IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
User space defines the model to emulate to a guest and should therefore
decide which addresses are used for both the virtual CPU interface
directly mapped in the guest physical address space and for the emulated
distributor interface, which is mapped in software by the in-kernel VGIC
support.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On ARM some bits are specific to the model being emulated for the guest and
user space needs a way to tell the kernel about those bits. An example is mmio
device base addresses, where KVM must know the base address for a given device
to properly emulate mmio accesses within a certain address range or directly
map a device with virtualiation extensions into the guest address space.
We make this API ARM-specific as we haven't yet reached a consensus for a
generic API for all KVM architectures that will allow us to do something like
this.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Implement the PSCI specification (ARM DEN 0022A) to control
virtual CPUs being "powered" on or off.
PSCI/KVM is detected using the KVM_CAP_ARM_PSCI capability.
A virtual CPU can now be initialized in a "powered off" state,
using the KVM_ARM_VCPU_POWER_OFF feature flag.
The guest can use either SMC or HVC to execute a PSCI function.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
We use space #18 for floating point regs.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The Cache Size Selection Register (CSSELR) selects the current Cache
Size ID Register (CCSIDR). You write which cache you are interested
in to CSSELR, and read the information out of CCSIDR.
Which cache numbers are valid is known by reading the Cache Level ID
Register (CLIDR).
To export this state to userspace, we add a KVM_REG_ARM_DEMUX
numberspace (17), which uses 8 bits to represent which register is
being demultiplexed (0 for CCSIDR), and the lower 8 bits to represent
this demultiplexing (in our case, the CSSELR value, which is 4 bits).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The following three ioctls are implemented:
- KVM_GET_REG_LIST
- KVM_GET_ONE_REG
- KVM_SET_ONE_REG
Now we have a table for all the cp15 registers, we can drive a generic
API.
The register IDs carry the following encoding:
ARM registers are mapped using the lower 32 bits. The upper 16 of that
is the register group type, or coprocessor number:
ARM 32-bit CP15 registers have the following id bit patterns:
0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
ARM 64-bit CP15 registers have the following id bit patterns:
0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
For futureproofing, we need to tell QEMU about the CP15 registers the
host lets the guest access.
It will need this information to restore a current guest on a future
CPU or perhaps a future KVM which allow some of these to be changed.
We use a separate table for these, as they're only for the userspace API.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
All interrupt injection is now based on the VM ioctl KVM_IRQ_LINE. This
works semantically well for the GIC as we in fact raise/lower a line on
a machine component (the gic). The IOCTL uses the follwing struct.
struct kvm_irq_level {
union {
__u32 irq; /* GSI */
__s32 status; /* not used for KVM_IRQ_LEVEL */
};
__u32 level; /* 0 or 1 */
};
ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip
(GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for
specific cpus. The irq field is interpreted like this:
bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
field: | irq_type | vcpu_index | irq_number |
The irq_type field has the following values:
- irq_type[0]: out-of-kernel GIC: irq_number 0 is IRQ, irq_number 1 is FIQ
- irq_type[1]: in-kernel GIC: SPI, irq_number between 32 and 1019 (incl.)
(the vcpu_index field is ignored)
- irq_type[2]: in-kernel GIC: PPI, irq_number between 16 and 31 (incl.)
The irq_number thus corresponds to the irq ID in as in the GICv2 specs.
This is documented in Documentation/kvm/api.txt.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Targets KVM support for Cortex A-15 processors.
Contains all the framework components, make files, header files, some
tracing functionality, and basic user space API.
Only supported core is Cortex-A15 for now.
Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Implement ONE_REG interface for EPCR register adding KVM_REG_PPC_EPCR to
the list of ONE_REG PPC supported registers.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
[agraf: remove HV dependency, use get/put_user]
Signed-off-by: Alexander Graf <agraf@suse.de>
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
All user space offloaded instruction emulation needs to reenter kvm
to produce consistent state again. Fix the section in the documentation
to mention all of them.
Signed-off-by: Alexander Graf <agraf@suse.de>
Merge reason: development work has dependency on kvm patches merged
upstream.
Conflicts:
arch/powerpc/include/asm/Kbuild
arch/powerpc/include/asm/kvm_para.h
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Pull UML changes from Richard Weinberger:
"UML receives this time only cleanups.
The most outstanding change is the 'include "foo.h"' do 'include
<foo.h>' conversion done by Al Viro.
It touches many files, that's why the diffstat is rather big."
* 'for-linus-37rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml:
typo in UserModeLinux-HOWTO
hppfs: fix the return value of get_inode()
hostfs: drop vmtruncate
um: get rid of pointless include "..." where include <...> will do
um: move sysrq.h out of include/shared
um/x86: merge 32 and 64 bit variants of ptrace.h
um/x86: merge 32 and 64bit variants of checksum.h
[it seems that I sent it to the wrong maintainer at first... sorry for that]
copy_from_user was meant instead of copy_to_user.
Signed-off-by: Richard Genoud <richard.genoud@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
The PAPR paravirtualization interface lets guests register three
different types of per-vCPU buffer areas in its memory for communication
with the hypervisor. These are called virtual processor areas (VPAs).
Currently the hypercalls to register and unregister VPAs are handled
by KVM in the kernel, and userspace has no way to know about or save
and restore these registrations across a migration.
This adds "register" codes for these three areas that userspace can
use with the KVM_GET/SET_ONE_REG ioctls to see what addresses have
been registered, and to register or unregister them. This will be
needed for guest hibernation and migration, and is also needed so
that userspace can unregister them on reset (otherwise we corrupt
guest memory after reboot by writing to the VPAs registered by the
previous kernel).
The "register" for the VPA is a 64-bit value containing the address,
since the length of the VPA is fixed. The "registers" for the SLB
shadow buffer and dispatch trace log (DTL) are 128 bits long,
consisting of the guest physical address in the high (first) 64 bits
and the length in the low 64 bits.
This also fixes a bug where we were calling init_vpa unconditionally,
leading to an oops when unregistering the VPA.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set all the guest floating-point
state using the KVM_[GS]ET_ONE_REG ioctls. The floating-point state
includes all of the traditional floating-point registers and the
FPSCR (floating point status/control register), all the VMX/Altivec
vector registers and the VSCR (vector status/control register), and
on POWER7, the vector-scalar registers (note that each FP register
is the high-order half of the corresponding VSR).
Most of these are implemented in common Book 3S code, except for VSX
on POWER7. Because HV and PR differ in how they store the FP and VSX
registers on POWER7, the code for these cases is not common. On POWER7,
the FP registers are the upper halves of the VSX registers vsr0 - vsr31.
PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the
arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas
HV KVM on POWER7 stores the whole VSX register in arch.vsr[].
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace, vsx compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set various SPRs (special-purpose
registers) using the KVM_[GS]ET_ONE_REG ioctls. With this, userspace
can get and set all the SPRs that are part of the guest state, either
through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or
the KVM_[GS]ET_ONE_REG ioctls.
The SPRs that are added here are:
- DABR: Data address breakpoint register
- DSCR: Data stream control register
- PURR: Processor utilization of resources register
- SPURR: Scaled PURR
- DAR: Data address register
- DSISR: Data storage interrupt status register
- AMR: Authority mask register
- UAMOR: User authority mask override register
- MMCR0, MMCR1, MMCRA: Performance monitor unit control registers
- PMC1..PMC8: Performance monitor unit counter registers
In order to reduce code duplication between PR and HV KVM code, this
moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and
centralizes the copying between user and kernel space there. The
registers that are handled differently between PR and HV, and those
that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg()
functions that are specific to each flavor.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: minimal style fixes]
Signed-off-by: Alexander Graf <agraf@suse.de>
Patch to access the debug registers (IACx/DACx) using ONE_REG api
was sent earlier. But that missed the respective documentation.
Also corrected the index number referencing in section 4.69
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
And add a new flag definition in kvm_ppc_pvinfo to indicate
whether the host supports the EV_IDLE hcall.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[stuart.yoder@freescale.com: cleanup,fixes for conditions allowing idle]
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
[agraf: fix typo]
Signed-off-by: Alexander Graf <agraf@suse.de>
To emulate level triggered interrupts, add a resample option to
KVM_IRQFD. When specified, a new resamplefd is provided that notifies
the user when the irqchip has been resampled by the VM. This may, for
instance, indicate an EOI. Also in this mode, posting of an interrupt
through an irqfd only asserts the interrupt. On resampling, the
interrupt is automatically de-asserted prior to user notification.
This enables level triggered interrupts to be posted and re-enabled
from vfio with no userspace intervention.
All resampling irqfds can make use of a single irq source ID, so we
reserve a new one for this interface.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
- mention that system time needs to be added to wallclock time
- positive tsc_shift means left shift, not right
- mention additional 32bit right shift
Signed-off-by: Stefan Fritsch <sf@sfritsch.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In current code, if we map a readonly memory space from host to guest
and the page is not currently mapped in the host, we will get a fault
pfn and async is not allowed, then the vm will crash
We introduce readonly memory region to map ROM/ROMD to the guest, read access
is happy for readonly memslot, write access on readonly memslot will cause
KVM_EXIT_MMIO exit
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Thanks Alex for KVM_HC_FEATURES inputs and Jan for VAPIC_POLL_IRQ,
and Peter (HPA) for suggesting hypercall ABI addition.
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQDRDNAAoJEI7yEDeUysxlkl8P/3C2AHx2webOU8sVzhfU6ONZ
ZoGevwBjyZIeJEmiWVpFTTEew1l0PXtpyOocXGNUXIddVnhXTQOKr/Scj4uFbmx8
ROqgK8NSX9+xOGrBPCoN7SlJkmp+m6uYtwYkl2SGnsEVLWMKkc7J7oqmszCcTQvN
UXMf7G47/Ul2NUSBdv4Yvizhl4kpvWxluiweDw3E/hIQKN0uyP7CY58qcAztw8nG
csZBAnnuPFwIAWxHXW3eBBv4UP138HbNDqJ/dujjocM6GnOxmXJmcZ6b57gh+Y64
3+w9IR4qrRWnsErb/I8inKLJ1Jdcf7yV2FmxYqR4pIXay2Yzo1BsvFd6EB+JavUv
pJpixrFiDDFoQyXlh4tGpsjpqdXNMLqyG4YpqzSZ46C8naVv9gKE7SXqlXnjyDlb
Llx3hb9Fop8O5ykYEGHi+gIISAK5eETiQl4yw9RUBDpxydH4qJtqGIbLiDy8y9wi
Xyi8PBlNl+biJFsK805lxURqTp/SJTC3+Zb7A7CzYEQm5xZw3W/CKZx1ZYBfpaa/
pWaP6tB7JwgLIVXi4HQayLWqMVwH0soZIn9yazpOEFv6qO8d5QH5RAxAW2VXE3n5
JDlrajar/lGIdiBVWfwTJLb86gv3QDZtIWoR9mZuLKeKWE/6PRLe7HQpG1pJovsm
2AsN5bS0BWq+aqPpZHa5
=pECD
-----END PGP SIGNATURE-----
Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Avi Kivity:
"Highlights include
- full big real mode emulation on pre-Westmere Intel hosts (can be
disabled with emulate_invalid_guest_state=0)
- relatively small ppc and s390 updates
- PCID/INVPCID support in guests
- EOI avoidance; 3.6 guests should perform better on 3.6 hosts on
interrupt intensive workloads)
- Lockless write faults during live migration
- EPT accessed/dirty bits support for new Intel processors"
Fix up conflicts in:
- Documentation/virtual/kvm/api.txt:
Stupid subchapter numbering, added next to each other.
- arch/powerpc/kvm/booke_interrupts.S:
PPC asm changes clashing with the KVM fixes
- arch/s390/include/asm/sigp.h, arch/s390/kvm/sigp.c:
Duplicated commits through the kvm tree and the s390 tree, with
subsequent edits in the KVM tree.
* tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
KVM: fix race with level interrupts
x86, hyper: fix build with !CONFIG_KVM_GUEST
Revert "apic: fix kvm build on UP without IOAPIC"
KVM guest: switch to apic_set_eoi_write, apic_write
apic: add apic_set_eoi_write for PV use
KVM: VMX: Implement PCID/INVPCID for guests with EPT
KVM: Add x86_hyper_kvm to complete detect_hypervisor_platform check
KVM: PPC: Critical interrupt emulation support
KVM: PPC: e500mc: Fix tlbilx emulation for 64-bit guests
KVM: PPC64: booke: Set interrupt computation mode for 64-bit host
KVM: PPC: bookehv: Add ESR flag to Data Storage Interrupt
KVM: PPC: bookehv64: Add support for std/ld emulation.
booke: Added crit/mc exception handler for e500v2
booke/bookehv: Add host crit-watchdog exception support
KVM: MMU: document mmu-lock and fast page fault
KVM: MMU: fix kvm_mmu_pagetable_walk tracepoint
KVM: MMU: trace fast page fault
KVM: MMU: fast path of handling guest page fault
KVM: MMU: introduce SPTE_MMU_WRITEABLE bit
KVM: MMU: fold tlb flush judgement into mmu_spte_update
...
Document fast page fault and mmu-lock in locking.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Document the new EOI MSR. Couldn't decide whether this change belongs
conceptually on guest or host side, so a separate patch.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If there is pending critical or machine check interrupt then guest
would like to capture it when guest enable MSR.CE and MSR_ME respectively.
Also as mostly MSR_CE and MSR_ME are updated with rfi/rfci/rfmii
which anyway traps so removing the the paravirt optimization for MSR.CE
and MSR.ME.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
PPC updates from Alex.
* 'for-upstream' of git://github.com/agraf/linux-2.6:
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
KVM: PPC: Book3S: PR: No isync in slbie path
KVM: PPC: Book3S: PR: Optimize entry path
KVM: PPC: booke(hv): Fix save/restore of guest accessible SPRGs.
KVM: PPC: Restrict PPC_[L|ST]D macro to asm code
KVM: PPC: bookehv: Use a Macro for saving/restoring guest registers to/from their 64 bit copies.
KVM: PPC: Use clockevent multiplier and shifter for decrementer
KVM: Use minimum and maximum address mapped by TLB1
Signed-off-by: Avi Kivity <avi@redhat.com>
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
cpuid eax should return the max leaf so that
guests can find out the valid range.
This matches Xen et al.
Update documentation to match.
Tested with -cpu host.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We can't run PIT IRQ injection work in the interrupt context of the host
timer. This would allow the user to influence the handler complexity by
asking for a broadcast to a large number of VCPUs. Therefore, this work
was pushed into workqueue context in 9d244caf2e. However, this prevents
prioritizing the PIT injection over other task as workqueues share
kernel threads.
This replaces the workqueue with a kthread worker and gives that thread
a name in the format "kvm-pit/<owner-process-pid>". That allows to
identify and adjust the kthread priority according to the VM process
parameters.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add descriptions for KVM_CREATE_PIT2 and KVM_GET/SET_PIT2.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This helps to identify sections and it also fixes the numbering from
4.54 to 4.61.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Currently, MSI messages can only be injected to in-kernel irqchips by
defining a corresponding IRQ route for each message. This is not only
unhandy if the MSI messages are generated "on the fly" by user space,
IRQ routes are a limited resource that user space has to manage
carefully.
By providing a direct injection path, we can both avoid using up limited
resources and simplify the necessary steps for user land.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we have a flag that will tell the guest it was suspended, create an
interface for that communication using a KVM ioctl.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Pull kvm updates from Avi Kivity:
"Changes include timekeeping improvements, support for assigning host
PCI devices that share interrupt lines, s390 user-controlled guests, a
large ppc update, and random fixes."
This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.
* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: Convert intx_mask_lock to spin lock
KVM: x86: fix kvm_write_tsc() TSC matching thinko
x86: kvmclock: abstract save/restore sched_clock_state
KVM: nVMX: Fix erroneous exception bitmap check
KVM: Ignore the writes to MSR_K7_HWCR(3)
KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
KVM: PMU: add proper support for fixed counter 2
KVM: PMU: Fix raw event check
KVM: PMU: warn when pin control is set in eventsel msr
KVM: VMX: Fix delayed load of shared MSRs
KVM: use correct tlbs dirty type in cmpxchg
KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
KVM: x86 emulator: Allow PM/VM86 switch during task switch
KVM: SVM: Fix CPL updates
KVM: x86 emulator: VM86 segments must have DPL 3
KVM: x86 emulator: Fix task switch privilege checks
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
...
PCI 2.3 allows to generically disable IRQ sources at device level. This
enables us to share legacy IRQs of such devices with other host devices
when passing them to a guest.
The new IRQ sharing feature introduced here is optional, user space has
to request it explicitly. Moreover, user space can inform us about its
view of PCI_COMMAND_INTX_DISABLE so that we can avoid unmasking the
interrupt and signaling it if the guest masked it via the virtualized
PCI config space.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of keeping separate copies of struct kvm_vcpu_arch_shared (one in
the code, one in the docs) that inevitably fail to be kept in sync
(already sr[] is missing from the doc version), just point to the header
file as the source of documentation on the contents of the magic page.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.
We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Right now we transfer a static struct every time we want to get or set
registers. Unfortunately, over time we realize that there are more of
these than we thought of before and the extensibility and flexibility of
transferring a full struct every time is limited.
So this is a new approach to the problem. With these new ioctls, we can
get and set a single register that is identified by an ID. This allows for
very precise and limited transmittal of data. When we later realize that
it's a better idea to shove over multiple registers at once, we can reuse
most of the infrastructure and simply implement a GET_MANY_REGS / SET_MANY_REGS
interface.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>