IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add a debuigfs mechanism to validate the accounting, e.g. vs. call/ret
balance and to gather statistics about the stuffing to call ratio.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.204285506@infradead.org
Ensure that retpolines do the proper call accounting so that the return
accounting works correctly.
Specifically; retpolines are used to replace both 'jmp *%reg' and
'call *%reg', however these two cases do not have the same accounting
requirements. Therefore split things up and provide two different
retpoline arrays for SKL.
The 'jmp *%reg' case needs no accounting, the
__x86_indirect_jump_thunk_array[] covers this. The retpoline is
changed to not use the return thunk; it's a simple call;ret construct.
[ strictly speaking it should do:
andq $(~0x1f), PER_CPU_VAR(__x86_call_depth)
but we can argue this can be covered by the fuzz we already have
in the accounting depth (12) vs the RSB depth (16) ]
The 'call *%reg' case does need accounting, the
__x86_indirect_call_thunk_array[] covers this. Again, this retpoline
avoids the use of the return-thunk, in this case to avoid double
accounting.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.996634749@infradead.org
To address the Intel SKL RSB underflow issue in software it's required to
do call depth tracking.
Provide a return thunk for call depth tracking on Intel SKL CPUs.
The tracking does not use a counter. It uses uses arithmetic shift
right on call entry and logical shift left on return.
The depth tracking variable is initialized to 0x8000.... when the call
depth is zero. The arithmetic shift right sign extends the MSB and
saturates after the 12th call. The shift count is 5 so the tracking covers
12 nested calls. On return the variable is shifted left logically so it
becomes zero again.
CALL RET
0: 0x8000000000000000 0x0000000000000000
1: 0xfc00000000000000 0xf000000000000000
...
11: 0xfffffffffffffff8 0xfffffffffffffc00
12: 0xffffffffffffffff 0xffffffffffffffe0
After a return buffer fill the depth is credited 12 calls before the next
stuffing has to take place.
There is a inaccuracy for situations like this:
10 calls
5 returns
3 calls
4 returns
3 calls
....
The shift count might cause this to be off by one in either direction, but
there is still a cushion vs. the RSB depth. The algorithm does not claim to
be perfect, but it should obfuscate the problem enough to make exploitation
extremly difficult.
The theory behind this is:
RSB is a stack with depth 16 which is filled on every call. On the return
path speculation "pops" entries to speculate down the call chain. Once the
speculative RSB is empty it switches to other predictors, e.g. the Branch
History Buffer, which can be mistrained by user space and misguide the
speculation path to a gadget.
Call depth tracking is designed to break this speculation path by stuffing
speculation trap calls into the RSB which are never getting a corresponding
return executed. This stalls the prediction path until it gets resteered,
The assumption is that stuffing at the 12th return is sufficient to break
the speculation before it hits the underflow and the fallback to the other
predictors. Testing confirms that it works. Johannes, one of the retbleed
researchers. tried to attack this approach but failed.
There is obviously no scientific proof that this will withstand future
research progress, but all we can do right now is to speculate about it.
The SAR/SHL usage was suggested by Andi Kleen.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
In preparation for call depth tracking on Intel SKL CPUs, make it possible
to patch in a SKL specific return thunk.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.680469665@infradead.org
As for the builtins create call thunks and patch the call sites to call the
thunk on Intel SKL CPUs for retbleed mitigation.
Note, that module init functions are ignored for sake of simplicity because
loading modules is not something which is done in high frequent loops and
the attacker has not really a handle on when this happens in order to
launch a matching attack. The depth tracking will still work for calls into
the builtins and because the call is not accounted it will underflow faster
and overstuff, but that's mitigated by the saturating counter and the side
effect is only temporary.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.575673066@infradead.org
Mitigating the Intel SKL RSB underflow issue in software requires to
track the call depth. That is every CALL and every RET need to be
intercepted and additional code injected.
The existing retbleed mitigations already include means of redirecting
RET to __x86_return_thunk; this can be re-purposed and RET can be
redirected to another function doing RET accounting.
CALL accounting will use the function padding introduced in prior
patches. For each CALL instruction, the destination symbol's padding
is rewritten to do the accounting and the CALL instruction is adjusted
to call into the padding.
This ensures only affected CPUs pay the overhead of this accounting.
Unaffected CPUs will leave the padding unused and have their 'JMP
__x86_return_thunk' replaced with an actual 'RET' instruction.
Objtool has been modified to supply a .call_sites section that lists
all the 'CALL' instructions. Additionally the paravirt instruction
sites are iterated since they will have been patched from an indirect
call to direct calls (or direct instructions in which case it'll be
ignored).
Module handling and the actual thunk code for SKL will be added in
subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.470877038@infradead.org
For the upcoming call thunk patching it's less ifdeffery when the data
structure is unconditionally available. The code can then be trivially
fenced off with IS_ENABLED().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.367853167@infradead.org
paranoid_entry(), error_entry() and xen_error_entry() have to be
exempted from call accounting by thunk patching because they are
before UNTRAIN_RET.
Expose them so they are available in the alternative code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.265598113@infradead.org
The upcoming call thunk patching must hold text_mutex and needs access to
text_poke_copy(), which takes text_mutex.
Provide a _locked postfixed variant to expose the inner workings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.159977224@infradead.org
Intel SKL CPUs fall back to other predictors when the RSB underflows. The
only microcode mitigation is IBRS which is insanely expensive. It comes
with performance drops of up to 30% depending on the workload.
A way less expensive, but nevertheless horrible mitigation is to track the
call depth in software and overeagerly fill the RSB when returns underflow
the software counter.
Provide a configuration symbol and a CPU misfeature bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.056176424@infradead.org
Now that all functions are 16 byte aligned, add 16 bytes of NOP
padding in front of each function. This prepares things for software
call stack tracking and kCFI/FineIBT.
This significantly increases kernel .text size, around 5.1% on a
x86_64-defconfig-ish build.
However, per the random access argument used for alignment, these 16
extra bytes are code that wouldn't be used. Performance measurements
back this up by showing no significant performance regressions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.950884492@infradead.org
In preparation for mitigating the Intel SKL RSB underflow issue in
software, add a new configuration symbol which allows to build the
required call thunk infrastructure conditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.849523555@infradead.org
No point in having a call there. Spare the call/ret overhead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.539578813@infradead.org
Teach objtool about STT_NOTYPE -> STT_FUNC+0 sibling calls. Doing do
allows slightly simpler .S files.
There is a slight complication in that we specifically do not want to
allow sibling calls from symbol holes (previously covered by STT_WEAK
symbols) -- such things exist where a weak function has a .cold
subfunction for example.
Additionally, STT_NOTYPE tail-calls are allowed to happen with a
modified stack frame, they don't need to obey the normal rules after
all.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Currently insn->func contains a instruction -> symbol link for
STT_FUNC symbols. A NULL value is assumed to mean STT_NOTYPE.
However, there are also instructions not covered by any symbol at all.
This can happen due to __weak symbols for example.
Since the current scheme cannot differentiate between no symbol and
STT_NOTYPE symbol, change things around. Make insn->sym point to any
symbol type such that !insn->sym means no symbol and add a helper
insn_func() that check the sym->type to retain the old functionality.
This then prepares the way to add code that depends on the distinction
between STT_NOTYPE and no symbol at all.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
A semi common pattern is where code checks if a code address is
within a specific range. All text addresses require either ENDBR or
ANNOTATE_ENDBR, however the ANNOTATE_NOENDBR past the range is
unnatural.
Instead, suppress this warning when this is exactly at the end of a
symbol that itself starts with either ENDBR/ANNOTATE_ENDBR.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.434642471@infradead.org
The current find_{symbol,func}_containing() functions are broken in
the face of overlapping symbols, exactly the case that is needed for a
new ibt/endbr supression.
Import interval_tree_generic.h into the tools tree and convert the
symbol tree to an interval tree to support proper range stabs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.330203761@infradead.org
Make the call/func sections selectable via the --hacks option.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.120821440@infradead.org
In preparation for call depth tracking provide a section which collects all
direct calls.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.016511961@infradead.org
For future usage of .init.text exclusion track the init section in the
instruction decoder and use the result in retpoline validation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.910334431@infradead.org
Objtool doesn't currently much like per-cpu usage in alternatives:
arch/x86/entry/entry_64.o: warning: objtool: .altinstr_replacement+0xf: unsupported relocation in alternatives section
f: 65 c7 04 25 00 00 00 00 00 00 00 80 movl $0x80000000,%gs:0x0 13: R_X86_64_32S __x86_call_depth
Since the R_X86_64_32S relocation is location invariant (it's
computation doesn't include P - the address of the location itself),
it can be trivially allowed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.806607235@infradead.org
It turns out that 'stack_canary_offset' is a variable name; shadowing
that with a #define is ripe of fail when the asm-offsets.h header gets
included. Rename the thing.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Another hot variable which is strict per CPU and benefits from
being in the same cache line.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.702133710@infradead.org
Further extend struct pcpu_hot with the hard and soft irq stack
pointers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.599170752@infradead.org
Extend the struct pcpu_hot cacheline with current_top_of_stack;
another very frequently used value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.493038635@infradead.org
Also add cpu_number to the pcpu_hot structure, it is often referenced
and this cacheline is there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.387678283@infradead.org
Add preempt_count to pcpu_hot, since it is once of the most used
per-cpu variables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.284170644@infradead.org
The layout of per-cpu variables is at the mercy of the compiler. This
can lead to random performance fluctuations from build to build.
Create a structure to hold some of the hottest per-cpu variables,
starting with current_task.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.179707194@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.073285765@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.971229477@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
( this code couldn't seem to make up it's mind about what alignment it
actually wanted, randomly mixing 8 and 16 bytes )
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.868540856@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.766564176@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.662580589@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.558544791@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.456602381@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.353555711@infradead.org
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.
Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.248229966@infradead.org
Ensure inline asm functions are consistently aligned with compiler
generated and SYM_FUNC_START*() functions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.930201368@infradead.org
Create SYM_F_ALIGN to differentiate alignment requirements between
SYM_CODE and SYM_FUNC.
This distinction is useful later when adding padding in front of
functions; IOW this allows following the compiler's
patchable-function-entry option.
[peterz: Changelog]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.824822743@infradead.org
Generic function-alignment infrastructure.
Architectures can select FUNCTION_ALIGNMENT_xxB symbols; the
FUNCTION_ALIGNMENT symbol is then set to the largest such selected
size, 0 otherwise.
From this the -falign-functions compiler argument and __ALIGN macro
are set.
This incorporates the DEBUG_FORCE_FUNCTION_ALIGN_64B knob and future
alignment requirements for x86_64 (later in this series) into a single
place.
NOTE: also removes the 0x90 filler byte from the generic __ALIGN
primitive, that value makes no sense outside of x86.
NOTE: .balign 0 reverts to a no-op.
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.719248727@infradead.org
The section ordering in the text section is more than suboptimal:
ALIGN_ENTRY_TEXT_BEGIN
ENTRY_TEXT
ALIGN_ENTRY_TEXT_END
SOFTIRQENTRY_TEXT
STATIC_CALL_TEXT
INDIRECT_THUNK_TEXT
ENTRY_TEXT is in a seperate PMD so it can be mapped into the cpu entry area
when KPTI is enabled. That means the sections after it are also in a
seperate PMD. That's wasteful especially as the indirect thunk text is a
hotpath on retpoline enabled systems and the static call text is fairly hot
on 32bit.
Move the entry text section last so that the other sections share a PMD
with the text before it. This is obviously just best effort and not
guaranteed when the previous text is just at a PMD boundary.
The text section placement needs an overhaul in general. There is e.g. no
point to have debugfs, sysfs, cpuhotplug and other rarely used functions
next to hot path text.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.614728935@infradead.org
Instead of resetting permissions all over the place when freeing module
memory tell the vmalloc code to do so. Avoids the exercise for the next
upcoming user.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.406703869@infradead.org
Commit 5416c26635 ("x86: make sure load_percpu_segment has no
stackprotector") disabled the stackprotector for cpu/common.c because of
load_percpu_segment(). Back then the boot stack canary was initialized very
early in start_kernel(). Switching the per CPU area by loading the GDT
caused the stackprotector to fail with paravirt enabled kernels as the
GSBASE was not updated yet. In hindsight a wrong change because it would
have been sufficient to ensure that the canary is the same in both per CPU
areas.
Commit d55535232c ("random: move rand_initialize() earlier") moved the
stack canary initialization to a later point in the init sequence. As a
consequence the per CPU stack canary is 0 when switching the per CPU areas,
so there is no requirement anymore to exclude this file.
Add a comment to load_percpu_segment().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.303010511@infradead.org
The only place where switch_to_new_gdt() is required is early boot to
switch from the early GDT to the direct GDT. Any other invocation is
completely redundant because it does not change anything.
Secondary CPUs come out of the ASM code with GDT and GSBASE correctly set
up. The same is true for XEN_PV.
Remove all the voodoo invocations which are left overs from the ancient
past, rename the function to switch_gdt_and_percpu_base() and mark it init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.198076128@infradead.org