IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Arne's scrub stuff exposed a problem with mapping the extent buffer in
reada_for_search. He searches the commit root with multiple threads and with
skip_locking set, so we can race and overwrite node->map_token since node isn't
locked. So fix this so that we only map the extent buffer if we don't already
have a map_token and skip_locking isn't set. Without this patch scrub would
panic almost immediately, with the patch it doesn't panic anymore. Thanks,
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Josef Bacik <josef@redhat.com>
Currently, btrfs_truncate_item and btrfs_extend_item returns only 0.
So, the check by BUG_ON in the caller is unnecessary.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Our readahead is sort of sloppy, and really isn't always needed. For example if
ls is doing a stating ls (which is the default) it's going to stat in non-disk
order, so if say you have a directory with a stupid amount of files, readahead
is going to do nothing but waste time in the case of doing the stat. Taking the
unconditional readahead out made my test go from 57 minutes to 36 minutes. This
means that everywhere we do loop through the tree we want to make sure we do set
path->reada properly, so I went through and found all of the places where we
loop through the path and set reada to 1. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have a bit of debugging in btrfs_search_slot to make sure the level of the
cow block is the same as the original block we were cow'ing. I don't think I've
ever seen this tripped, so kill it. This saves us 2 kmap's per level in our
search. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If we have particularly full nodes, we could call btrfs_node_blockptr up to 32
times, which is 32 pairs of kmap/kunmap, which _sucks_. So go ahead and map the
extent buffer while we look for readahead targets. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
parameter tree root it's not used since commit
5f39d397df ("Btrfs: Create extent_buffer
interface for large blocksizes")
Signed-off-by: David Sterba <dsterba@suse.cz>
This patch is checking return value of read_tree_block(),
and if it is NULL, error processing.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch changes some BUG_ON() to the error return.
(but, most callers still use BUG_ON())
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
Here is what I have added:
1) ordere_extent:
btrfs_ordered_extent_add
btrfs_ordered_extent_remove
btrfs_ordered_extent_start
btrfs_ordered_extent_put
These provide critical information to understand how ordered_extents are
updated.
2) extent_map:
btrfs_get_extent
extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.
3) writepage:
__extent_writepage
btrfs_writepage_end_io_hook
Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.
4) inode:
btrfs_inode_new
btrfs_inode_request
btrfs_inode_evict
These can show where and when a inode is created, when a inode is evicted.
5) sync:
btrfs_sync_file
btrfs_sync_fs
These show sync arguments.
6) transaction:
btrfs_transaction_commit
In transaction based filesystem, it will be useful to know the generation and
who does commit.
7) back reference and cow:
btrfs_delayed_tree_ref
btrfs_delayed_data_ref
btrfs_delayed_ref_head
btrfs_cow_block
Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.
8) chunk:
btrfs_chunk_alloc
btrfs_chunk_free
Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.
9) reserved_extent:
btrfs_reserved_extent_alloc
btrfs_reserved_extent_free
These can show how btrfs uses its space.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The pointer to the extent buffer for the root of each tree
is protected by a spinlock so that we can safely read the pointer
and take a reference on the extent buffer.
But now that the extent buffers are freed via RCU, we can safely
use rcu_read_lock instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Currently if we have corrupted items things will blow up in spectacular ways.
So as we read in blocks and they are leaves, check the entire leaf to make sure
all of the items are correct and point to valid parts in the leaf for the item
data the are responsible for. If the item is corrupt we will kick back EIO and
not read any of the copies since they are likely to not be correct either. This
will catch generic corruptions, it will be up to the individual callers of
btrfs_search_slot to make sure their items are right. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Hi,
In fs/btrfs/inode.c::fixup_tree_root_location() we have this code:
...
if (!path) {
err = -ENOMEM;
goto out;
}
...
out:
btrfs_free_path(path);
return err;
btrfs_free_path() passes its argument on to other functions and some of
them end up dereferencing the pointer.
In the code above that pointer is clearly NULL, so btrfs_free_path() will
eventually cause a NULL dereference.
There are many ways to cut this cake (fix the bug). The one I chose was to
make btrfs_free_path() deal gracefully with NULL pointers. If you
disagree, feel free to come up with an alternative patch.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.
Still needs more review.
Found by gcc 4.6's new warnings
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs discovers the generation number in a btree block is
incorrect, it can loop forever without forcing the RAID
code to try a valid mirror, and without returning EIO.
This changes things to properly kick out the EIO.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
split_leaf was not properly balancing leaves when it was forced to
split a leaf twice. This commit adds an extra push left and right
before forcing the double split in hopes of getting the slot where
we want to insert at either the start or end of the leaf.
If the extra pushes do work, then we are able to avoid splitting twice
and we keep the tree properly balanced.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
After the path is released, the generation number got from block
pointer is no long valid. The race may cause disk corruption, because
verify_parent_transid() calls clear_extent_buffer_uptodate() when
generation numbers mismatch.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds metadata ENOSPC handling for the balance code.
It is consisted by following major changes:
1. Avoid COW tree leave in the phrase of merging tree.
2. Handle interaction with snapshot creation.
3. make the backref cache can live across transactions.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Introducing metadata reseravtion contexts has two major advantages.
First, it makes metadata reseravtion more traceable. Second, it can
reclaim freed space and re-add them to the itself after transaction
committed.
Besides add btrfs_block_rsv structure and related helper functions,
This patch contains following changes:
Move code that decides if freed tree block should be pinned into
btrfs_free_tree_block().
Make space accounting more accurate, mainly for handling read only
block groups.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: add check for changed leaves in setup_leaf_for_split
Btrfs: create snapshot references in same commit as snapshot
Btrfs: fix small race with delalloc flushing waitqueue's
Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
Btrfs: fix chunk allocate size calculation
Btrfs: kill max_extent mount option
Btrfs: fail to mount if we have problems reading the block groups
Btrfs: check btrfs_get_extent return for IS_ERR()
Btrfs: handle kmalloc() failure in inode lookup ioctl
Btrfs: dereferencing freed memory
Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
Btrfs: add NULL check for do_walk_down()
Btrfs: remove duplicate include in ioctl.c
Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
setup_leaf_for_split needs to drop the path and search again, and has
checks to see if the item we want to split changed size. But, it misses
the case where the leaf changed and now has enough room for the item
we want to insert.
This adds an extra check to make sure the leaf really needs splitting
before we call btrfs_split_leaf(), which keeps us from trying to split
a leaf with a single item.
btrfs_split_leaf() will blindly split the single item leaf, leaving us
with one good leaf and one empty leaf and then a crash.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
The bytes_used field in root item was originally planned to
trace the amount of used data and tree blocks. But it never
worked right since we can't trace freeing of data accurately.
This patch changes it to only trace the amount of tree blocks.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_duplicate_item duplicates item with new key, guaranteeing
the source item and the new items are in the same tree leaf and
contiguous. It allows us to split file extent in place, without
using lock_extent to prevent bookend extent race.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
For every hardlink in btrfs, there is a corresponding inode back
reference. All inode back references for hardlinks in a given
directory are stored in single b-tree item. The size of b-tree item
is limited by the size of b-tree leaf, so we can only create limited
number of hardlinks to a given file in a directory.
The original code lacks of the check, it oops if the number of
hardlinks goes over the limit. This patch fixes the issue by adding
check to btrfs_link and btrfs_rename.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_split_leaf and btrfs_del_items can end up in a loop
where one is constantly spliting a given leaf and the other
is constantly merging it back with the adjacent nodes.
There is a better fix for this, but in the interest of something
small, this patch just changes btrfs_del_items back to balancing less
often.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Check objectid of item before checking the item type, otherwise we may return
zero for a key that is actually too low.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
comp_keys is duplicating what is done in btrfs_comp_cpu_keys, so just
call it.
Signed-off-by: Diego Calleja <diegocg@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When walking up the tree, btrfs_find_next_key assumes the upper level tree
block is properly locked. This isn't always true even path->keep_locks is 1.
This is because btrfs_find_next_key may advance path->slots[] several times
instead of only once.
When 'path->slots[level] >= btrfs_header_nritems(path->nodes[level])' is found,
we can't guarantee the original value of 'path->slots[level]' is
'btrfs_header_nritems(path->nodes[level]) - 1'. If it's not, the tree block at
'level + 1' isn't locked.
This patch fixes the issue by explicitly checking the locking state,
re-searching the tree if it's not locked.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
if 1 is returned by btrfs_search_slot, the path already points to the
first item with 'key > searching key'. So increasing path->slots[0] by
one is superfluous in that case.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
With the new back reference code, the cost of a balance has gone down
in terms of the number of back reference updates done. This commit
makes us more aggressively balance leaves and nodes as they become
less full.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When the delayed reference code was added, some checks were added
to avoid extra balancing while the delayed references were being flushed.
This made for less efficient btrees, but it reduced the chances of
loops where no forward progress was made because the balances made
more delayed ref updates.
With the new dead root removal code and the mixed back references,
the extent allocation tree is no longer using precise back refs, and
the delayed reference updates don't carry the risk of looping forever
anymore. So, the balance avoidance is no longer required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When a btrfs metadata read fails, the first thing we try to do is find
a good copy on another mirror of the block. If this fails, read_tree_block()
ends up returning a buffer that isn't up to date.
The btrfs btree reading code was reworked to drop locks and repeat
the search when IO was done, but the changes didn't add a check for failed
reads. The end result was looping forever on buffers that were never
going to become up to date.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
reada_for_balance was using the wrong index into the path node array,
so it wasn't reading the right blocks. We never directly used the
results of the read done by this function because the btree search is
started over at the end.
This fixes reada_for_balance to reada in the correct node and to
avoid searching past the last slot in the node. It also makes sure to
hold the parent lock while we are finding the nodes to read.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_next_leaf was using blocking locks when it could have been using
faster spinning ones instead. This adds a few extra checks around
the pieces that block and switches over to spinning locks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The delayed reference mechanism is responsible for all updates to the
extent allocation trees, including those updates created while processing
the delayed references.
This commit tries to limit the amount of work that gets created during
the final run of delayed refs before a commit. It avoids cowing new blocks
unless it is required to finish the commit, and so it avoids new allocations
that were not really required.
The goal is to avoid infinite loops where we are always making more work
on the final run of delayed refs. Over the long term we'll make a
special log for the last delayed ref updates as well.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_mark_buffer dirty would set dirty bits in the extent_io tree
for the buffers it was dirtying. This may require a kmalloc and it
was not atomic. So, anyone who called btrfs_mark_buffer_dirty had to
set any btree locks they were holding to blocking first.
This commit changes dirty tracking for extent buffers to just use a flag
in the extent buffer. Now that we have one and only one extent buffer
per page, this can be safely done without losing dirty bits along the way.
This also introduces a path->leave_spinning flag that callers of
btrfs_search_slot can use to indicate they will properly deal with a
path returned where all the locks are spinning instead of blocking.
Many of the btree search callers now expect spinning paths,
resulting in better btree concurrency overall.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Many of the tree balancing functions follow the same pattern.
1) cow a block
2) do something to the result
This commit breaks them up into two functions so the variables and
code required for part two don't suck down stack during part one.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent allocation tree maintains a reference count and full
back reference information for every extent allocated in the
filesystem. For subvolume and snapshot trees, every time
a block goes through COW, the new copy of the block adds a reference
on every block it points to.
If a btree node points to 150 leaves, then the COW code needs to go
and add backrefs on 150 different extents, which might be spread all
over the extent allocation tree.
These updates currently happen during btrfs_cow_block, and most COWs
happen during btrfs_search_slot. btrfs_search_slot has locks held
on both the parent and the node we are COWing, and so we really want
to avoid IO during the COW if we can.
This commit adds an rbtree of pending reference count updates and extent
allocations. The tree is ordered by byte number of the extent and byte number
of the parent for the back reference. The tree allows us to:
1) Modify back references in something close to disk order, reducing seeks
2) Significantly reduce the number of modifications made as block pointers
are balanced around
3) Do all of the extent insertion and back reference modifications outside
of the performance critical btrfs_search_slot code.
#3 has the added benefit of greatly reducing the btrfs stack footprint.
The extent allocation tree modifications are done without the deep
(and somewhat recursive) call chains used in the past.
These delayed back reference updates must be done before the transaction
commits, and so the rbtree is tied to the transaction. Throttling is
implemented to help keep the queue of backrefs at a reasonable size.
Since there was a similar mechanism in place for the extent tree
extents, that is removed and replaced by the delayed reference tree.
Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In order to avoid doing expensive extent management with tree locks held,
btrfs_search_slot will preallocate tree blocks for use by COW without
any tree locks held.
A later commit moves all of the extent allocation work for COW into
a delayed update mechanism, and this preallocation will no longer be
required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_tree_locked was being used to make sure a given extent_buffer was
properly locked in a few places. But, it wasn't correct for UP compiled
kernels.
This switches it to using assert_spin_locked instead, and renames it to
btrfs_assert_tree_locked to better reflect how it was really being used.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs is currently using spin_lock_nested with a nested value based
on the tree depth of the block. But, this doesn't quite work because
the max tree depth is bigger than what spin_lock_nested can deal with,
and because locks are sometimes taken before the level field is filled in.
The solution here is to use lockdep_set_class_and_name instead, and to
set the class before unlocking the pages when the block is read from the
disk and just after init of a freshly allocated tree block.
btrfs_clear_path_blocking is also changed to take the locks in the proper
order, and it also makes sure all the locks currently held are properly
set to blocking before it tries to retake the spinlocks. Otherwise, lockdep
gets upset about bad lock orderin.
The lockdep magic cam from Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_init_path was initially used when the path objects were on the
stack. Now all the work is done by btrfs_alloc_path and btrfs_init_path
isn't required.
This patch removes it, and just uses kmem_cache_zalloc to zero out the object.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs was using spin_is_contended to see if it should drop locks before
doing extent allocations during btrfs_search_slot. The idea was to avoid
expensive searches in the tree unless the lock was actually contended.
But, spin_is_contended is specific to the ticket spinlocks on x86, so this
is causing compile errors everywhere else.
In practice, the contention could easily appear some time after we started
doing the extent allocation, and it makes more sense to always drop the lock
instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Whenever an item deletion is done, we need to balance all the nodes
in the tree to make sure we don't end up with an empty node if a pointer
is deleted. This balance prep happens from the root of the tree down
so we can drop our locks as we go.
reada_for_balance was triggering read-ahead on neighboring nodes even
when no balancing was required. This adds an extra check to avoid
calling balance_level() and avoid reada_for_balance() when a balance
won't be required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_unlock_up_safe would break out at the first NULL node entry or
unlocked node it found in the path.
Some of the callers have missing nodes at the lower levels of the path, so this
commit fixes things to check all the nodes in the path before returning.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_del_leaf does two things. First it removes the pointer in the
parent, and then it frees the block that has the leaf. It has the
parent node locked for both operations.
But, it only needs the parent locked while it is deleting the pointer.
After that it can safely free the block without the parent locked.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Most of the btrfs metadata operations can be protected by a spinlock,
but some operations still need to schedule.
So far, btrfs has been using a mutex along with a trylock loop,
most of the time it is able to avoid going for the full mutex, so
the trylock loop is a big performance gain.
This commit is step one for getting rid of the blocking locks entirely.
btrfs_tree_lock takes a spinlock, and the code explicitly switches
to a blocking lock when it starts an operation that can schedule.
We'll be able get rid of the blocking locks in smaller pieces over time.
Tracing allows us to find the most common cause of blocking, so we
can start with the hot spots first.
The basic idea is:
btrfs_tree_lock() returns with the spin lock held
btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in
the extent buffer flags, and then drops the spin lock. The buffer is
still considered locked by all of the btrfs code.
If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops
the spin lock and waits on a wait queue for the blocking bit to go away.
Much of the code that needs to set the blocking bit finishes without actually
blocking a good percentage of the time. So, an adaptive spin is still
used against the blocking bit to avoid very high context switch rates.
btrfs_clear_lock_blocking() clears the blocking bit and returns
with the spinlock held again.
btrfs_tree_unlock() can be called on either blocking or spinning locks,
it does the right thing based on the blocking bit.
ctree.c has a helper function to set/clear all the locked buffers in a
path as blocking.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before metadata is written to disk, it is updated to reflect that writeout
has begun. Once this update is done, the block must be cow'd before it
can be modified again.
This update was originally synchronized by using a per-fs spinlock. Today
the buffers for the metadata blocks are locked before writeout begins,
and everyone that tests the flag has the buffer locked as well.
So, the per-fs spinlock (called hash_lock for no good reason) is no
longer required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Just before reading a leaf, btrfs scans the node for blocks that are
close by and reads them too. It tries to build up a large window
of IO looking for blocks that are within a max distance from the top
and bottom of the IO window.
This patch changes things to just look for blocks within 64k of the
target block. It will trigger less IO and make for lower latencies on
the read size.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_insert_empty_items takes the space needed by the btrfs_item
structure into account when calculating the required free space.
So the tree balancing code shouldn't add sizeof(struct btrfs_item)
to the size when checking the free space. This patch removes these
superfluous additions.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
The compression code was using isize to limit the amount of data it
sent through zlib. But, it wasn't properly limiting the looping to
just the pages inside i_size. The end result was trying to compress
too many pages, including those that had not been setup and properly locked
down. This made the compression code oops while trying find_get_page on a
page that didn't exist.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This finishes off the new checksumming code by removing csum items
for extents that are no longer in use.
The trick is doing it without racing because a single csum item may
hold csums for more than one extent. Extra checks are added to
btrfs_csum_file_blocks to make sure that we are using the correct
csum item after dropping locks.
A new btrfs_split_item is added to split a single csum item so it
can be split without dropping the leaf lock. This is used to
remove csum bytes from the middle of an item.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It is possible that generic_bin_search will be called on a tree block
that has not been locked. This happens because cache_block_block skips
locking on the tree blocks.
Since the tree block isn't locked, we aren't allowed to change
the extent_buffer->map_token field. Using map_private_extent_buffer
avoids any changes to the internal extent buffer fields.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.
Signed-off-by: Christoph Hellwig <hch@lst.de>
In insert_extents(), when ret==1 and last is not zero, it should
check if the current inserted item is the last item in this batching
inserts. If so, it should just break from loop. If not, 'cur =
insert_list->next' will make no sense because the list is empty now,
and 'op' will point to an unexpectable place.
There are also some trivial fixs in this patch including one comment
typo error and deleting two redundant lines.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.
The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.
This patch does the following:
1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.
2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.
3) make btrfs_find_block_group not return NULL when all
block groups are read-only.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
While profiling the allocator I noticed a good amount of time was being spent in
finish_current_insert and del_pending_extents, and as the filesystem filled up
more and more time was being spent in those functions. This patch aims to try
and reduce that problem. This happens two ways
1) track if we tried to delete an extent that we are going to update or insert.
Once we get into finish_current_insert we discard any of the extents that were
marked for deletion. This saves us from doing unnecessary work almost every
time finish_current_insert runs.
2) Batch insertion/updates/deletions. Instead of doing a btrfs_search_slot for
each individual extent and doing the needed operation, we instead keep the leaf
around and see if there is anything else we can do on that leaf. On the insert
case I introduced a btrfs_insert_some_items, which will take an array of keys
with an array of data_sizes and try and squeeze in as many of those keys as
possible, and then return how many keys it was able to insert. In the update
case we search for an extent ref, update the ref and then loop through the leaf
to see if any of the other refs we are looking to update are on that leaf, and
then once we are done we release the path and search for the next ref we need to
update. And finally for the deletion we try and delete the extent+ref in pairs,
so we will try to find extent+ref pairs next to the extent we are trying to free
and free them in bulk if possible.
This along with the other cluster fix that Chris pushed out a bit ago helps make
the allocator preform more uniformly as it fills up the disk. There is still a
slight drop as we fill up the disk since we start having to stick new blocks in
odd places which results in more COW's than on a empty fs, but the drop is not
nearly as severe as it was before.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This fixes latency problems on metadata reads by making sure they
don't go through the async submit queue, and by tuning down the amount
of readahead done during btree searches.
Also, the btrfs bdi congestion function is tuned to ignore the
number of pending async bios and checksums pending. There is additional
code that throttles new async bios now and the congestion function
doesn't need to worry about it anymore.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This patch improves the space balancing code to keep more sharing
of tree blocks. The only case that breaks sharing of tree blocks is
data extents get fragmented during balancing. The main changes in
this patch are:
Add a 'drop sub-tree' function. This solves the problem in old code
that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.
Remove relocation mapping tree. Relocation mappings are stored in
struct btrfs_ref_path and updated dynamically during walking up/down
the reference path. This reduces CPU usage and simplifies code.
This patch also fixes a bug. Root items for reloc trees should be
updated in btrfs_free_reloc_root.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding references to file extent
are recorded explicitly. We can scan these tree leaves very quickly, so the
offset field is not required.
This patch also makes the back reference system check the objectid
when extents are in deleting.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Checksum items take up a significant portion of the metadata for large files.
It is possible to avoid reading them during truncates by checking the keys in
the higher level nodes.
If a given leaf is followed by another leaf where the lowest key is a checksum
item from the same file, we know we can safely delete the leaf without
reading it.
For a 32GB file on a 6 drive raid0 array, Btrfs needs 8s to delete
the file with a cold cache. It is read bound during the run.
With this change, Btrfs is able to delete the file in 0.5s
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch updates the space balancing code to utilize the new
backref format. Before, btrfs-vol -b would break any COW links
on data blocks or metadata. This was slow and caused the amount
of space used to explode if a large number of snapshots were present.
The new code can keeps the sharing of all data extents and
most of the tree blocks.
To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.
To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).
To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated. This allows us to do accounting for them properly.
* The balancing code relocates data extents indepdent of the underlying
inode. The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).
* Don't take the drop_mutex in the create_subvol ioctl. It isn't
required.
* Fix walking of the ordered extent list to avoid races with sys_unlink
* Change the lock ordering rules. Transaction start goes outside
the drop_mutex. This allows btrfs_commit_transaction to directly
drop the relocation trees.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size. The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing. If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible. When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.
2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset. also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.
3) cleaned up the allocation code to make it a little easier to read and a
little less complicated. Basically there are 3 steps, first look from our
provided hint. If we couldn't find from that given hint, start back at our
original search start and look for space from there. If that fails try to
allocate space if we can and start looking again. If not we're screwed and need
to start over again.
4) small fixes. there were some issues in volumes.c where we wouldn't allocate
the rest of the disk. fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space. Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space. Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups. The alloc_hint has fixed
this slight degredation and made things semi-normal.
There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space. This only happens with metadata
allocations, and only when we are almost full. So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add two missing endianess conversions in this function, found by sparse.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree. There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.
After a crash, items are copied out of the log tree and back into the
subvolume. See tree-log.c for all the details.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A btree block cow has two parts, the first is to allocate a destination
block and the second is to copy the old bock over.
The first part needs locks in the extent allocation tree, and may need to
do IO. This changeset splits that into a separate function that can be
called without any tree locks held.
btrfs_search_slot is changed to drop its path and start over if it has
to COW a contended block. This often means that many writers will
pre-alloc a new destination for a the same contended block, but they
cache their prealloc for later use on lower levels in the tree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.
This creates a cache so that IO isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We should decrease the found slot by one as btrfs_search_slot does
when bin_search return 1 and node level > 0.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This calls unlock_up sooner in btrfs_search_slot in order to decrease the
amount of work done with the higher level tree locks held.
Also, it changes btrfs_tree_lock to spin for a big against the page lock
before scheduling. This makes a big difference in context switch rate under
highly contended workloads.
Longer term, a better locking structure is needed than the page lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btree defragger wasn't making forward progress because the new key wasn't
being saved by the btrfs_search_forward function.
This also disables the automatic btree defrag, it wasn't scaling well to
huge filesystems. The auto-defrag needs to be done differently.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The online btree defragger is simplified and rewritten to use
standard btree searches instead of a walk up / down mechanism.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This creates one kthread for commits and one kthread for
deleting old snapshots. All the work queues are removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Allocations may need to read in block groups from the extent allocation tree,
which will require a tree search and take locks on the extent allocation
tree. But, those locks might already be held in other places, leading
to deadlocks.
Since the alloc_mutex serializes everything right now, it is safe to
skip the btree locking while caching block groups. A better fix will be
to either create a recursive lock or find a way to back off existing
locks while caching block groups.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to delete an unlinked inode with dirty pages from the list
instead of forcing commit to write these out before deleting the inode.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
One lock per btree block can make for significant congestion if everyone
has to wait for IO at the high levels of the btree. This drops
locks held by a path when doing reads during a tree search.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Extent alloctions are still protected by a large alloc_mutex.
Objectid allocations are covered by a objectid mutex
Other btree operations are protected by a lock on individual btree nodes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The allocation trees and the chunk trees are serialized via their own
dedicated mutexes. This means allocation location is still not very
fine grained.
The main FS btree is protected by locks on each block in the btree. Locks
are taken top / down, and as processing finishes on a given level of the
tree, the lock is released after locking the lower level.
The end result of a search is now a path where only the lowest level
is locked. Releasing or freeing the path drops any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Force chunk allocation when find_free_extent has to do a full scan
* Record the max key at the start of defrag so it doesn't run forever
* Block groups might not be contiguous, make a forward search for the
next block group in extent-tree.c
* Get rid of extra checks for total fs size
* Fix relocate_one_reference to avoid relocating the same file data block
twice when referenced by an older transaction
* Use the open device count when allocating chunks so that we don't
try to allocate from devices that don't exist
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When duplicate copies exist, writes are allowed to fail to one of those
copies. This changeset includes a few changes that allow the FS to
continue even when some IOs fail.
It also adds verification of the parent generation number for btree blocks.
This generation is stored in the pointer to a block, and it ensures
that missed writes to are detected.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
balance level starts by trying to empty the middle block, and then
pushes from the right to the middle. This might empty the right block
and leave a small number of pointers in the middle.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This isn't required anymore because we don't reallocate blocks that
have already been written in this transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Block headers now store the chunk tree uuid
Chunk items records the device uuid for each stripes
Device extent items record better back refs to the chunk tree
Block groups record better back refs to the chunk tree
The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY
used to be the logical offset of the chunk. Now it is a chunk tree id,
with the logical offset being stored in the offset field of the key.
This allows a single chunk tree to record multiple logical address spaces,
upping the number of bytes indexed by a chunk tree from 2^64 to
2^128.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, metadata checksumming was done by the callers of read_tree_block,
which would set EXTENT_CSUM bits in the extent tree to show that a given
range of pages was already checksummed and didn't need to be verified
again.
But, those bits could go away via try_to_releasepage, and the end
result was bogus checksum failures on pages that never left the cache.
The new code validates checksums when the page is read. It is a little
tricky because metadata blocks can span pages and a single read may
end up going via multiple bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksums were only verified by btrfs_read_tree_block, which meant the
functions to probe the page cache for blocks were not validating checksums.
Normally this is fine because the buffers will only be in cache if they
have already been validated.
But, there is a window while the buffer is being read from disk where
it could be up to date in the cache but not yet verified. This patch
makes sure all buffers go through checksum verification before they
are used.
This is safer, and it prevents modification of buffers before they go
through the csum code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows detection of blocks that have already been written in the
running transaction so they can be recowed instead of modified again.
It is step one in trusting the transid field of the block pointers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When freeing root block of a tree, btrfs_free_extent' parameter
'ref_generation' is from root block itseft. When freeing non-root
block, 'ref_generation' is from its parent. so when converting a
non-root block to root block, we must guarantee its generation is
equal to its parent's generation.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This forces file data extents down the disk along with the metadata that
references them. The current implementation is fairly simple, and just
writes out all of the dirty pages in an inode before the commit.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A number of workloads do not require copy on write data or checksumming.
mount -o nodatasum to disable checksums and -o nodatacow to disable
both copy on write and checksumming.
In nodatacow mode, copy on write is still performed when a given extent
is under snapshot.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The codes that fixup the right leaf and the codes that dirty the
extnet buffer use the variable 'right_nritems' , both of them expect
'right_nritems' is the number of items in right leaf after the push.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The fixes do a number of things:
1) Most btrfs_drop_extent callers will try to leave the inline extents in
place. It can truncate bytes off the beginning of the inline extent if
required.
2) writepage can now update the inline extent, allowing mmap writes to
go directly into the inline extent.
3) btrfs_truncate_in_transaction truncates inline extents
4) extent_map.c fixed to not merge inline extent mappings and hole
mappings together
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1) Forced defrag wasn't working properly (btrfsctl -d) because some
cache only checks were incorrect.
2) Defrag only the leaves unless in forced defrag mode.
3) Don't use complex logic to figure out if a leaf is needs defrag
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When making room for a new item, it is ok to create an empty leaf, but
when making room to extend an item, split_leaf needs to make sure it
keeps the item we're extending in the path and make sure we don't end up
with an empty leaf.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to defrag huge directories, but skip the expensive defrag
case in more common usage, where it does not help as much.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows the tree walking code to defrag only the newly allocated
buffers, it seems to be a good balance between perfect defragging and the
performance hit of repeatedly reallocating blocks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds two types of btree defrag, a run time form that tries to
defrag recently allocated blocks in the btree when they are still in ram,
and an ioctl that forces defrag of all btree blocks.
File data blocks are not defragged yet, but this can make a huge difference
in sequential btree reads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, snapshot deletion was a single atomic unit. This caused considerable
lock contention and required an unbounded amount of space. Now,
the drop_progress field in the root item is used to indicate how far along
snapshot deletion is, and to resume where it left off.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Almost none of the files including module.h need to do so,
remove them.
Include sched.h in extent-tree.c to silence a warning about cond_resched()
being undeclared.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Attaching below is some of the code cleanups that i came across while
reading the code.
a) alloc_path already calls init_path.
b) Mention that btrfs_inode is the in memory copy.Ext4 have ext4_inode_info as
the in memory copy ext4_inode as the disk copy
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add (untested and simple) directory item code
Fix comp_keys to use the new key ordering
Add btrfs_insert_empty_item
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Remove implicit commit in del_item and insert_item
Add implicit commit to close()
Add commit op in random-test
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add a bulk insert/remove test to random-test
Add the quick-test code back as another regression test
Signed-off-by: Chris Mason <chris.mason@oracle.com>