IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle
page_cgroup modifcations. It takes move_lock_page_cgroup() and modifies
page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times.
But thinking again,
- compound_lock() is held at move_accout...then, it's not necessary
to take move_lock_page_cgroup().
- LRU is locked and all tail pages will go into the same LRU as
head is now on.
- page_cgroup is contiguous in huge page range.
This patch fixes mem_cgroup_split_huge_fixup() as to be called once per
hugepage and reduce costs for spliting.
[akpm@linux-foundation.org: fix typo, per Michal]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To find the page corresponding to a certain page_cgroup, the pc->flags
encoded the node or section ID with the base array to compare the pc
pointer to.
Now that the per-memory cgroup LRU lists link page descriptors directly,
there is no longer any code that knows the struct page_cgroup of a PFN
but not the struct page.
[hughd@google.com: remove unused node/section info from pc->flags fix]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.
The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.
Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global per-zone LRU lists are about to go away on memcg-enabled
kernels, global reclaim must be able to find its pages on the per-memcg
LRU lists.
Since the LRU pages of a zone are distributed over all existing memory
cgroups, a scan target for a zone is complete when all memory cgroups
are scanned for their proportional share of a zone's memory.
The forced scanning of small scan targets from kswapd is limited to
zones marked unreclaimable, otherwise kswapd can quickly overreclaim by
force-scanning the LRU lists of multiple memory cgroups.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
root_mem_cgroup, lacking a configurable limit, was never subject to
limit reclaim, so the pages charged to it could be kept off its LRU
lists. They would be found on the global per-zone LRU lists upon
physical memory pressure and it made sense to avoid uselessly linking
them to both lists.
The global per-zone LRU lists are about to go away on memcg-enabled
kernels, with all pages being exclusively linked to their respective
per-memcg LRU lists. As a result, pages of the root_mem_cgroup must
also be linked to its LRU lists again. This is purely about the LRU
list, root_mem_cgroup is still not charged.
The overhead is temporary until the double-LRU scheme is going away
completely.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup limit reclaim and traditional global pressure reclaim will
soon share the same code to reclaim from a hierarchical tree of memory
cgroups.
In preparation of this, move the two right next to each other in
shrink_zone().
The mem_cgroup_hierarchical_reclaim() polymath is split into a soft
limit reclaim function, which still does hierarchy walking on its own,
and a limit (shrinking) reclaim function, which relies on generic
reclaim code to walk the hierarchy.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup limit reclaim currently picks one memory cgroup out of the
target hierarchy, remembers it as the last scanned child, and reclaims
all zones in it with decreasing priority levels.
The new hierarchy reclaim code will pick memory cgroups from the same
hierarchy concurrently from different zones and priority levels, it
becomes necessary that hierarchy roots not only remember the last
scanned child, but do so for each zone and priority level.
Until now, we reclaimed memcgs like this:
mem = mem_cgroup_iter(root)
for each priority level:
for each zone in zonelist:
reclaim(mem, zone)
But subsequent patches will move the memcg iteration inside the loop
over the zones:
for each priority level:
for each zone in zonelist:
mem = mem_cgroup_iter(root)
reclaim(mem, zone)
And to keep with the original scan order - memcg -> priority -> zone -
the last scanned memcg has to be remembered per zone and per priority
level.
Furthermore, global reclaim will be switched to the hierarchy walk as
well. Different from limit reclaim, which can just recheck the limit
after some reclaim progress, its target is to scan all memcgs for the
desired zone pages, proportional to the memcg size, and so reliably
detecting a full hierarchy round-trip will become crucial.
Currently, the code relies on one reclaimer encountering the same memcg
twice, but that is error-prone with concurrent reclaimers. Instead, use
a generation counter that is increased every time the child with the
highest ID has been visited, so that reclaimers can stop when the
generation changes.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup hierarchies are currently handled completely outside of
the traditional reclaim code, which is invoked with a single memory
cgroup as an argument for the whole call stack.
Subsequent patches will switch this code to do hierarchical reclaim, so
there needs to be a distinction between a) the memory cgroup that is
triggering reclaim due to hitting its limit and b) the memory cgroup
that is being scanned as a child of a).
This patch introduces a struct mem_cgroup_zone that contains the
combination of the memory cgroup and the zone being scanned, which is
then passed down the stack instead of the zone argument.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The traditional zone reclaim code is scanning the per-zone LRU lists
during direct reclaim and kswapd, and the per-zone per-memory cgroup LRU
lists when reclaiming on behalf of a memory cgroup limit.
Subsequent patches will convert the traditional reclaim code to reclaim
exclusively from the per-memory cgroup LRU lists. As a result, using
the predicate for which LRU list is scanned will no longer be
appropriate to tell global reclaim from limit reclaim.
This patch adds a global_reclaim() predicate to tell direct/kswapd
reclaim from memory cgroup limit reclaim and substitutes it in all
places where currently scanning_global_lru() is used for that.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg naturalization series:
Memory control groups are currently bolted onto the side of
traditional memory management in places where better integration would
be preferrable. To reclaim memory, for example, memory control groups
maintain their own LRU list and reclaim strategy aside from the global
per-zone LRU list reclaim. But an extra list head for each existing
page frame is expensive and maintaining it requires additional code.
This patchset disables the global per-zone LRU lists on memory cgroup
configurations and converts all its users to operate on the per-memory
cgroup lists instead. As LRU pages are then exclusively on one list,
this saves two list pointers for each page frame in the system:
page_cgroup array size with 4G physical memory
vanilla: allocated 31457280 bytes of page_cgroup
patched: allocated 15728640 bytes of page_cgroup
At the same time, system performance for various workloads is
unaffected:
100G sparse file cat, 4G physical memory, 10 runs, to test for code
bloat in the traditional LRU handling and kswapd & direct reclaim
paths, without/with the memory controller configured in
vanilla: 71.603(0.207) seconds
patched: 71.640(0.156) seconds
vanilla: 79.558(0.288) seconds
patched: 77.233(0.147) seconds
100G sparse file cat in 1G memory cgroup, 10 runs, to test for code
bloat in the traditional memory cgroup LRU handling and reclaim path
vanilla: 96.844(0.281) seconds
patched: 94.454(0.311) seconds
4 unlimited memcgs running kbuild -j32 each, 4G physical memory, 500M
swap on SSD, 10 runs, to test for regressions in kswapd & direct
reclaim using per-memcg LRU lists with multiple memcgs and multiple
allocators within each memcg
vanilla: 717.722(1.440) seconds [ 69720.100(11600.835) majfaults ]
patched: 714.106(2.313) seconds [ 71109.300(14886.186) majfaults ]
16 unlimited memcgs running kbuild, 1900M hierarchical limit, 500M
swap on SSD, 10 runs, to test for regressions in hierarchical memcg
setups
vanilla: 2742.058(1.992) seconds [ 26479.600(1736.737) majfaults ]
patched: 2743.267(1.214) seconds [ 27240.700(1076.063) majfaults ]
This patch:
There are currently two different implementations of iterating over a
memory cgroup hierarchy tree.
Consolidate them into one worker function and base the convenience
looping-macros on top of it.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ef6a3c6311 ("mm: add replace_page_cache_page() function") added a
function replace_page_cache_page(). This function replaces a page in the
radix-tree with a new page. WHen doing this, memory cgroup needs to fix
up the accounting information. memcg need to check PCG_USED bit etc.
In some(many?) cases, 'newpage' is on LRU before calling
replace_page_cache(). So, memcg's LRU accounting information should be
fixed, too.
This patch adds mem_cgroup_replace_page_cache() and removes the old hooks.
In that function, old pages will be unaccounted without touching
res_counter and new page will be accounted to the memcg (of old page).
WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid
races with LRU handling.
Background:
replace_page_cache_page() is called by FUSE code in its splice() handling.
Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated
page and may be on LRU. LRU mis-accounting will be critical for memory cgroup
because rmdir() checks the whole LRU is empty and there is no account leak.
If a page is on the other LRU than it should be, rmdir() will fail.
This bug was added in March 2011, but no bug report yet. I guess there
are not many people who use memcg and FUSE at the same time with upstream
kernels.
The result of this bug is that admin cannot destroy a memcg because of
account leak. So, no panic, no deadlock. And, even if an active cgroup
exist, umount can succseed. So no problem at shutdown.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current epoll code can be tickled to run basically indefinitely in
both loop detection path check (on ep_insert()), and in the wakeup paths.
The programs that tickle this behavior set up deeply linked networks of
epoll file descriptors that cause the epoll algorithms to traverse them
indefinitely. A couple of these sample programs have been previously
posted in this thread: https://lkml.org/lkml/2011/2/25/297.
To fix the loop detection path check algorithms, I simply keep track of
the epoll nodes that have been already visited. Thus, the loop detection
becomes proportional to the number of epoll file descriptor and links.
This dramatically decreases the run-time of the loop check algorithm. In
one diabolical case I tried it reduced the run-time from 15 mintues (all
in kernel time) to .3 seconds.
Fixing the wakeup paths could be done at wakeup time in a similar manner
by keeping track of nodes that have already been visited, but the
complexity is harder, since there can be multiple wakeups on different
cpus...Thus, I've opted to limit the number of possible wakeup paths when
the paths are created.
This is accomplished, by noting that the end file descriptor points that
are found during the loop detection pass (from the newly added link), are
actually the sources for wakeup events. I keep a list of these file
descriptors and limit the number and length of these paths that emanate
from these 'source file descriptors'. In the current implemetation I
allow 1000 paths of length 1, 500 of length 2, 100 of length 3, 50 of
length 4 and 10 of length 5. Note that it is sufficient to check the
'source file descriptors' reachable from the newly added link, since no
other 'source file descriptors' will have newly added links. This allows
us to check only the wakeup paths that may have gotten too long, and not
re-check all possible wakeup paths on the system.
In terms of the path limit selection, I think its first worth noting that
the most common case for epoll, is probably the model where you have 1
epoll file descriptor that is monitoring n number of 'source file
descriptors'. In this case, each 'source file descriptor' has a 1 path of
length 1. Thus, I believe that the limits I'm proposing are quite
reasonable and in fact may be too generous. Thus, I'm hoping that the
proposed limits will not prevent any workloads that currently work to
fail.
In terms of locking, I have extended the use of the 'epmutex' to all
epoll_ctl add and remove operations. Currently its only used in a subset
of the add paths. I need to hold the epmutex, so that we can correctly
traverse a coherent graph, to check the number of paths. I believe that
this additional locking is probably ok, since its in the setup/teardown
paths, and doesn't affect the running paths, but it certainly is going to
add some extra overhead. Also, worth noting is that the epmuex was
recently added to the ep_ctl add operations in the initial path loop
detection code using the argument that it was not on a critical path.
Another thing to note here, is the length of epoll chains that is allowed.
Currently, eventpoll.c defines:
/* Maximum number of nesting allowed inside epoll sets */
#define EP_MAX_NESTS 4
This basically means that I am limited to a graph depth of 5 (EP_MAX_NESTS
+ 1). However, this limit is currently only enforced during the loop
check detection code, and only when the epoll file descriptors are added
in a certain order. Thus, this limit is currently easily bypassed. The
newly added check for wakeup paths, stricly limits the wakeup paths to a
length of 5, regardless of the order in which ep's are linked together.
Thus, a side-effect of the new code is a more consistent enforcement of
the graph depth.
Thus far, I've tested this, using the sample programs previously
mentioned, which now either return quickly or return -EINVAL. I've also
testing using the piptest.c epoll tester, which showed no difference in
performance. I've also created a number of different epoll networks and
tested that they behave as expectded.
I believe this solves the original diabolical test cases, while still
preserving the sane epoll nesting.
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Nelson Elhage <nelhage@ksplice.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a user with the CAP_SYS_RESOURCE cap tries to F_SETPIPE_SZ a pipe
with size bigger than kmalloc() can alloc it spits out an ugly warning:
------------[ cut here ]------------
WARNING: at mm/page_alloc.c:2095 __alloc_pages_nodemask+0x5d3/0x7a0()
Pid: 733, comm: a.out Not tainted 3.2.0-rc1+ #4
Call Trace:
warn_slowpath_common+0x75/0xb0
warn_slowpath_null+0x15/0x20
__alloc_pages_nodemask+0x5d3/0x7a0
__get_free_pages+0x12/0x50
__kmalloc+0x12b/0x150
pipe_set_size+0x75/0x120
pipe_fcntl+0xf8/0x140
do_fcntl+0x2d4/0x410
sys_fcntl+0x66/0xa0
system_call_fastpath+0x16/0x1b
---[ end trace 432f702e6db7b5ee ]---
Instead, make kcalloc() handle the overflow case and fail quietly.
[akpm@linux-foundation.org: switch to sizeof(*bufs) for 80-column niceness]
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The address limit is already set in flush_old_exec() so those calls to
set_fs(USER_DS) are redundant.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Helge Deller <deller@gmx.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The address limit is already set in flush_old_exec() so this
set_fs(USER_DS) is redundant.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move CMPXCHG_DOUBLE and rename it to HAVE_CMPXCHG_DOUBLE so architectures
can simply select the option if it is supported.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move CMPXCHG_LOCAL and rename it to HAVE_CMPXCHG_LOCAL so architectures
can simply select the option if it is supported.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While implementing cmpxchg_double() on s390 I realized that we don't set
CONFIG_CMPXCHG_LOCAL despite the fact that we have support for it.
However setting that option will increase the size of struct page by
eight bytes on 64 bit, which we certainly do not want. Also, it doesn't
make sense that a present cpu feature should increase the size of struct
page.
Besides that it looks like the dependency to CMPXCHG_LOCAL is wrong and
that it should depend on CMPXCHG_DOUBLE instead.
This patch:
If an architecture supports CMPXCHG_LOCAL this shouldn't result
automatically in larger struct pages if the SLUB allocator is used.
Instead introduce a new config option "HAVE_ALIGNED_STRUCT_PAGE" which
can be selected if a double word aligned struct page is required. Also
update x86 Kconfig so that it should work as before.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The uses have been renamed so delete the unused macro.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only use in kernel.h is gone so remove the macro.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use __printf macro.
Convert NORET_AND to ATTRIB_NORET.
Use the normal kernel style for pointer arguments.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enabling DEBUG_STRICT_USER_COPY_CHECKS causes the following warning:
In file included from arch/x86/include/asm/uaccess.h:573,
from kernel/kprobes.c:55:
In function 'copy_from_user',
inlined from 'write_enabled_file_bool' at
kernel/kprobes.c:2191:
arch/x86/include/asm/uaccess_64.h:65:
warning: call to 'copy_from_user_overflow' declared with attribute warning: copy_from_user() buffer size is not provably correct
presumably due to buf_size being signed causing GCC to fail to see that
buf_size can't become negative.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_proc_task() can fail to search the task and return NULL,
put_task_struct() will then bomb the kernel with following oops:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
IP: [<ffffffff81217d34>] proc_pid_permission+0x64/0xe0
PGD 112075067 PUD 112814067 PMD 0
Oops: 0002 [#1] PREEMPT SMP
This is a regression introduced by commit 0499680a ("procfs: add hidepid=
and gid= mount options"). The kernel should return -ESRCH if
get_proc_task() failed.
Signed-off-by: Xiaotian Feng <dannyfeng@tencent.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Stephen Wilson <wilsons@start.ca>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This very noisy sparse warning appears on almost every file in the
kernel:
CHECK init/main.c
arch/x86/include/asm/thread_info.h:43:55: error: dubious one-bit signed bitfield
arch/x86/include/asm/thread_info.h:44:46: error: dubious one-bit signed bitfield
This patch changes sig_on_uaccess_error and uaccess_err flags to unsigned
type and thus fixes the warning.
Signed-off-by: Anton Vorontsov <cbouatmailru@gmail.com>
Acked-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (526 commits)
ASoC: twl6040 - Add method to query optimum PDM_DL1 gain
ALSA: hda - Fix the lost power-setup of seconary pins after PM resume
ALSA: usb-audio: add Yamaha MOX6/MOX8 support
ALSA: virtuoso: add S/PDIF input support for all Xonars
ALSA: ice1724 - Support for ooAoo SQ210a
ALSA: ice1724 - Allow card info based on model only
ALSA: ice1724 - Create capture pcm only for ADC-enabled configurations
ALSA: hdspm - Provide unique driver id based on card serial
ASoC: Dynamically allocate the rtd device for a non-empty release()
ASoC: Fix recursive dependency due to select ATMEL_SSC in SND_ATMEL_SOC_SSC
ALSA: hda - Fix the detection of "Loopback Mixing" control for VIA codecs
ALSA: hda - Return the error from get_wcaps_type() for invalid NIDs
ALSA: hda - Use auto-parser for HP laptops with cx20459 codec
ALSA: asihpi - Fix potential Oops in snd_asihpi_cmode_info()
ALSA: hdsp - Fix potential Oops in snd_hdsp_info_pref_sync_ref()
ALSA: hda/cirrus - support for iMac12,2 model
ASoC: cx20442: add bias control over a platform provided regulator
ALSA: usb-audio - Avoid flood of frame-active debug messages
ALSA: snd-usb-us122l: Delete calls to preempt_disable
mfd: Put WM8994 into cache only mode when suspending
...
Fix up trivial conflicts in:
- arch/arm/mach-s3c64xx/mach-crag6410.c:
renamed speyside_wm8962 to tobermory, added littlemill right
next to it
- drivers/base/regmap/{regcache.c,regmap.c}:
duplicate diff that had already come in with other changes in
the regmap tree
We only need amd_bus.o for AMD systems with PCI. arch/x86/pci/Makefile
already depends on CONFIG_PCI=y, so this patch just adds the dependency
on CONFIG_AMD_NB.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: stable@kernel.org # 2.6.34+ (needs adjustment for k8 -> amd rename)
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.15 (GNU/Linux)
iEYEABECAAYFAk8Obj8ACgkQGkmNcg7/o7hzngCfS5az4ZP3D+e/cvatHZm/nAzn
0mIAoKbYyXpLXGkEN+yDkd5YZAYwQjVR
=kryV
-----END PGP SIGNATURE-----
Merge tag 'rmobile-for-linus' of git://github.com/pmundt/linux-sh
SH/R-Mobile updates for 3.3 merge window.
* tag 'rmobile-for-linus' of git://github.com/pmundt/linux-sh: (32 commits)
arm: mach-shmobile: add a resource name for shdma
ARM: mach-shmobile: r8a7779 SMP support V3
ARM: mach-shmobile: Add kota2 defconfig.
ARM: mach-shmobile: Add marzen defconfig.
ARM: mach-shmobile: r8a7779 power domain support V2
ARM: mach-shmobile: Fix up marzen build for recent GIC changes.
ARM: mach-shmobile: r8a7779 PFC function support
ARM: mach-shmobile: Flush caches in platform_cpu_die()
ARM: mach-shmobile: Allow SoC specific CPU kill code
ARM: mach-shmobile: Fix headsmp.S code to use CPUINIT
ARM: mach-shmobile: clock-r8a7779: clkz/clkzs support
ARM: mach-shmobile: clock-r8a7779: add DIV4 clock support
ARM: mach-shmobile: Marzen LAN89218 support
ARM: mach-shmobile: Marzen SCIF2/SCIF4 support
ARM: mach-shmobile: r8a7779 PFC GPIO-only support V2
ARM: mach-shmobile: r8a7779 and Marzen base support V2
sh: pfc: Unlock register support
sh: pfc: Variable bitfield width config register support
sh: pfc: Add config_reg_helper() function
sh: pfc: Convert index to field and value pair
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.15 (GNU/Linux)
iEYEABECAAYFAk8ObfwACgkQGkmNcg7/o7gOHwCfZo8197ppks1LIfACo27cL8Q8
rU8AnR+igHfCEkg9RlrX9sJ8jqxtpYLZ
=WE1M
-----END PGP SIGNATURE-----
Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
SuperH updates for 3.3 merge window.
* tag 'sh-for-linus' of git://github.com/pmundt/linux-sh: (38 commits)
sh: magicpanelr2: Update for parse_mtd_partitions() fallout.
sh: mach-rsk: Update for parse_mtd_partitions() fallout.
sh: sh2a: Improve cache flush/invalidate functions
sh: also without PM_RUNTIME pm_runtime.o must be built
sh: add a resource name for shdma
sh: Remove redundant try_to_freeze() invocations.
sh: Ensure IRQs are enabled across do_notify_resume().
sh: Fix up store queue code for subsys_interface changes.
sh: clkfwk: sh_clk_init_parent() should be called after clk_register()
sh: add platform_device for renesas_usbhs in board-sh7757lcr
sh: modify clock-sh7757 for renesas_usbhs
sh: pfc: ioremap() support
sh: use ioread32/iowrite32 and mapped_reg for div6
sh: use ioread32/iowrite32 and mapped_reg for div4
sh: use ioread32/iowrite32 and mapped_reg for mstp32
sh: extend clock struct with mapped_reg member
sh: clkfwk: clock-sh73a0: all div6_clks use SH_CLK_DIV6_EXT()
sh: clkfwk: clock-sh7724: all div6_clks use SH_CLK_DIV6_EXT()
sh: clock-sh7723: add CLKDEV_ICK_ID for cleanup
serial: sh-sci: Handle GPIO function requests.
...
The RSK+ setup code was doing some pretty dubious things with
parse_mtd_partitions() in order to populate the physmap-flash map
platform data. The physmap-flash driver contains all of the functionality
that we require already, so simply drop the special casing and pad out
the platform data accordingly.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The cache functions lock out interrupts for long periods; this patch
reduces the impact when operating on large address ranges. In such
cases it will:
- Invalidate the entire cache rather than individual addresses.
- Do nothing when flushing the operand cache in write-through mode.
- When flushing the operand cache in write-back mdoe, index the
search for matching addresses on the cache entires instead of the
addresses to flush
Note: sh2a__flush_purge_region was only invalidating the operand
cache, this adds flush.
Signed-off-by: Phil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
When CONFIG_PM_RUNTIME is off, drivers/sh/pm_runtime.o still has to be
built on sh platforms, because then it provides means to statically
switch on device PM clocks.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel config: Fix the APB_TIMER selection
x86/mrst: Add additional debug prints for pb_keys
x86/intel config: Revamp configuration to allow for Moorestown and Medfield
x86/intel/scu/ipc: Match the changes in the x86 configuration
x86/apb: Fix configuration constraints
x86: Fix INTEL_MID silly
x86/Kconfig: Cyclone-timer depends on x86-summit
x86: Reduce clock calibration time during slave cpu startup
x86/config: Revamp configuration for MID devices
x86/sfi: Kill the IRQ as id hack
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, reboot: Fix typo in nmi reboot path
x86, NMI: Add to_cpumask() to silence compile warning
x86, NMI: NMI selftest depends on the local apic
x86: Add stack top margin for stack overflow checking
x86, NMI: NMI-selftest should handle the UP case properly
x86: Fix the 32-bit stackoverflow-debug build
x86, NMI: Add knob to disable using NMI IPIs to stop cpus
x86, NMI: Add NMI IPI selftest
x86, reboot: Use NMI instead of REBOOT_VECTOR to stop cpus
x86: Clean up the range of stack overflow checking
x86: Panic on detection of stack overflow
x86: Check stack overflow in detail