IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 174a0c565c ]
The use of the 'kernel_offset' variable to position the image file that
has been loaded by UEFI or GRUB is unnecessary, because we can directly
position the loaded image file through using the image_base field of the
efi_loaded_image struct provided by UEFI.
Replace kernel_offset with image_base to position the image file that has
been loaded by UEFI or GRUB.
Signed-off-by: Wang Yao <wangyao@lemote.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Stable-dep-of: beb2800074 ("LoongArch: Fix entry point in kernel image header")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a736ddfc8 ]
On non-x86 architectures, the screen_info variable is generally only
used for the VGA console where supported, and in some cases the EFI
framebuffer or vga16fb.
Now that we have a definite list of which architectures actually use it
for what, use consistent #ifdef checks so the global variable is only
defined when it is actually used on those architectures.
Loongarch and riscv have no support for vgacon or vga16fb, but
they support EFI firmware, so only that needs to be checked, and the
initialization can be removed because that is handled by EFI.
IA64 has both vgacon and EFI, though EFI apparently never uses
a framebuffer here.
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Khalid Aziz <khalid@gonehiking.org>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20231009211845.3136536-3-arnd@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Stable-dep-of: beb2800074 ("LoongArch: Fix entry point in kernel image header")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c67ddf59ac ]
debug_pagealloc is a debug feature which clears the valid bit in page table
entry for freed pages to detect illegal accesses to freed memory.
For this feature to work, virtual mapping must have PAGE_SIZE resolution.
(No, we cannot map with huge pages and split them only when needed; because
pages can be allocated/freed in atomic context and page splitting cannot be
done in atomic context)
Force linear mapping to use small pages if debug_pagealloc is enabled.
Note that it is not necessary to force the entire linear mapping, but only
those that are given to memory allocator. Some parts of memory can keep
using huge page mapping (for example, kernel's executable code). But these
parts are minority, so keep it simple. This is just a debug feature, some
extra overhead should be acceptable.
Fixes: 5fde3db5eb ("riscv: add ARCH_SUPPORTS_DEBUG_PAGEALLOC support")
Signed-off-by: Nam Cao <namcao@linutronix.de>
Cc: stable@vger.kernel.org
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/2e391fa6c6f9b3fcf1b41cefbace02ee4ab4bf59.1715750938.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 629db01c64 ]
Propagating changes at this level is cumbersome as we need to go through
all the page tables when that happens (either when changing the
permissions or when splitting the mapping).
Note that this prevents the use of 4MB mapping for sv32 and 1GB mapping for
sv39 in the linear mapping.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231108075930.7157-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Stable-dep-of: c67ddf59ac ("riscv: force PAGE_SIZE linear mapping if debug_pagealloc is enabled")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 93022482b2 ]
Code in v6.9 arch/x86/kernel/smpboot.c was changed by commit
4db64279bc ("x86/cpu: Switch to new Intel CPU model defines") from:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ <--- 443
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
to:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
On an Intel CPU with SNC enabled this code previously matched the rule on line
443 to avoid printing messages about insane cache configuration. The new code
did not match any rules.
Expanding the macros for the intel_cod_cpu[] array shows that the old is
equivalent to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 6, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
while the new code expands to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
Looking at the code for x86_match_cpu():
const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match)
{
const struct x86_cpu_id *m;
struct cpuinfo_x86 *c = &boot_cpu_data;
for (m = match;
m->vendor | m->family | m->model | m->steppings | m->feature;
m++) {
...
}
return NULL;
it is clear that there was no match because the ANY entry in the table (array
index 2) is now the loop termination condition (all of vendor, family, model,
steppings, and feature are zero).
So this code was working before because the "ANY" check was looking for any
Intel CPU in family 6. But fails now because the family is a wild card. So the
root cause is that x86_match_cpu() has never been able to match on a rule with
just X86_VENDOR_INTEL and all other fields set to wildcards.
Add a new flags field to struct x86_cpu_id that has a bit set to indicate that
this entry in the array is valid. Update X86_MATCH*() macros to set that bit.
Change the end-marker check in x86_match_cpu() to just check the flags field
for this bit.
Backporter notes: The commit in Fixes is really the one that is broken:
you can't have m->vendor as part of the loop termination conditional in
x86_match_cpu() because it can happen - as it has happened above
- that that whole conditional is 0 albeit vendor == 0 is a valid case
- X86_VENDOR_INTEL is 0.
However, the only case where the above happens is the SNC check added by
4db64279bc so you only need this fix if you have backported that
other commit
4db64279bc ("x86/cpu: Switch to new Intel CPU model defines")
Fixes: 644e9cbbe3 ("Add driver auto probing for x86 features v4")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable+noautosel@kernel.org> # see above
Link: https://lore.kernel.org/r/20240517144312.GBZkdtAOuJZCvxhFbJ@fat_crate.local
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e56d4b633f ]
Both nbd_send_cmd() and nbd_handle_cmd() return either a negative error
number or a positive blk_status_t value. nbd_queue_rq() converts these
return values into a blk_status_t value. There is a bug in the conversion
code: if nbd_send_cmd() returns BLK_STS_RESOURCE, nbd_queue_rq() should
return BLK_STS_RESOURCE instead of BLK_STS_OK. Fix this, move the
conversion code into nbd_handle_cmd() and fix the remaining sparse warnings.
This patch fixes the following sparse warnings:
drivers/block/nbd.c:673:32: warning: incorrect type in return expression (different base types)
drivers/block/nbd.c:673:32: expected int
drivers/block/nbd.c:673:32: got restricted blk_status_t [usertype]
drivers/block/nbd.c:714:48: warning: incorrect type in return expression (different base types)
drivers/block/nbd.c:714:48: expected int
drivers/block/nbd.c:714:48: got restricted blk_status_t [usertype]
drivers/block/nbd.c:1120:21: warning: incorrect type in assignment (different base types)
drivers/block/nbd.c:1120:21: expected int [assigned] ret
drivers/block/nbd.c:1120:21: got restricted blk_status_t [usertype]
drivers/block/nbd.c:1125:16: warning: incorrect type in return expression (different base types)
drivers/block/nbd.c:1125:16: expected restricted blk_status_t
drivers/block/nbd.c:1125:16: got int [assigned] ret
Cc: Christoph Hellwig <hch@lst.de>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Yu Kuai <yukuai3@huawei.com>
Cc: Markus Pargmann <mpa@pengutronix.de>
Fixes: fc17b6534e ("blk-mq: switch ->queue_rq return value to blk_status_t")
Cc: stable@vger.kernel.org
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240510202313.25209-6-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cbfbb4ddbc ]
In order to connect to networks which require 802.11w, add the
MFP_CAPABLE flag and let mac80211 do the actual crypto in software.
When a robust management frame is received, rx_dec->swdec is not set,
even though the HW did not decrypt it. Extend the check and don't set
RX_FLAG_DECRYPTED for these frames in order to use SW decryption.
Use the security flag in the RX descriptor for this purpose, like it is
done in the rtw88 driver.
Cc: stable@vger.kernel.org
Signed-off-by: Martin Kaistra <martin.kaistra@linutronix.de>
Signed-off-by: Ping-Ke Shih <pkshih@realtek.com>
Link: https://msgid.link/20240418071813.1883174-3-martin.kaistra@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5a72477273 upstream.
Setting IACK bit when core is disabled does not clear the "Interrupt Flag"
bit in the status register, and the interrupt remains pending.
Sometimes it causes failure for the very first message transfer, that is
usually a device probe.
Hence, set IACK bit after core is enabled to clear pending interrupt.
Fixes: 18f98b1e31 ("[PATCH] i2c: New bus driver for the OpenCores I2C controller")
Signed-off-by: Grygorii Tertychnyi <grygorii.tertychnyi@leica-geosystems.com>
Acked-by: Peter Korsgaard <peter@korsgaard.com>
Cc: stable@vger.kernel.org
Signed-off-by: Andi Shyti <andi.shyti@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8bb592c2ec upstream.
Not all pages may apply to pgtable check. One example is ZONE_DEVICE
pages: they map PFNs directly, and they don't allocate page_ext at all
even if there's struct page around. One may reference
devm_memremap_pages().
When both ZONE_DEVICE and page-table-check enabled, then try to map some
dax memories, one can trigger kernel bug constantly now when the kernel
was trying to inject some pfn maps on the dax device:
kernel BUG at mm/page_table_check.c:55!
While it's pretty legal to use set_pxx_at() for ZONE_DEVICE pages for page
fault resolutions, skip all the checks if page_ext doesn't even exist in
pgtable checker, which applies to ZONE_DEVICE but maybe more.
Link: https://lkml.kernel.org/r/20240605212146.994486-1-peterx@redhat.com
Fixes: df4e817b71 ("mm: page table check")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e046bb111 upstream.
Some applications were reporting ETIMEDOUT errors on apparently
good looking flows, according to packet dumps.
We were able to root cause the issue to an accidental setting
of tp->retrans_stamp in the following scenario:
- client sends TFO SYN with data.
- server has TFO disabled, ACKs only SYN but not payload.
- client receives SYNACK covering only SYN.
- tcp_ack() eats SYN and sets tp->retrans_stamp to 0.
- tcp_rcv_fastopen_synack() calls tcp_xmit_retransmit_queue()
to retransmit TFO payload w/o SYN, sets tp->retrans_stamp to "now",
but we are not in any loss recovery state.
- TFO payload is ACKed.
- we are not in any loss recovery state, and don't see any dupacks,
so we don't get to any code path that clears tp->retrans_stamp.
- tp->retrans_stamp stays non-zero for the lifetime of the connection.
- after first RTO, tcp_clamp_rto_to_user_timeout() clamps second RTO
to 1 jiffy due to bogus tp->retrans_stamp.
- on clamped RTO with non-zero icsk_retransmits, retransmits_timed_out()
sets start_ts from tp->retrans_stamp from TFO payload retransmit
hours/days ago, and computes bogus long elapsed time for loss recovery,
and suffers ETIMEDOUT early.
Fixes: a7abf3cd76 ("tcp: consider using standard rtx logic in tcp_rcv_fastopen_synack()")
CC: stable@vger.kernel.org
Co-developed-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Co-developed-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240614130615.396837-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3afb76a66b upstream.
An ASLR regression was noticed [1] and tracked down to file-mapped areas
being backed by THP in recent kernels. The 21-bit alignment constraint
for such mappings reduces the entropy for randomizing the placement of
64-bit library mappings and breaks ASLR completely for 32-bit libraries.
The reported issue is easily addressed by increasing vm.mmap_rnd_bits and
vm.mmap_rnd_compat_bits. This patch just provides a simple way to set
ARCH_MMAP_RND_BITS and ARCH_MMAP_RND_COMPAT_BITS to their maximum values
allowed by the architecture at build time.
[1] https://zolutal.github.io/aslrnt/
[akpm@linux-foundation.org: default to `y' if 32-bit, per Rafael]
Link: https://lkml.kernel.org/r/20240606180622.102099-1-aquini@redhat.com
Fixes: 1854bc6e24 ("mm/readahead: Align file mappings for non-DAX")
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 75dde792d6 upstream.
The logic in __efi_memmap_init() is shared between two different
execution flows:
- mapping the EFI memory map early or late into the kernel VA space, so
that its entries can be accessed;
- the x86 specific cloning of the EFI memory map in order to insert new
entries that are created as a result of making a memory reservation
via a call to efi_mem_reserve().
In the former case, the underlying memory containing the kernel's view
of the EFI memory map (which may be heavily modified by the kernel
itself on x86) is not modified at all, and the only thing that changes
is the virtual mapping of this memory, which is different between early
and late boot.
In the latter case, an entirely new allocation is created that carries a
new, updated version of the kernel's view of the EFI memory map. When
installing this new version, the old version will no longer be
referenced, and if the memory was allocated by the kernel, it will leak
unless it gets freed.
The logic that implements this freeing currently lives on the code path
that is shared between these two use cases, but it should only apply to
the latter. So move it to the correct spot.
While at it, drop the dummy definition for non-x86 architectures, as
that is no longer needed.
Cc: <stable@vger.kernel.org>
Fixes: f0ef652347 ("efi: Fix efi_memmap_alloc() leaks")
Tested-by: Ashish Kalra <Ashish.Kalra@amd.com>
Link: https://lore.kernel.org/all/36ad5079-4326-45ed-85f6-928ff76483d3@amd.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01c8f9806b upstream.
In kcov_remote_start()/kcov_remote_stop(), we swap the previous KCOV
metadata of the current task into a per-CPU variable. However, the
kcov_mode_enabled(mode) check is not sufficient in the case of remote KCOV
coverage: current->kcov_mode always remains KCOV_MODE_DISABLED for remote
KCOV objects.
If the original task that has invoked the KCOV_REMOTE_ENABLE ioctl happens
to get interrupted and kcov_remote_start() is called, it ultimately leads
to kcov_remote_stop() NOT restoring the original KCOV reference. So when
the task exits, all registered remote KCOV handles remain active forever.
The most uncomfortable effect (at least for syzkaller) is that the bug
prevents the reuse of the same /sys/kernel/debug/kcov descriptor. If
we obtain it in the parent process and then e.g. drop some
capabilities and continuously fork to execute individual programs, at
some point current->kcov of the forked process is lost,
kcov_task_exit() takes no action, and all KCOV_REMOTE_ENABLE ioctls
calls from subsequent forks fail.
And, yes, the efficiency is also affected if we keep on losing remote
kcov objects.
a) kcov_remote_map keeps on growing forever.
b) (If I'm not mistaken), we're also not freeing the memory referenced
by kcov->area.
Fix it by introducing a special kcov_mode that is assigned to the task
that owns a KCOV remote object. It makes kcov_mode_enabled() return true
and yet does not trigger coverage collection in __sanitizer_cov_trace_pc()
and write_comp_data().
[nogikh@google.com: replace WRITE_ONCE() with an ordinary assignment]
Link: https://lkml.kernel.org/r/20240614171221.2837584-1-nogikh@google.com
Link: https://lkml.kernel.org/r/20240611133229.527822-1-nogikh@google.com
Fixes: 5ff3b30ab5 ("kcov: collect coverage from interrupts")
Signed-off-by: Aleksandr Nogikh <nogikh@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f3ced000a2 upstream.
Sync pending posted interrupts to the IRR prior to re-scanning I/O APIC
routes, irrespective of whether the I/O APIC is emulated by userspace or
by KVM. If a level-triggered interrupt routed through the I/O APIC is
pending or in-service for a vCPU, KVM needs to intercept EOIs on said
vCPU even if the vCPU isn't the destination for the new routing, e.g. if
servicing an interrupt using the old routing races with I/O APIC
reconfiguration.
Commit fceb3a36c2 ("KVM: x86: ioapic: Fix level-triggered EOI and
userspace I/OAPIC reconfigure race") fixed the common cases, but
kvm_apic_pending_eoi() only checks if an interrupt is in the local
APIC's IRR or ISR, i.e. misses the uncommon case where an interrupt is
pending in the PIR.
Failure to intercept EOI can manifest as guest hangs with Windows 11 if
the guest uses the RTC as its timekeeping source, e.g. if the VMM doesn't
expose a more modern form of time to the guest.
Cc: stable@vger.kernel.org
Cc: Adamos Ttofari <attofari@amazon.de>
Cc: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240611014845.82795-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 49f683b41f upstream.
Use {READ,WRITE}_ONCE() to access kvm->last_boosted_vcpu to ensure the
loads and stores are atomic. In the extremely unlikely scenario the
compiler tears the stores, it's theoretically possible for KVM to attempt
to get a vCPU using an out-of-bounds index, e.g. if the write is split
into multiple 8-bit stores, and is paired with a 32-bit load on a VM with
257 vCPUs:
CPU0 CPU1
last_boosted_vcpu = 0xff;
(last_boosted_vcpu = 0x100)
last_boosted_vcpu[15:8] = 0x01;
i = (last_boosted_vcpu = 0x1ff)
last_boosted_vcpu[7:0] = 0x00;
vcpu = kvm->vcpu_array[0x1ff];
As detected by KCSAN:
BUG: KCSAN: data-race in kvm_vcpu_on_spin [kvm] / kvm_vcpu_on_spin [kvm]
write to 0xffffc90025a92344 of 4 bytes by task 4340 on cpu 16:
kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4112) kvm
handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel
vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:?
arch/x86/kvm/vmx/vmx.c:6606) kvm_intel
vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm
kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm
kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm
__se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890)
__x64_sys_ioctl (fs/ioctl.c:890)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
read to 0xffffc90025a92344 of 4 bytes by task 4342 on cpu 4:
kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4069) kvm
handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel
vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:?
arch/x86/kvm/vmx/vmx.c:6606) kvm_intel
vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm
kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm
kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm
__se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890)
__x64_sys_ioctl (fs/ioctl.c:890)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
value changed: 0x00000012 -> 0x00000000
Fixes: 217ece6129 ("KVM: use yield_to instead of sleep in kvm_vcpu_on_spin")
Cc: stable@vger.kernel.org
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20240510092353.2261824-1-leitao@debian.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3eb2a8b235 upstream.
In the current code, if multiple hardware breakpoints/watchpoints in
a user-space thread, some of them will not be triggered.
When debugging the following code using gdb.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
printf("start test\n");
a = 1;
printf("a = %d\n", a);
printf("end test\n");
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) start
...
Temporary breakpoint 1, main () at test.c:5
5 printf("start test\n");
(gdb) watch a
Hardware watchpoint 2: a
(gdb) hbreak 8
Hardware assisted breakpoint 3 at 0x1200006ec: file test.c, line 8.
(gdb) c
Continuing.
start test
a = 1
Breakpoint 3, main () at test.c:8
8 printf("end test\n");
...
The first hardware watchpoint is not triggered, the root causes are:
1. In hw_breakpoint_control(), The FWPnCFG1.2.4/MWPnCFG1.2.4 register
settings are not distinguished. They should be set based on hardware
watchpoint functions (fetch or load/store operations).
2. In breakpoint_handler() and watchpoint_handler(), it doesn't identify
which watchpoint is triggered. So, all watchpoint-related perf_event
callbacks are called and siginfo is sent to the user space. This will
cause user-space unable to determine which watchpoint is triggered.
The kernel need to identity which watchpoint is triggered via MWPS/
FWPS registers, and then call the corresponding perf event callbacks
to report siginfo to the user-space.
Modify the relevant code to solve above issues.
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
With this patch:
lihui@bogon:~$ gdb test
...
(gdb) start
...
Temporary breakpoint 1, main () at test.c:5
5 printf("start test\n");
(gdb) watch a
Hardware watchpoint 2: a
(gdb) hbreak 8
Hardware assisted breakpoint 3 at 0x1200006ec: file test.c, line 8.
(gdb) c
Continuing.
start test
Hardware watchpoint 2: a
Old value = 0
New value = 1
main () at test.c:7
7 printf("a = %d\n", a);
(gdb) c
Continuing.
a = 1
Breakpoint 3, main () at test.c:8
8 printf("end test\n");
(gdb) c
Continuing.
end test
[Inferior 1 (process 778) exited normally]
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c8e57ab099 upstream.
In the current code, gdb can set the watchpoint successfully through
ptrace interface, but watchpoint will not be triggered.
When debugging the following code using gdb.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
a = 1;
printf("a = %d\n", a);
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) watch a
...
(gdb) r
...
a = 1
[Inferior 1 (process 4650) exited normally]
No watchpoints were triggered, the root causes are:
1. Kernel uses perf_event and hw_breakpoint framework to control
watchpoint, but the perf_event corresponding to watchpoint is
not enabled. So it needs to be enabled according to MWPnCFG3
or FWPnCFG3 PLV bit field in ptrace_hbp_set_ctrl(), and privilege
is set according to the monitored addr in hw_breakpoint_control().
Furthermore, add a judgment in ptrace_hbp_set_addr() to ensure
kernel-space addr cannot be monitored in user mode.
2. The global enable control for all watchpoints is the WE bit of
CSR.CRMD, and hardware sets the value to 0 when an exception is
triggered. When the ERTN instruction is executed to return, the
hardware restores the value of the PWE field of CSR.PRMD here.
So, before a thread containing watchpoints be scheduled, the PWE
field of CSR.PRMD needs to be set to 1. Add this modification in
hw_breakpoint_control().
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpointshttps://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#basic-control-and-status-registers
With this patch:
lihui@bogon:~$ gdb test
...
(gdb) watch a
Hardware watchpoint 1: a
(gdb) r
...
Hardware watchpoint 1: a
Old value = 0
New value = 1
main () at test.c:6
6 printf("a = %d\n", a);
(gdb) c
Continuing.
a = 1
[Inferior 1 (process 775) exited normally]
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f63a47b34b upstream.
In the current code, when debugging the following code using gdb,
"invalid argument ..." message will be displayed.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
a = 1;
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) watch a
Hardware watchpoint 1: a
(gdb) r
...
Invalid argument setting hardware debug registers
There are mainly two types of issues.
1. Some incorrect judgment condition existed in user_watch_state
argument parsing, causing -EINVAL to be returned.
When setting up a watchpoint, gdb uses the ptrace interface,
ptrace(PTRACE_SETREGSET, tid, NT_LOONGARCH_HW_WATCH, (void *) &iov)).
Register values in user_watch_state as follows:
addr[0] = 0x0, mask[0] = 0x0, ctrl[0] = 0x0
addr[1] = 0x0, mask[1] = 0x0, ctrl[1] = 0x0
addr[2] = 0x0, mask[2] = 0x0, ctrl[2] = 0x0
addr[3] = 0x0, mask[3] = 0x0, ctrl[3] = 0x0
addr[4] = 0x0, mask[4] = 0x0, ctrl[4] = 0x0
addr[5] = 0x0, mask[5] = 0x0, ctrl[5] = 0x0
addr[6] = 0x0, mask[6] = 0x0, ctrl[6] = 0x0
addr[7] = 0x12000803c, mask[7] = 0x0, ctrl[7] = 0x610
In arch_bp_generic_fields(), return -EINVAL when ctrl.len is
LOONGARCH_BREAKPOINT_LEN_8(0b00). So delete the incorrect judgment here.
In ptrace_hbp_fill_attr_ctrl(), when note_type is NT_LOONGARCH_HW_WATCH
and ctrl[0] == 0x0, if ((type & HW_BREAKPOINT_RW) != type) will return
-EINVAL. Here ctrl.type should be set based on note_type, and unnecessary
judgments can be removed.
2. The watchpoint argument was not set correctly due to unnecessary
offset and alignment_mask.
Modify ptrace_hbp_fill_attr_ctrl() and hw_breakpoint_arch_parse(), which
ensure the watchpont argument is set correctly.
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8bf0287528 upstream.
enable_gcm_256 (which allows the server to require the strongest
encryption) is enabled by default, but the modinfo description
incorrectly showed it disabled by default. Fix the typo.
Cc: stable@vger.kernel.org
Fixes: fee742b502 ("smb3.1.1: enable negotiating stronger encryption by default")
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 135c6eb27a upstream.
Under the conditions that a device is to be reinitialized within
ufshcd_probe_hba(), the device must first be fully reset.
Resetting the device should include freeing U8 model (member of dev_info)
but does not, and this causes a memory leak. ufs_put_device_desc() is
responsible for freeing model.
unreferenced object 0xffff3f63008bee60 (size 32):
comm "kworker/u33:1", pid 60, jiffies 4294892642
hex dump (first 32 bytes):
54 48 47 4a 46 47 54 30 54 32 35 42 41 5a 5a 41 THGJFGT0T25BAZZA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc ed7ff1a9):
[<ffffb86705f1243c>] kmemleak_alloc+0x34/0x40
[<ffffb8670511cee4>] __kmalloc_noprof+0x1e4/0x2fc
[<ffffb86705c247fc>] ufshcd_read_string_desc+0x94/0x190
[<ffffb86705c26854>] ufshcd_device_init+0x480/0xdf8
[<ffffb86705c27b68>] ufshcd_probe_hba+0x3c/0x404
[<ffffb86705c29264>] ufshcd_async_scan+0x40/0x370
[<ffffb86704f43e9c>] async_run_entry_fn+0x34/0xe0
[<ffffb86704f34638>] process_one_work+0x154/0x298
[<ffffb86704f34a74>] worker_thread+0x2f8/0x408
[<ffffb86704f3cfa4>] kthread+0x114/0x118
[<ffffb86704e955a0>] ret_from_fork+0x10/0x20
Fixes: 96a7141da3 ("scsi: ufs: core: Add support for reinitializing the UFS device")
Cc: <stable@vger.kernel.org>
Reviewed-by: Andrew Halaney <ahalaney@redhat.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Joel Slebodnick <jslebodn@redhat.com>
Link: https://lore.kernel.org/r/20240613200202.2524194-1-jslebodn@redhat.com
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4eb4e85c4f upstream.
If inc_block_group_ro systematically fails (e.g. due to ETXTBUSY from
swap) or btrfs_relocate_chunk systematically fails (from lack of
space), then this worker becomes an infinite loop.
At the very least, this strands the cleaner thread, but can also result
in hung tasks/RCU stalls on PREEMPT_NONE kernels and if the
reclaim_bgs_lock mutex is not contended.
I believe the best long term fix is to manage reclaim via work queue,
where we queue up a relocation on the triggering condition and re-queue
on failure. In the meantime, this is an easy fix to apply to avoid the
immediate pain.
Fixes: 7e27180994 ("btrfs: reinsert BGs failed to reclaim")
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>