IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add a build option and a command line parameter to build and enable the
support of pseudo-NMIs.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Suggested-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently alternatives are applied very late in the boot process (and
a long time after we enable scheduling). Some alternative sequences,
such as those that alter the way CPU context is stored, must be applied
much earlier in the boot sequence.
Introduce apply_boot_alternatives() to allow some alternatives to be
applied immediately after we detect the CPU features of the boot CPU.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
[julien.thierry@arm.com: rename to fit new cpufeature framework better,
apply BOOT_SCOPE feature early in boot]
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for the application of alternatives at different points
during the boot process, provide the possibility to check whether
alternatives for a feature of interest was already applied instead of
having a global boolean for all alternatives.
Make VHE enablement code check for the VHE feature instead of considering
all alternatives.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <Marc.Zyngier@arm.com>
Cc: Christoffer Dall <Christoffer.Dall@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a cpufeature indicating whether a cpu supports masking interrupts
by priority.
The feature will be properly enabled in a later patch.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It is not supported to have some CPUs using GICv3 sysreg CPU interface
while some others do not.
Once ICC_SRE_EL1.SRE is set on a CPU, the bit cannot be cleared. Since
matching this feature require setting ICC_SRE_EL1.SRE, it cannot be
turned off if found on a CPU.
Set the feature as STRICT_BOOT, if boot CPU has it, all other CPUs are
required to have it.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Suggested-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A side effect of commit c55191e96c ("arm64: mm: apply r/o permissions
of VM areas to its linear alias as well") is that the linear map is
created with page granularity, which means that transitioning the early
page table from global to non-global mappings when enabling kpti can
take a significant amount of time during boot.
Given that most CPU implementations do not require kpti, this mainly
impacts KASLR builds where kpti is forcefully enabled. However, in these
situations we know early on that non-global mappings are required and
can avoid the use of global mappings from the beginning. The only gotcha
is Cavium erratum #27456, which we must detect based on the MIDR value
of the boot CPU.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: John Garry <john.garry@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC that
is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine() invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32 optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
=sYdt
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 festive updates from Will Deacon:
"In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC
that is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine()
invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32
optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
arm64: sysreg: Use _BITUL() when defining register bits
arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
arm64: docs: document pointer authentication
arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
arm64: enable pointer authentication
arm64: add prctl control for resetting ptrauth keys
arm64: perf: strip PAC when unwinding userspace
arm64: expose user PAC bit positions via ptrace
arm64: add basic pointer authentication support
arm64/cpufeature: detect pointer authentication
arm64: Don't trap host pointer auth use to EL2
arm64/kvm: hide ptrauth from guests
arm64/kvm: consistently handle host HCR_EL2 flags
arm64: add pointer authentication register bits
arm64: add comments about EC exception levels
arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
arm64: enable per-task stack canaries
...
Open-coding the pointer-auth HWCAPs is a mess and can be avoided by
reusing the multi-cap logic from the CPU errata framework.
Move the multi_entry_cap_matches code to cpufeature.h and reuse it for
the pointer auth HWCAPs.
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We can easily avoid defining the two meta-capabilities for the address
and generic keys, so remove them and instead just check both of the
architected and impdef capabilities when determining the level of system
support.
Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds basic support for pointer authentication, allowing
userspace to make use of APIAKey, APIBKey, APDAKey, APDBKey, and
APGAKey. The kernel maintains key values for each process (shared by all
threads within), which are initialised to random values at exec() time.
The ID_AA64ISAR1_EL1.{APA,API,GPA,GPI} fields are exposed to userspace,
to describe that pointer authentication instructions are available and
that the kernel is managing the keys. Two new hwcaps are added for the
same reason: PACA (for address authentication) and PACG (for generic
authentication).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Tested-by: Adam Wallis <awallis@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: Fix sizeof() usage and unroll address key initialisation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
So that we can dynamically handle the presence of pointer authentication
functionality, wire up probing code in cpufeature.c.
From ARMv8.3 onwards, ID_AA64ISAR1 is no longer entirely RES0, and now
has four fields describing the presence of pointer authentication
functionality:
* APA - address authentication present, using an architected algorithm
* API - address authentication present, using an IMP DEF algorithm
* GPA - generic authentication present, using an architected algorithm
* GPI - generic authentication present, using an IMP DEF algorithm
This patch checks for both address and generic authentication,
separately. It is assumed that if all CPUs support an IMP DEF algorithm,
the same algorithm is used across all CPUs.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
While the CSV3 field of the ID_AA64_PFR0 CPU ID register can be checked
to see if a CPU is susceptible to Meltdown and therefore requires kpti
to be enabled, existing CPUs do not implement this field.
We therefore whitelist all unaffected Cortex-A CPUs that do not implement
the CSV3 field.
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently use a DSB; ISB sequence to inhibit speculation in set_fs().
Whilst this works for current CPUs, future CPUs may implement a new SB
barrier instruction which acts as an architected speculation barrier.
On CPUs that support it, patch in an SB; NOP sequence over the DSB; ISB
sequence and advertise the presence of the new instruction to userspace.
Signed-off-by: Will Deacon <will.deacon@arm.com>
We use a stop_machine call for each available capability to
enable it on all the CPUs available at boot time. Instead
we could batch the cpu_enable callbacks to a single stop_machine()
call to save us some time.
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the sorted list of capability entries for the detection and
verification.
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Make use of the sorted capability list to access the capability
entry in this_cpu_has_cap() to avoid iterating over the two
tables.
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We maintain two separate tables of capabilities, errata and features,
which decide the system capabilities. We iterate over each of these
tables for various operations (e.g, detection, verification etc.).
We do not have a way to map a system "capability" to its entry,
(i.e, cap -> struct arm64_cpu_capabilities) which is needed for
this_cpu_has_cap(). So we iterate over the table one by one to
find the entry and then do the operation. Also, this prevents
us from optimizing the way we "enable" the capabilities on the
CPUs, where we now issue a stop_machine() for each available
capability.
One solution is to merge the two tables into a single table,
sorted by the capability. But this is has the following
disadvantages:
- We loose the "classification" of an errata vs. feature
- It is quite easy to make a mistake when adding an entry,
unless we sort the table at runtime.
So we maintain a list of pointers to the capability entry, sorted
by the "cap number" in a separate array, initialized at boot time.
The only restriction is that we can have one "entry" per capability.
While at it, remove the duplicate declaration of arm64_errata table.
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When merging support for SSBD and the CRC32 instructions, the conflict
resolution for the new capability entries in arm64_features[]
inadvertedly predicated the availability of the CRC32 instructions on
CONFIG_ARM64_SSBD, despite the functionality being entirely unrelated.
Move the #ifdef CONFIG_ARM64_SSBD down so that it only covers the SSBD
capability.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CTR_EL0.IDC reports the data cache clean requirements for instruction
to data coherence. However, if the field is 0, we need to check the
CLIDR_EL1 fields to detect the status of the feature. Currently we
don't do this and generate a warning with tainting the kernel, when
there is a mismatch in the field among the CPUs. Also the userspace
doesn't have a reliable way to check the CLIDR_EL1 register to check
the status.
This patch fixes the problem by checking the CLIDR_EL1 fields, when
(CTR_EL0.IDC == 0) and updates the kernel's copy of the CTR_EL0 for
the CPU with the actual status of the feature. This would allow the
sanity check infrastructure to do the proper checking of the fields
and also allow the CTR_EL0 emulation code to supply the real status
of the feature.
Now, if a CPU has raw CTR_EL0.IDC == 0 and effective IDC == 1 (with
overall system wide IDC == 1), we need to expose the real value to
the user. So, we trap CTR_EL0 access on the CPU which reports incorrect
CTR_EL0.IDC.
Fixes: commit 6ae4b6e057 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The matches() routine for a capability must honor the "scope"
passed to it and return the proper results.
i.e, when passed with SCOPE_LOCAL_CPU, it should check the
status of the capability on the current CPU. This is used by
verify_local_cpu_capabilities() on a late secondary CPU to make
sure that it's compliant with the established system features.
However, ARM64_HAS_CACHE_{IDC/DIC} always checks the system wide
registers and this could mean that a late secondary CPU could return
"true" (since the CPU hasn't updated the system wide registers yet)
and thus lead the system in an inconsistent state, where
the system assumes it has IDC/DIC feature, while the new CPU
doesn't.
Fixes: commit 6ae4b6e057 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MRS emulation gets triggered with exception class (0x00 or 0x18) eventually
calling the function emulate_mrs() which fetches the user space instruction
and analyses it's encodings (OP0, OP1, OP2, CRN, CRM, RT). The kernel tries
to emulate the given instruction looking into the encoding details. Going
forward these encodings can also be parsed from ESR_ELx.ISS fields without
requiring to fetch/decode faulting userspace instruction which can improve
performance. This factorizes emulate_mrs() function in a way that it can be
called directly with MRS encodings (OP0, OP1, OP2, CRN, CRM) for any given
target register which can then be used directly from 0x18 exception class.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.
CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.
For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().
There are a few cases we need to care of changes in TTBR0_EL1:
- a switch to idmap
- software emulated PAN
we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instructions for modifying the PSTATE fields which were not supported
in the older toolchains (e.g, PAN, UAO) are generated using macros.
We have so far used the normal sys_reg() helper for defining the PSTATE
fields. While this works fine, it is really difficult to correlate the
code with the Arm ARM definition.
As per Arm ARM, the PSTATE fields are defined only using Op1, Op2 fields,
with fixed values for Op0, CRn. Also the CRm field has been reserved
for the Immediate value for the instruction. So using the sys_reg()
looks quite confusing.
This patch cleans up the instruction helpers by bringing them
in line with the Arm ARM definitions to make it easier to correlate
code with the document. No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The cpu errata and feature enable callbacks are only called via their
respective arm64_cpu_capabilities structure and therefore shouldn't
exist in the global namespace.
Move the PAN, RAS and cache maintenance emulation enable callbacks into
the same files as their corresponding arm64_cpu_capabilities structures,
making them static in the process.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On CPUs with support for PSTATE.SSBS, the kernel can toggle the SSBD
state without needing to call into firmware.
This patch hooks into the existing SSBD infrastructure so that SSBS is
used on CPUs that support it, but it's all made horribly complicated by
the very real possibility of big/little systems that don't uniformly
provide the new capability.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass
Safe (SSBS) which can be used as a mitigation against Spectre variant 4.
Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS
directly, so that userspace can toggle the SSBS control without trapping
to the kernel.
This patch probes for the existence of SSBS and advertise the new instructions
to userspace if they exist.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a CRC32 feature bit and wire it up to the CPU id register so we
will be able to use alternatives patching for CRC32 operations.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
cWKsrQUYcLGKZPRN
=b6+A
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
A bunch of good stuff in here:
- Wire up support for qspinlock, replacing our trusty ticket lock code
- Add an IPI to flush_icache_range() to ensure that stale instructions
fetched into the pipeline are discarded along with the I-cache lines
- Support for the GCC "stackleak" plugin
- Support for restartable sequences, plus an arm64 port for the selftest
- Kexec/kdump support on systems booting with ACPI
- Rewrite of our syscall entry code in C, which allows us to zero the
GPRs on entry from userspace
- Support for chained PMU counters, allowing 64-bit event counters to be
constructed on current CPUs
- Ensure scheduler topology information is kept up-to-date with CPU
hotplug events
- Re-enable support for huge vmalloc/IO mappings now that the core code
has the correct hooks to use break-before-make sequences
- Miscellaneous, non-critical fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJbbV41AAoJELescNyEwWM0WoEIALhrKtsIn6vqFlSs/w6aDuJL
cMWmFxjTaKLmIq2+cJIdFLOJ3CH80Pu9gB+nEv/k+cZdCTfUVKfRf28HTpmYWsht
bb4AhdHMC7yFW752BHk+mzJspeC8h/2Rm8wMuNVplZ3MkPrwo3vsiuJTofLhVL/y
BihlU3+5sfBvCYIsWnuEZIev+/I/s/qm1ASiqIcKSrFRZP6VTt5f9TC75vFI8seW
7yc3odKb0CArexB8yBjiPNziehctQF42doxQyL45hezLfWw4qdgHOSiwyiOMxEz9
Fwwpp8Tx33SKLNJgqoqYznGW9PhYJ7n2Kslv19uchJrEV+mds82vdDNaWRULld4=
=kQn6
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A bunch of good stuff in here. Worth noting is that we've pulled in
the x86/mm branch from -tip so that we can make use of the core
ioremap changes which allow us to put down huge mappings in the
vmalloc area without screwing up the TLB. Much of the positive
diffstat is because of the rseq selftest for arm64.
Summary:
- Wire up support for qspinlock, replacing our trusty ticket lock
code
- Add an IPI to flush_icache_range() to ensure that stale
instructions fetched into the pipeline are discarded along with the
I-cache lines
- Support for the GCC "stackleak" plugin
- Support for restartable sequences, plus an arm64 port for the
selftest
- Kexec/kdump support on systems booting with ACPI
- Rewrite of our syscall entry code in C, which allows us to zero the
GPRs on entry from userspace
- Support for chained PMU counters, allowing 64-bit event counters to
be constructed on current CPUs
- Ensure scheduler topology information is kept up-to-date with CPU
hotplug events
- Re-enable support for huge vmalloc/IO mappings now that the core
code has the correct hooks to use break-before-make sequences
- Miscellaneous, non-critical fixes and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (90 commits)
arm64: alternative: Use true and false for boolean values
arm64: kexec: Add comment to explain use of __flush_icache_range()
arm64: sdei: Mark sdei stack helper functions as static
arm64, kaslr: export offset in VMCOREINFO ELF notes
arm64: perf: Add cap_user_time aarch64
efi/libstub: Only disable stackleak plugin for arm64
arm64: drop unused kernel_neon_begin_partial() macro
arm64: kexec: machine_kexec should call __flush_icache_range
arm64: svc: Ensure hardirq tracing is updated before return
arm64: mm: Export __sync_icache_dcache() for xen-privcmd
drivers/perf: arm-ccn: Use devm_ioremap_resource() to map memory
arm64: Add support for STACKLEAK gcc plugin
arm64: Add stack information to on_accessible_stack
drivers/perf: hisi: update the sccl_id/ccl_id when MT is supported
arm64: fix ACPI dependencies
rseq/selftests: Add support for arm64
arm64: acpi: fix alignment fault in accessing ACPI
efi/arm: map UEFI memory map even w/o runtime services enabled
efi/arm: preserve early mapping of UEFI memory map longer for BGRT
drivers: acpi: add dependency of EFI for arm64
...
Since commit d3aec8a28b ("arm64: capabilities: Restrict KPTI
detection to boot-time CPUs") we rely on errata flags being already
populated during feature enumeration. The order of errata and
features was flipped as part of commit ed478b3f9e ("arm64:
capabilities: Group handling of features and errata workarounds").
Return to the orginal order of errata and feature evaluation to
ensure errata flags are present during feature evaluation.
Fixes: ed478b3f9e ("arm64: capabilities: Group handling of
features and errata workarounds")
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
CC: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Dirk Mueller <dmueller@suse.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages. This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.
ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.
On such a system, we can then safely sidestep any form of dcache
management.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.
To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If there is a mismatch in the I/D min line size, we must
always use the system wide safe value both in applications
and in the kernel, while performing cache operations. However,
we have been checking more bits than just the min line sizes,
which triggers false negatives. We may need to trap the user
accesses in such cases, but not necessarily patch the kernel.
This patch fixes the check to do the right thing as advertised.
A new capability will be added to check mismatches in other
fields and ensure we trap the CTR accesses.
Fixes: be68a8aaf9 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We inspect __kpti_forced early on as part of the cpufeature enable
callback which remaps the swapper page table using non-global entries.
Ensure that __kpti_forced has been updated to reflect the kpti=
command-line option before we start using it.
Fixes: ea1e3de85e ("arm64: entry: Add fake CPU feature for unmapping the kernel at EL0")
Cc: <stable@vger.kernel.org> # 4.16.x-
Reported-by: Wei Xu <xuwei5@hisilicon.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Wei Xu <xuwei5@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Stateful CPU architecture extensions may require the signal frame
to grow to a size that exceeds the arch's MINSIGSTKSZ #define.
However, changing this #define is an ABI break.
To allow userspace the option of determining the signal frame size
in a more forwards-compatible way, this patch adds a new auxv entry
tagged with AT_MINSIGSTKSZ, which provides the maximum signal frame
size that the process can observe during its lifetime.
If AT_MINSIGSTKSZ is absent from the aux vector, the caller can
assume that the MINSIGSTKSZ #define is sufficient. This allows for
a consistent interface with older kernels that do not provide
AT_MINSIGSTKSZ.
The idea is that libc could expose this via sysconf() or some
similar mechanism.
There is deliberately no AT_SIGSTKSZ. The kernel knows nothing
about userspace's own stack overheads and should not pretend to
know.
For arm64:
The primary motivation for this interface is the Scalable Vector
Extension, which can require at least 4KB or so of extra space
in the signal frame for the largest hardware implementations.
To determine the correct value, a "Christmas tree" mode (via the
add_all argument) is added to setup_sigframe_layout(), to simulate
addition of all possible records to the signal frame at maximum
possible size.
If this procedure goes wrong somehow, resulting in a stupidly large
frame layout and hence failure of sigframe_alloc() to allocate a
record to the frame, then this is indicative of a kernel bug. In
this case, we WARN() and no attempt is made to populate
AT_MINSIGSTKSZ for userspace.
For arm64 SVE:
The SVE context block in the signal frame needs to be considered
too when computing the maximum possible signal frame size.
Because the size of this block depends on the vector length, this
patch computes the size based not on the thread's current vector
length but instead on the maximum possible vector length: this
determines the maximum size of SVE context block that can be
observed in any signal frame for the lifetime of the process.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the
currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves
the fallback in cache_line_size() from L1_CACHE_BYTES to this constant.
In addition, it warns (and taints) if the CWG is larger than
ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We're missing a sentinel entry in kpti_safe_list. Thus is_midr_in_range_list()
can walk past the end of kpti_safe_list. Depending on the contents of memory,
this could erroneously match a CPU's MIDR, cause a data abort, or other bad
outcomes.
Add the sentinel entry to avoid this.
Fixes: be5b299830 ("arm64: capabilities: Add support for checks based on a list of MIDRs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Tested-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
This reverts commit 1f85b42a69.
The internal dma-direct.h API has changed in -next, which collides with
us trying to use it to manage non-coherent DMA devices on systems with
unreasonably large cache writeback granules.
This isn't at all trivial to resolve, so revert our changes for now and
we can revisit this after the merge window. Effectively, this just
restores our behaviour back to that of 4.16.
Signed-off-by: Will Deacon <will.deacon@arm.com>
An allnoconfig build complains about unused symbols due to functions
that are called via conditional cpufeature and cpu_errata table entries.
Annotate these as __maybe_unused if they are likely to be generic, or
predicate their compilation on the same option as the table entry if
they are specific to a given alternative.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.
The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.
To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some capabilities have different criteria for detection and associated
actions based on the matching criteria, even though they all share the
same capability bit. So far we have used multiple entries with the same
capability bit to handle this. This is prone to errors, as the
cpu_enable is invoked for each entry, irrespective of whether the
detection rule applies to the CPU or not. And also this complicates
other helpers, e.g, __this_cpu_has_cap.
This patch adds a wrapper entry to cover all the possible variations
of a capability by maintaining list of matches + cpu_enable callbacks.
To avoid complicating the prototypes for the "matches()", we use
arm64_cpu_capabilities maintain the list and we ignore all the other
fields except the matches & cpu_enable.
This ensures :
1) The capabilitiy is set when at least one of the entry detects
2) Action is only taken for the entries that "matches".
This avoids explicit checks in the cpu_enable() take some action.
The only constraint here is that, all the entries should have the
same "type" (i.e, scope and conflict rules).
If a cpu_enable() method is associated with multiple matches for a
single capability, care should be taken that either the match criteria
are mutually exclusive, or that the method is robust against being
called multiple times.
This also reverts the changes introduced by commit 67948af41f
("arm64: capabilities: Handle duplicate entries for a capability").
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We expect all CPUs to be running at the same EL inside the kernel
with or without VHE enabled and we have strict checks to ensure
that any mismatch triggers a kernel panic. If VHE is enabled,
we use the feature based on the boot CPU and all other CPUs
should follow. This makes it a perfect candidate for a capability
based on the boot CPU, which should be matched by all the CPUs
(both when is ON and OFF). This saves us some not-so-pretty
hooks and special code, just for verifying the conflict.
The patch also makes the VHE capability entry depend on
CONFIG_ARM64_VHE.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The kernel detects and uses some of the features based on the boot
CPU and expects that all the following CPUs conform to it. e.g,
with VHE and the boot CPU running at EL2, the kernel decides to
keep the kernel running at EL2. If another CPU is brought up without
this capability, we use custom hooks (via check_early_cpu_features())
to handle it. To handle such capabilities add support for detecting
and enabling capabilities based on the boot CPU.
A bit is added to indicate if the capability should be detected
early on the boot CPU. The infrastructure then ensures that such
capabilities are probed and "enabled" early on in the boot CPU
and, enabled on the subsequent CPUs.
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KPTI is treated as a system wide feature and is only detected if all
the CPUs in the sysetm needs the defense, unless it is forced via kernel
command line. This leaves a system with a mix of CPUs with and without
the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not
activated at boot time, the CPU is currently allowed to boot, which is a
potential security vulnerability.
This patch ensures that the KPTI is turned on if at least one CPU detects
the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late
CPU, if it requires the defense, when the system hasn't enabled it,
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have the flexibility of defining system features based
on individual CPUs, introduce CPU feature type that can be detected
on a local SCOPE and ignores the conflict on late CPUs. This is
applicable for ARM64_HAS_NO_HW_PREFETCH, where it is fine for
the system to have CPUs without hardware prefetch turning up
later. We only suffer a performance penalty, nothing fatal.
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the features and errata workarounds have the same
rules and flow, group the handling of the tables.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
So far we have treated the feature capabilities as system wide
and this wouldn't help with features that could be detected locally
on one or more CPUs (e.g, KPTI, Software prefetch). This patch
splits the feature detection to two phases :
1) Local CPU features are checked on all boot time active CPUs.
2) System wide features are checked only once after all CPUs are
active.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>