits architures support.
Supporting these two functions will allow the write or the read of eDMA
64 bits registers at once instead of having two consecutive operations.
Also, this improvement will allow the PCI optimization transaction
messages, which will generate a 64 bits message instead of two messages
of 32 bits.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/3f1120f7c6003b38ec8b851fc68936007c4d9fd8.1613674948.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
If the dw_edma_alloc_burst() function fails then we free "chunk" but
it's still on the "desc->chunk->list" list so it will lead to a use
after free. Also the "->chunks_alloc" count is incremented when it
shouldn't be.
In current kernels small allocations are guaranteed to succeed and
dw_edma_alloc_burst() can't fail so this will not actually affect
runtime.
Fixes: e63d79d1ff ("dmaengine: Add Synopsys eDMA IP core driver")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/X9dTBFrUPEvvW7qc@mwanda
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Fix the source and destination physical address calculation of a
peripheral device on scatter-gather implementation.
This issue manifested during tests using a 64 bits architecture system.
The abnormal behavior wasn't visible before due to all previous tests
were done using 32 bits architecture system, that masked his effect.
Fixes: e63d79d1ff ("dmaengine: Add Synopsys eDMA IP core driver")
Cc: stable@vger.kernel.org
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/8d3ab7e2ba96563fe3495b32f60077fffb85307d.1597327623.git.gustavo.pimentel@synopsys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Modify dw_edma_device_transfer() to also support the semantics of dma
device transfer for additional use cases involving pcitest utility as a
local initiator.
For its original use case, dw-edma supported the semantics of dma device
transfer from the perspective of a remote initiator who is located across
the PCIe bus from dma channel hardware.
To a remote initiator, DMA_DEV_TO_MEM means using a remote dma WRITE
channel to transfer from remote memory to local memory. A WRITE channel
would be employed on the remote device in order to move the contents of
remote memory to the bus destined for local memory.
To a remote initiator, DMA_MEM_TO_DEV means using a remote dma READ
channel to transfer from local memory to remote memory. A READ channel
would be employed on the remote device in order to move the contents of
local memory to the bus destined for remote memory.
>From the perspective of a local dma initiator who is co-located on the
same side of the PCIe bus as the dma channel hardware, the semantics of
dma device transfer are flipped.
To a local initiator, DMA_DEV_TO_MEM means using a local dma READ channel
to transfer from remote memory to local memory. A READ channel would be
employed on the local device in order to move the contents of remote
memory to the bus destined for local memory.
To a local initiator, DMA_MEM_TO_DEV means using a local dma WRITE channel
to transfer from local memory to remote memory. A WRITE channel would be
employed on the local device in order to move the contents of local memory
to the bus destined for remote memory.
To support local dma initiators, dw_edma_device_transfer() is modified to
now examine the direction field of struct dma_slave_config for the channel
which initiators can configure by calling dmaengine_slave_config().
If direction is configured as either DMA_DEV_TO_MEM or DMA_MEM_TO_DEV,
local initiator semantics are used. If direction is a value other than
DMA_DEV_TO_MEM nor DMA_MEM_TO_DEV, then remote initiator semantics are
used. This should maintain backward compatibility with the original use
case of dw-edma.
The dw-edma-test utility is an example of a remote initiator. From reading
its patch, dw-edma-test does not specifically set the direction field of
struct dma_slave_config. Since dw_edma_device_transfer() also does not
check the direction field of struct dma_slave_config, it seems safe to use
this convention in dw-edma to support both local and remote initiator
semantics.
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Link: https://lore.kernel.org/r/1588122633-1552-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Modify dw_edma_irq_request() to check if a struct msi_desc entry exists
before copying the contents of its struct msi_msg pointer.
Without this sanity check, __get_cached_msi_msg() crashes when invoked by
dw_edma_irq_request() running on a Linux-based PCIe endpoint device. MSI
interrupt are not received by PCIe endpoint devices. If irq_get_msi_desc()
returns null, then there is no cached struct msi_msg to be copied.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Acked-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/1587607101-31914-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Decouple dw-edma-core.c from struct pci_dev as a step toward integration
of dw-edma with pci-epf-test so the latter can initiate dma operations
locally from the endpoint side. A barrier to such integration is the
dependency of dw_edma_probe() and other functions in dw-edma-core.c on
struct pci_dev.
The Synopsys DesignWare dw-edma driver was designed to run on host side
of PCIe link to initiate DMA operations remotely using eDMA channels of
PCIe controller on the endpoint side. This can be inferred from seeing
that dw-edma uses struct pci_dev and accesses hardware registers of dma
channels across the bus using BAR0 and BAR2.
The ops field of struct dw_edma in dw-edma-core.h is currenty undefined:
const struct dw_edma_core_ops *ops;
However, the kernel builds without failure even when dw-edma driver is
enabled. Instead of removing the currently undefined and usued ops field,
define struct dw_edma_core_ops and use the ops field to decouple
dw-edma-core.c from struct pci_dev.
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Acked-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/1586971629-30196-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
When building with 'make C=1', sparse reports an endianess bug:
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:60:30: warning: cast removes address space of expression
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: warning: incorrect type in argument 1 (different address spaces)
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: expected void const volatile [noderef] <asn:2>*addr
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: got void *[assigned] ptr
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: warning: incorrect type in argument 1 (different address spaces)
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: expected void const volatile [noderef] <asn:2>*addr
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: got void *[assigned] ptr
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: warning: incorrect type in argument 1 (different address spaces)
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: expected void const volatile [noderef] <asn:2>*addr
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:86:24: got void *[assigned] ptr
The current code is clearly wrong, as it passes an endian-swapped word
into a register function where it gets swapped again. Just pass the variables
directly into lower_32_bits()/upper_32_bits().
Fixes: 7e4b8a4fbe ("dmaengine: Add Synopsys eDMA IP version 0 support")
Link: https://lore.kernel.org/lkml/20190617131820.2470686-1-arnd@arndb.de/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/20190722124457.1093886-3-arnd@arndb.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
The new driver mixes up dma_addr_t and __iomem pointers, which results
in warnings on some 32-bit architectures, like:
drivers/dma/dw-edma/dw-edma-v0-core.c: In function '__dw_regs':
drivers/dma/dw-edma/dw-edma-v0-core.c:28:9: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
return (struct dw_edma_v0_regs __iomem *)dw->rg_region.vaddr;
Make it use __iomem pointers consistently here, and avoid using dma_addr_t
for __iomem tokens altogether.
A small complication here is the debugfs code, which passes an __iomem
token as the private data for debugfs files, requiring the use of
extra __force.
Fixes: 7e4b8a4fbe ("dmaengine: Add Synopsys eDMA IP version 0 support")
Link: https://lore.kernel.org/lkml/20190617131918.2518727-1-arnd@arndb.de/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20190722124457.1093886-2-arnd@arndb.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Putting large constant data on the stack causes unnecessary overhead
and stack usage:
drivers/dma/dw-edma/dw-edma-v0-debugfs.c:285:6: error: stack frame size of 1376 bytes in function 'dw_edma_v0_debugfs_on' [-Werror,-Wframe-larger-than=]
Mark the variable 'static const' in order for the compiler to move it
into the .rodata section where it does no such harm.
Fixes: 305aebeff8 ("dmaengine: Add Synopsys eDMA IP version 0 debugfs support")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Link: https://lore.kernel.org/r/20190722124457.1093886-1-arnd@arndb.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
If CONFIG_PCI_MSI is not set, building with CONFIG_DW_EDMA
fails:
drivers/dma/dw-edma/dw-edma-core.c: In function dw_edma_irq_request:
drivers/dma/dw-edma/dw-edma-core.c:784:21: error: implicit declaration of function pci_irq_vector; did you mean rcu_irq_enter? [-Werror=implicit-function-declaration]
err = request_irq(pci_irq_vector(to_pci_dev(dev), 0),
^~~~~~~~~~~~~~
Reported-by: Hulk Robot <hulkci@huawei.com>
Fixes: e63d79d1ff ("dmaengine: Add Synopsys eDMA IP core driver")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Synopsys eDMA IP is normally distributed along with Synopsys PCIe
EndPoint IP (depends of the use and licensing agreement).
This IP requires some basic configurations, such as:
- eDMA registers BAR
- eDMA registers offset
- eDMA registers size
- eDMA linked list memory BAR
- eDMA linked list memory offset
- eDMA linked list memory size
- eDMA data memory BAR
- eDMA data memory offset
- eDMA data memory size
- eDMA version
- eDMA mode
- IRQs available for eDMA
As a working example, PCIe glue-logic will attach to a Synopsys PCIe
EndPoint IP prototype kit (Vendor ID = 0x16c3, Device ID = 0xedda),
which has built-in an eDMA IP with this default configuration:
- eDMA registers BAR = 0
- eDMA registers offset = 0x00001000 (4 Kbytes)
- eDMA registers size = 0x00002000 (8 Kbytes)
- eDMA linked list memory BAR = 2
- eDMA linked list memory offset = 0x00000000 (0 Kbytes)
- eDMA linked list memory size = 0x00800000 (8 Mbytes)
- eDMA data memory BAR = 2
- eDMA data memory offset = 0x00800000 (8 Mbytes)
- eDMA data memory size = 0x03800000 (56 Mbytes)
- eDMA version = 0
- eDMA mode = EDMA_MODE_UNROLL
- IRQs = 1
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA_PCIE option in kernel
configuration, however it requires and selects automatically DW_EDMA
option too.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Add support for the eDMA IP version 0 driver for both register maps (legacy
and unroll).
The legacy register mapping was the initial implementation, which consisted
in having all registers belonging to channels multiplexed, which could be
change anytime (which could led a race-condition) by view port register
(access to only one channel available each time).
This register mapping is not very effective and efficient in a multithread
environment, which has led to the development of unroll registers mapping,
which consists of having all channels registers accessible any time by
spreading all channels registers by an offset between them.
This version supports a maximum of 16 independent channels (8 write +
8 read), which can run simultaneously.
Implements a scatter-gather transfer through a linked list, where the size
of linked list depends on the allocated memory divided equally among all
channels.
Each linked list descriptor can transfer from 1 byte to 4 Gbytes and is
alignmented to DWORD.
Both SAR (Source Address Register) and DAR (Destination Address Register)
are alignmented to byte.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>