IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 2505a981114dcb715f8977b8433f7540854851d8 upstream.
The asynchronous zspage free worker tries to lock a zspage's entire page
list without defending against page migration. Since pages which haven't
yet been locked can concurrently migrate off the zspage page list while
lock_zspage() churns away, lock_zspage() can suffer from a few different
lethal races.
It can lock a page which no longer belongs to the zspage and unsafely
dereference page_private(), it can unsafely dereference a torn pointer to
the next page (since there's a data race), and it can observe a spurious
NULL pointer to the next page and thus not lock all of the zspage's pages
(since a single page migration will reconstruct the entire page list, and
create_page_chain() unconditionally zeroes out each list pointer in the
process).
Fix the races by using migrate_read_lock() in lock_zspage() to synchronize
with page migration.
Link: https://lkml.kernel.org/r/20220509024703.243847-1-sultan@kerneltoast.com
Fixes: 77ff465799c602 ("zsmalloc: zs_page_migrate: skip unnecessary loops but not return -EBUSY if zspage is not inuse")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4ee4cdad368a26de3967f2975806a9ee2fa245df upstream.
Since commit 358ba762d9f1 ("crypto: caam - enable prediction resistance
in HRWNG") the following CAAM errors can be seen on i.MX6SX:
caam_jr 2101000.jr: 20003c5b: CCB: desc idx 60: RNG: Hardware error
hwrng: no data available
This error is due to an incorrect entropy delay for i.MX6SX.
Fix it by increasing the minimum entropy delay for i.MX6SX
as done in U-Boot:
https://patchwork.ozlabs.org/project/uboot/patch/20220415111049.2565744-1-gaurav.jain@nxp.com/
As explained in the U-Boot patch:
"RNG self tests are run to determine the correct entropy delay.
Such tests are executed with different voltages and temperatures to identify
the worst case value for the entropy delay. For i.MX6SX, it was determined
that after adding a margin value of 1000 the minimum entropy delay should be
at least 12000."
Cc: <stable@vger.kernel.org>
Fixes: 358ba762d9f1 ("crypto: caam - enable prediction resistance in HRWNG")
Signed-off-by: Fabio Estevam <festevam@denx.de>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Reviewed-by: Vabhav Sharma <vabhav.sharma@nxp.com>
Reviewed-by: Gaurav Jain <gaurav.jain@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fee060cd52d69c114b62d1a2948ea9648b5131f9 upstream.
Whenever x86_decode_emulated_instruction() detects a breakpoint, it
returns the value that kvm_vcpu_check_breakpoint() writes into its
pass-by-reference second argument. Unfortunately this is completely
bogus because the expected outcome of x86_decode_emulated_instruction
is an EMULATION_* value.
Then, if kvm_vcpu_check_breakpoint() does "*r = 0" (corresponding to
a KVM_EXIT_DEBUG userspace exit), it is misunderstood as EMULATION_OK
and x86_emulate_instruction() is called without having decoded the
instruction. This causes various havoc from running with a stale
emulation context.
The fix is to move the call to kvm_vcpu_check_breakpoint() where it was
before commit 4aa2691dcbd3 ("KVM: x86: Factor out x86 instruction
emulation with decoding") introduced x86_decode_emulated_instruction().
The other caller of the function does not need breakpoint checks,
because it is invoked as part of a vmexit and the processor has already
checked those before executing the instruction that #GP'd.
This fixes CVE-2022-1852.
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 4aa2691dcbd3 ("KVM: x86: Factor out x86 instruction emulation with decoding")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311032801.3467418-2-seanjc@google.com>
[Rewrote commit message according to Qiuhao's report, since a patch
already existed to fix the bug. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit baec4f5a018fe2d708fc1022330dba04b38b5fe3 upstream.
Commit ddd7ed842627 ("x86/kvm: Alloc dummy async #PF token outside of
raw spinlock") leads to the following Smatch static checker warning:
arch/x86/kernel/kvm.c:212 kvm_async_pf_task_wake()
warn: sleeping in atomic context
arch/x86/kernel/kvm.c
202 raw_spin_lock(&b->lock);
203 n = _find_apf_task(b, token);
204 if (!n) {
205 /*
206 * Async #PF not yet handled, add a dummy entry for the token.
207 * Allocating the token must be down outside of the raw lock
208 * as the allocator is preemptible on PREEMPT_RT kernels.
209 */
210 if (!dummy) {
211 raw_spin_unlock(&b->lock);
--> 212 dummy = kzalloc(sizeof(*dummy), GFP_KERNEL);
^^^^^^^^^^
Smatch thinks the caller has preempt disabled. The `smdb.py preempt
kvm_async_pf_task_wake` output call tree is:
sysvec_kvm_asyncpf_interrupt() <- disables preempt
-> __sysvec_kvm_asyncpf_interrupt()
-> kvm_async_pf_task_wake()
The caller is this:
arch/x86/kernel/kvm.c
290 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
291 {
292 struct pt_regs *old_regs = set_irq_regs(regs);
293 u32 token;
294
295 ack_APIC_irq();
296
297 inc_irq_stat(irq_hv_callback_count);
298
299 if (__this_cpu_read(apf_reason.enabled)) {
300 token = __this_cpu_read(apf_reason.token);
301 kvm_async_pf_task_wake(token);
302 __this_cpu_write(apf_reason.token, 0);
303 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
304 }
305
306 set_irq_regs(old_regs);
307 }
The DEFINE_IDTENTRY_SYSVEC() is a wrapper that calls this function
from the call_on_irqstack_cond(). It's inside the call_on_irqstack_cond()
where preempt is disabled (unless it's already disabled). The
irq_enter/exit_rcu() functions disable/enable preempt.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0547758a6de3cc71a0cfdd031a3621a30db6a68b upstream.
Drop the raw spinlock in kvm_async_pf_task_wake() before allocating the
the dummy async #PF token, the allocator is preemptible on PREEMPT_RT
kernels and must not be called from truly atomic contexts.
Opportunistically document why it's ok to loop on allocation failure,
i.e. why the function won't get stuck in an infinite loop.
Reported-by: Yajun Deng <yajun.deng@linux.dev>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 300981abddcb13f8f06ad58f52358b53a8096775 upstream.
The bug is here:
if (!p)
return ret;
The list iterator value 'p' will *always* be set and non-NULL by
list_for_each_entry(), so it is incorrect to assume that the iterator
value will be NULL if the list is empty or no element is found.
To fix the bug, Use a new value 'iter' as the list iterator, while use
the old value 'p' as a dedicated variable to point to the found element.
Fixes: dfaa973ae960 ("KVM: PPC: Book3S HV: In H_SVM_INIT_DONE, migrate remaining normal-GFNs to secure-GFNs")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Xiaomeng Tong <xiam0nd.tong@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220414062103.8153-1-xiam0nd.tong@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 56b14ecec97f39118bf85c9ac2438c5a949509ed upstream.
In case the conntrack is clashing, insertion can free skb->_nfct and
set skb->_nfct to the already-confirmed entry.
This wasn't found before because the conntrack entry and the extension
space used to free'd after an rcu grace period, plus the race needs
events enabled to trigger.
Reported-by: <syzbot+793a590957d9c1b96620@syzkaller.appspotmail.com>
Fixes: 71d8c47fc653 ("netfilter: conntrack: introduce clash resolution on insertion race")
Fixes: 2ad9d7747c10 ("netfilter: conntrack: free extension area immediately")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fecf31ee395b0295f2d7260aa29946b7605f7c85 upstream.
Add several sanity checks for nft_set_desc_concat_parse():
- validate desc->field_count not larger than desc->field_len array.
- field length cannot be larger than desc->field_len (ie. U8_MAX)
- total length of the concatenation cannot be larger than register array.
Joint work with Florian Westphal.
Fixes: f3a2181e16f1 ("netfilter: nf_tables: Support for sets with multiple ranged fields")
Reported-by: <zhangziming.zzm@antgroup.com>
Reviewed-by: Stefano Brivio <sbrivio@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 074bcd4000e0d812bc253f86fedc40f81ed59ccc upstream.
get_random_bytes() usually hasn't full entropy available by the time DRBG
instances are first getting seeded from it during boot. Thus, the DRBG
implementation registers random_ready_callbacks which would in turn
schedule some work for reseeding the DRBGs once get_random_bytes() has
sufficient entropy available.
For reference, the relevant history around handling DRBG (re)seeding in
the context of a not yet fully seeded get_random_bytes() is:
commit 16b369a91d0d ("random: Blocking API for accessing
nonblocking_pool")
commit 4c7879907edd ("crypto: drbg - add async seeding operation")
commit 205a525c3342 ("random: Add callback API for random pool
readiness")
commit 57225e679788 ("crypto: drbg - Use callback API for random
readiness")
commit c2719503f5e1 ("random: Remove kernel blocking API")
However, some time later, the initialization state of get_random_bytes()
has been made queryable via rng_is_initialized() introduced with commit
9a47249d444d ("random: Make crng state queryable"). This primitive now
allows for streamlining the DRBG reseeding from get_random_bytes() by
replacing that aforementioned asynchronous work scheduling from
random_ready_callbacks with some simpler, synchronous code in
drbg_generate() next to the related logic already present therein. Apart
from improving overall code readability, this change will also enable DRBG
users to rely on wait_for_random_bytes() for ensuring that the initial
seeding has completed, if desired.
The previous patches already laid the grounds by making drbg_seed() to
record at each DRBG instance whether it was being seeded at a time when
rng_is_initialized() still had been false as indicated by
->seeded == DRBG_SEED_STATE_PARTIAL.
All that remains to be done now is to make drbg_generate() check for this
condition, determine whether rng_is_initialized() has flipped to true in
the meanwhile and invoke a reseed from get_random_bytes() if so.
Make this move:
- rename the former drbg_async_seed() work handler, i.e. the one in charge
of reseeding a DRBG instance from get_random_bytes(), to
"drbg_seed_from_random()",
- change its signature as appropriate, i.e. make it take a struct
drbg_state rather than a work_struct and change its return type from
"void" to "int" in order to allow for passing error information from
e.g. its __drbg_seed() invocation onwards to callers,
- make drbg_generate() invoke this drbg_seed_from_random() once it
encounters a DRBG instance with ->seeded == DRBG_SEED_STATE_PARTIAL by
the time rng_is_initialized() has flipped to true and
- prune everything related to the former, random_ready_callback based
mechanism.
As drbg_seed_from_random() is now getting invoked from drbg_generate() with
the ->drbg_mutex being held, it must not attempt to recursively grab it
once again. Remove the corresponding mutex operations from what is now
drbg_seed_from_random(). Furthermore, as drbg_seed_from_random() can now
report errors directly to its caller, there's no need for it to temporarily
switch the DRBG's ->seeded state to DRBG_SEED_STATE_UNSEEDED so that a
failure of the subsequently invoked __drbg_seed() will get signaled to
drbg_generate(). Don't do it then.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
[Jason: for stable, undid the modifications for the backport of 5acd3548.]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 262d83a4290c331cd4f617a457408bdb82fbb738 upstream.
Since commit 42ea507fae1a ("crypto: drbg - reseed often if seedsource is
degraded"), the maximum seed lifetime represented by ->reseed_threshold
gets temporarily lowered if the get_random_bytes() source cannot provide
sufficient entropy yet, as is common during boot, and restored back to
the original value again once that has changed.
More specifically, if the add_random_ready_callback() invoked from
drbg_prepare_hrng() in the course of DRBG instantiation does not return
-EALREADY, that is, if get_random_bytes() has not been fully initialized
at this point yet, drbg_prepare_hrng() will lower ->reseed_threshold
to a value of 50. The drbg_async_seed() scheduled from said
random_ready_callback will eventually restore the original value.
A future patch will replace the random_ready_callback based notification
mechanism and thus, there will be no add_random_ready_callback() return
value anymore which could get compared to -EALREADY.
However, there's __drbg_seed() which gets invoked in the course of both,
the DRBG instantiation as well as the eventual reseeding from
get_random_bytes() in aforementioned drbg_async_seed(), if any. Moreover,
it knows about the get_random_bytes() initialization state by the time the
seed data had been obtained from it: the new_seed_state argument introduced
with the previous patch would get set to DRBG_SEED_STATE_PARTIAL in case
get_random_bytes() had not been fully initialized yet and to
DRBG_SEED_STATE_FULL otherwise. Thus, __drbg_seed() provides a convenient
alternative for managing that ->reseed_threshold lowering and restoring at
a central place.
Move all ->reseed_threshold adjustment code from drbg_prepare_hrng() and
drbg_async_seed() respectively to __drbg_seed(). Make __drbg_seed()
lower the ->reseed_threshold to 50 in case its new_seed_state argument
equals DRBG_SEED_STATE_PARTIAL and let it restore the original value
otherwise.
There is no change in behaviour.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2bcd25443868aa8863779a6ebc6c9319633025d2 upstream.
Currently, the DRBG implementation schedules asynchronous works from
random_ready_callbacks for reseeding the DRBG instances with output from
get_random_bytes() once the latter has sufficient entropy available.
However, as the get_random_bytes() initialization state can get queried by
means of rng_is_initialized() now, there is no real need for this
asynchronous reseeding logic anymore and it's better to keep things simple
by doing it synchronously when needed instead, i.e. from drbg_generate()
once rng_is_initialized() has flipped to true.
Of course, for this to work, drbg_generate() would need some means by which
it can tell whether or not rng_is_initialized() has flipped to true since
the last seeding from get_random_bytes(). Or equivalently, whether or not
the last seed from get_random_bytes() has happened when
rng_is_initialized() was still evaluating to false.
As it currently stands, enum drbg_seed_state allows for the representation
of two different DRBG seeding states: DRBG_SEED_STATE_UNSEEDED and
DRBG_SEED_STATE_FULL. The former makes drbg_generate() to invoke a full
reseeding operation involving both, the rather expensive jitterentropy as
well as the get_random_bytes() randomness sources. The DRBG_SEED_STATE_FULL
state on the other hand implies that no reseeding at all is required for a
!->pr DRBG variant.
Introduce the new DRBG_SEED_STATE_PARTIAL state to enum drbg_seed_state for
representing the condition that a DRBG was being seeded when
rng_is_initialized() had still been false. In particular, this new state
implies that
- the given DRBG instance has been fully seeded from the jitterentropy
source (if enabled)
- and drbg_generate() is supposed to reseed from get_random_bytes()
*only* once rng_is_initialized() turns to true.
Up to now, the __drbg_seed() helper used to set the given DRBG instance's
->seeded state to constant DRBG_SEED_STATE_FULL. Introduce a new argument
allowing for the specification of the to be written ->seeded value instead.
Make the first of its two callers, drbg_seed(), determine the appropriate
value based on rng_is_initialized(). The remaining caller,
drbg_async_seed(), is known to get invoked only once rng_is_initialized()
is true, hence let it pass constant DRBG_SEED_STATE_FULL for the new
argument to __drbg_seed().
There is no change in behaviour, except for that the pr_devel() in
drbg_generate() would now report "unseeded" for ->pr DRBG instances which
had last been seeded when rng_is_initialized() was still evaluating to
false.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ce8ce31b2c5c8b18667784b8c515650c65d57b4e upstream.
There are two different randomness sources the DRBGs are getting seeded
from, namely the jitterentropy source (if enabled) and get_random_bytes().
At initial DRBG seeding time during boot, the latter might not have
collected sufficient entropy for seeding itself yet and thus, the DRBG
implementation schedules a reseed work from a random_ready_callback once
that has happened. This is particularly important for the !->pr DRBG
instances, for which (almost) no further reseeds are getting triggered
during their lifetime.
Because collecting data from the jitterentropy source is a rather expensive
operation, the aforementioned asynchronously scheduled reseed work
restricts itself to get_random_bytes() only. That is, it in some sense
amends the initial DRBG seed derived from jitterentropy output at full
(estimated) entropy with fresh randomness obtained from get_random_bytes()
once that has been seeded with sufficient entropy itself.
With the advent of rng_is_initialized(), there is no real need for doing
the reseed operation from an asynchronously scheduled work anymore and a
subsequent patch will make it synchronous by moving it next to related
logic already present in drbg_generate().
However, for tracking whether a full reseed including the jitterentropy
source is required or a "partial" reseed involving only get_random_bytes()
would be sufficient already, the boolean struct drbg_state's ->seeded
member must become a tristate value.
Prepare for this by introducing the new enum drbg_seed_state and change
struct drbg_state's ->seeded member's type from bool to that type.
For facilitating review, enum drbg_seed_state is made to only contain
two members corresponding to the former ->seeded values of false and true
resp. at this point: DRBG_SEED_STATE_UNSEEDED and DRBG_SEED_STATE_FULL. A
third one for tracking the intermediate state of "seeded from jitterentropy
only" will be introduced with a subsequent patch.
There is no change in behaviour at this point.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e56e18985596617ae426ed5997fb2e737cffb58b upstream.
Commit 6048fdcc5f269 ("lib/crypto: blake2s: include as built-in") took
away a number of prompt texts from other crypto libraries. This makes
values flip from built-in to module when oldconfig runs, and causes
problems when these crypto libs need to be built in for thingslike
BIG_KEYS.
Fixes: 6048fdcc5f269 ("lib/crypto: blake2s: include as built-in")
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Justin M. Forbes <jforbes@fedoraproject.org>
[Jason: - moved menu into submenu of lib/ instead of root menu
- fixed chacha sub-dependencies for CONFIG_CRYPTO]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 64ba4b15e5c045f8b746c6da5fc9be9a6b00b61d upstream.
Syzbot reported slab-out-of-bounds read in exfat_clear_bitmap.
This was triggered by reproducer calling truncute with size 0,
which causes the following trace:
BUG: KASAN: slab-out-of-bounds in exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
Read of size 8 at addr ffff888115aa9508 by task syz-executor251/365
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack_lvl+0x1e2/0x24b lib/dump_stack.c:118
print_address_description+0x81/0x3c0 mm/kasan/report.c:233
__kasan_report mm/kasan/report.c:419 [inline]
kasan_report+0x1a4/0x1f0 mm/kasan/report.c:436
__asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:309
exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
exfat_free_cluster+0x25a/0x4a0 fs/exfat/fatent.c:181
__exfat_truncate+0x99e/0xe00 fs/exfat/file.c:217
exfat_truncate+0x11b/0x4f0 fs/exfat/file.c:243
exfat_setattr+0xa03/0xd40 fs/exfat/file.c:339
notify_change+0xb76/0xe10 fs/attr.c:336
do_truncate+0x1ea/0x2d0 fs/open.c:65
Move the is_valid_cluster() helper from fatent.c to a common
header to make it reusable in other *.c files. And add is_valid_cluster()
to validate if cluster number is within valid range in exfat_clear_bitmap()
and exfat_set_bitmap().
Link: https://syzkaller.appspot.com/bug?id=50381fc73821ecae743b8cf24b4c9a04776f767c
Reported-by: syzbot+a4087e40b9c13aad7892@syzkaller.appspotmail.com
Fixes: 1e49a94cf707 ("exfat: add bitmap operations")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Reviewed-by: Sungjong Seo <sj1557.seo@samsung.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 336feb502a715909a8136eb6a62a83d7268a353b upstream.
Fix the following -Wstringop-overflow warnings when building with GCC-11:
drivers/gpu/drm/i915/intel_pm.c:3106:9: warning: ‘intel_read_wm_latency’ accessing 16 bytes in a region of size 10 [-Wstringop-overflow=]
3106 | intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/i915/intel_pm.c:3106:9: note: referencing argument 2 of type ‘u16 *’ {aka ‘short unsigned int *’}
drivers/gpu/drm/i915/intel_pm.c:2861:13: note: in a call to function ‘intel_read_wm_latency’
2861 | static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
| ^~~~~~~~~~~~~~~~~~~~~
by removing the over-specified array size from the argument declarations.
It seems that this code is actually safe because the size of the
array depends on the hardware generation, and the function checks
for that.
Notice that wm can be an array of 5 elements:
drivers/gpu/drm/i915/intel_pm.c:3109: intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
or an array of 8 elements:
drivers/gpu/drm/i915/intel_pm.c:3131: intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
and the compiler legitimately complains about that.
This helps with the ongoing efforts to globally enable
-Wstringop-overflow.
Link: https://github.com/KSPP/linux/issues/181
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 19f4e7cc819771812a7f527d7897c2deffbf7a00 upstream.
A hang with tasks stuck on the CIL hard throttle was reported and
largely diagnosed by Donald Buczek, who discovered that it was a
result of the CIL context space usage decrementing in committed
transactions once the hard throttle limit had been hit and processes
were already blocked. This resulted in the CIL push not waking up
those waiters because the CIL context was no longer over the hard
throttle limit.
The surprising aspect of this was the CIL space usage going
backwards regularly enough to trigger this situation. Assumptions
had been made in design that the relogging process would only
increase the size of the objects in the CIL, and so that space would
only increase.
This change and commit message fixes the issue and documents the
result of an audit of the triggers that can cause the CIL space to
go backwards, how large the backwards steps tend to be, the
frequency in which they occur, and what the impact on the CIL
accounting code is.
Even though the CIL ctx->space_used can go backwards, it will only
do so if the log item is already logged to the CIL and contains a
space reservation for it's entire logged state. This is tracked by
the shadow buffer state on the log item. If the item is not
previously logged in the CIL it has no shadow buffer nor log vector,
and hence the entire size of the logged item copied to the log
vector is accounted to the CIL space usage. i.e. it will always go
up in this case.
If the item has a log vector (i.e. already in the CIL) and the size
decreases, then the existing log vector will be overwritten and the
space usage will go down. This is the only condition where the space
usage reduces, and it can only occur when an item is already tracked
in the CIL. Hence we are safe from CIL space usage underruns as a
result of log items decreasing in size when they are relogged.
Typically this reduction in CIL usage occurs from metadata blocks
being free, such as when a btree block merge occurs or a directory
enter/xattr entry is removed and the da-tree is reduced in size.
This generally results in a reduction in size of around a single
block in the CIL, but also tends to increase the number of log
vectors because the parent and sibling nodes in the tree needs to be
updated when a btree block is removed. If a multi-level merge
occurs, then we see reduction in size of 2+ blocks, but again the
log vector count goes up.
The other vector is inode fork size changes, which only log the
current size of the fork and ignore the previously logged size when
the fork is relogged. Hence if we are removing items from the inode
fork (dir/xattr removal in shortform, extent record removal in
extent form, etc) the relogged size of the inode for can decrease.
No other log items can decrease in size either because they are a
fixed size (e.g. dquots) or they cannot be relogged (e.g. relogging
an intent actually creates a new intent log item and doesn't relog
the old item at all.) Hence the only two vectors for CIL context
size reduction are relogging inode forks and marking buffers active
in the CIL as stale.
Long story short: the majority of the code does the right thing and
handles the reduction in log item size correctly, and only the CIL
hard throttle implementation is problematic and needs fixing. This
patch makes that fix, as well as adds comments in the log item code
that result in items shrinking in size when they are relogged as a
clear reminder that this can and does happen frequently.
The throttle fix is based upon the change Donald proposed, though it
goes further to ensure that once the throttle is activated, it
captures all tasks until the CIL push issues a wakeup, regardless of
whether the CIL space used has gone back under the throttle
threshold.
This ensures that we prevent tasks reducing the CIL slightly under
the throttle threshold and then making more changes that push it
well over the throttle limit. This is acheived by checking if the
throttle wait queue is already active as a condition of throttling.
Hence once we start throttling, we continue to apply the throttle
until the CIL context push wakes everything on the wait queue.
We can use waitqueue_active() for the waitqueue manipulations and
checks as they are all done under the ctx->xc_push_lock. Hence the
waitqueue has external serialisation and we can safely peek inside
the wait queue without holding the internal waitqueue locks.
Many thanks to Donald for his diagnostic and analysis work to
isolate the cause of this hang.
Reported-and-tested-by: Donald Buczek <buczek@molgen.mpg.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6da1b4b1ab36d80a3994fd4811c8381de10af604 upstream.
When overlayfs is running on top of xfs and the user unlinks a file in
the overlay, overlayfs will create a whiteout inode and ask xfs to
"rename" the whiteout file atop the one being unlinked. If the file
being unlinked loses its one nlink, we then have to put the inode on the
unlinked list.
This requires us to grab the AGI buffer of the whiteout inode to take it
off the unlinked list (which is where whiteouts are created) and to grab
the AGI buffer of the file being deleted. If the whiteout was created
in a higher numbered AG than the file being deleted, we'll lock the AGIs
in the wrong order and deadlock.
Therefore, grab all the AGI locks we think we'll need ahead of time, and
in order of increasing AG number per the locking rules.
Reported-by: wenli xie <wlxie7296@gmail.com>
Fixes: 93597ae8dac0 ("xfs: Fix deadlock between AGI and AGF when target_ip exists in xfs_rename()")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a5336d6bb2d02d0e9d4d3c8be04b80b8b68d56c8 upstream.
In commit 27c14b5daa82 we started tracking the last inode seen during an
inode walk to avoid infinite loops if a corrupt inobt record happens to
have a lower ir_startino than the record preceeding it. Unfortunately,
the assertion trips over the case where there are completely empty inobt
records (which can happen quite easily on 64k page filesystems) because
we advance the tracking cursor without actually putting the empty record
into the processing buffer. Fix the assert to allow for this case.
Reported-by: zlang@redhat.com
Fixes: 27c14b5daa82 ("xfs: ensure inobt record walks always make forward progress")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Zorro Lang <zlang@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 237d7887ae723af7d978e8b9a385fdff416f357b upstream.
The quota option 'usrquota' should be shown if both the XFS_UQUOTA_ACCT
and XFS_UQUOTA_ENFD flags are set. The option 'uqnoenforce' should be
shown when only the XFS_UQUOTA_ACCT flag is set. The current code logic
seems wrong, Fix it and show proper options.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit acf104c2331c1ba2a667e65dd36139d1555b1432 upstream.
Detect file block mappings with a blockcount that's either so large that
integer overflows occur or are zero, because neither are valid in the
filesystem. Worse yet, attempting directory modifications causes the
iext code to trip over the bmbt key handling and takes the filesystem
down. We can fix most of this by preventing the bad metadata from
entering the incore structures in the first place.
Found by setting blockcount=0 in a directory data fork mapping and
watching the fireworks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c5794097b269f15961ed78f7f27b50e51766dec9 upstream.
The aggregation byte limit for an endpoint is currently computed
based on the endpoint's receive buffer size.
However, some bytes at the front of each receive buffer are reserved
on the assumption that--as with SKBs--it might be useful to insert
data (such as headers) before what lands in the buffer.
The aggregation byte limit currently doesn't take into account that
reserved space, and as a result, aggregation could require space
past that which is available in the buffer.
Fix this by reducing the size used to compute the aggregation byte
limit by the NET_SKB_PAD offset reserved for each receive buffer.
Signed-off-by: Alex Elder <elder@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit cd65869512ab5668a5d16f789bc4da1319c435c4 ]
The issue was first described and addressed in
89c2b3b7491820 ("io_uring: reexpand under-reexpanded iters"), but
shortly after reimplemented as.
cd65869512ab56 ("io_uring: use iov_iter state save/restore helpers").
Here we follow the approach from the second patch but without in-callback
resubmissions, fixups for not yet supported in 5.10 short read retries
and replacing iov_iter_state with iter copies to not pull even more
dependencies, and because it's just much simpler.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We can't re-import or modify iterators from iocb callbacks, it's not
safe as it might be reverted and/or reexpanded while unwinding stack.
It's also not safe to resubmit as io-wq thread will race with stack
undwinding for the iterator and other data.
Disallow resubmission from callbacks, it can fail some cases that were
handled before, but the possibility of such a failure was a part of the
API from the beginning and so it should be fine.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d1dc87763f406d4e67caf16dbe438a5647692395 upstream.
A rare BUG_ON triggered in assoc_array_gc:
[3430308.818153] kernel BUG at lib/assoc_array.c:1609!
Which corresponded to the statement currently at line 1593 upstream:
BUG_ON(assoc_array_ptr_is_meta(p));
Using the data from the core dump, I was able to generate a userspace
reproducer[1] and determine the cause of the bug.
[1]: https://github.com/brenns10/kernel_stuff/tree/master/assoc_array_gc
After running the iterator on the entire branch, an internal tree node
looked like the following:
NODE (nr_leaves_on_branch: 3)
SLOT [0] NODE (2 leaves)
SLOT [1] NODE (1 leaf)
SLOT [2..f] NODE (empty)
In the userspace reproducer, the pr_devel output when compressing this
node was:
-- compress node 0x5607cc089380 --
free=0, leaves=0
[0] retain node 2/1 [nx 0]
[1] fold node 1/1 [nx 0]
[2] fold node 0/1 [nx 2]
[3] fold node 0/2 [nx 2]
[4] fold node 0/3 [nx 2]
[5] fold node 0/4 [nx 2]
[6] fold node 0/5 [nx 2]
[7] fold node 0/6 [nx 2]
[8] fold node 0/7 [nx 2]
[9] fold node 0/8 [nx 2]
[10] fold node 0/9 [nx 2]
[11] fold node 0/10 [nx 2]
[12] fold node 0/11 [nx 2]
[13] fold node 0/12 [nx 2]
[14] fold node 0/13 [nx 2]
[15] fold node 0/14 [nx 2]
after: 3
At slot 0, an internal node with 2 leaves could not be folded into the
node, because there was only one available slot (slot 0). Thus, the
internal node was retained. At slot 1, the node had one leaf, and was
able to be folded in successfully. The remaining nodes had no leaves,
and so were removed. By the end of the compression stage, there were 14
free slots, and only 3 leaf nodes. The tree was ascended and then its
parent node was compressed. When this node was seen, it could not be
folded, due to the internal node it contained.
The invariant for compression in this function is: whenever
nr_leaves_on_branch < ASSOC_ARRAY_FAN_OUT, the node should contain all
leaf nodes. The compression step currently cannot guarantee this, given
the corner case shown above.
To fix this issue, retry compression whenever we have retained a node,
and yet nr_leaves_on_branch < ASSOC_ARRAY_FAN_OUT. This second
compression will then allow the node in slot 1 to be folded in,
satisfying the invariant. Below is the output of the reproducer once the
fix is applied:
-- compress node 0x560e9c562380 --
free=0, leaves=0
[0] retain node 2/1 [nx 0]
[1] fold node 1/1 [nx 0]
[2] fold node 0/1 [nx 2]
[3] fold node 0/2 [nx 2]
[4] fold node 0/3 [nx 2]
[5] fold node 0/4 [nx 2]
[6] fold node 0/5 [nx 2]
[7] fold node 0/6 [nx 2]
[8] fold node 0/7 [nx 2]
[9] fold node 0/8 [nx 2]
[10] fold node 0/9 [nx 2]
[11] fold node 0/10 [nx 2]
[12] fold node 0/11 [nx 2]
[13] fold node 0/12 [nx 2]
[14] fold node 0/13 [nx 2]
[15] fold node 0/14 [nx 2]
internal nodes remain despite enough space, retrying
-- compress node 0x560e9c562380 --
free=14, leaves=1
[0] fold node 2/15 [nx 0]
after: 3
Changes
=======
DH:
- Use false instead of 0.
- Reorder the inserted lines in a couple of places to put retained before
next_slot.
ver #2)
- Fix typo in pr_devel, correct comparison to "<="
Fixes: 3cb989501c26 ("Add a generic associative array implementation.")
Cc: <stable@vger.kernel.org>
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Andrew Morton <akpm@linux-foundation.org>
cc: keyrings@vger.kernel.org
Link: https://lore.kernel.org/r/20220511225517.407935-1-stephen.s.brennan@oracle.com/ # v1
Link: https://lore.kernel.org/r/20220512215045.489140-1-stephen.s.brennan@oracle.com/ # v2
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b7b3ac8ff3317cdcf07a1c413de9bdb68019c2b upstream.
We used to set regulatory info before the registration of
the device and then the regulatory info didn't get set, because
the device isn't registered so there isn't a device to set the
regulatory info for. So set the regulatory info after the device
registration.
Call reg_process_self_managed_hints() once again after the device
registration because it does nothing before it.
Signed-off-by: Miri Korenblit <miriam.rachel.korenblit@intel.com>
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Link: https://lore.kernel.org/r/iwlwifi.20210618133832.c96eadcffe80.I86799c2c866b5610b4cf91115c21d8ceb525c5aa@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 189b0ddc245139af81198d1a3637cac74f96e13a upstream.
pipe_resize_ring() needs to take the pipe->rd_wait.lock spinlock to
prevent post_one_notification() from trying to insert into the ring
whilst the ring is being replaced.
The occupancy check must be done after the lock is taken, and the lock
must be taken after the new ring is allocated.
The bug can lead to an oops looking something like:
BUG: KASAN: use-after-free in post_one_notification.isra.0+0x62e/0x840
Read of size 4 at addr ffff88801cc72a70 by task poc/27196
...
Call Trace:
post_one_notification.isra.0+0x62e/0x840
__post_watch_notification+0x3b7/0x650
key_create_or_update+0xb8b/0xd20
__do_sys_add_key+0x175/0x340
__x64_sys_add_key+0xbe/0x140
do_syscall_64+0x5c/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported by Selim Enes Karaduman @Enesdex working with Trend Micro Zero
Day Initiative.
Fixes: c73be61cede5 ("pipe: Add general notification queue support")
Reported-by: zdi-disclosures@trendmicro.com # ZDI-CAN-17291
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f485922d8fe4e44f6d52a5bb95a603b7c65554bb upstream.
Patch series "Fix data-races around epoll reported by KCSAN."
This series suppresses a false positive KCSAN's message and fixes a real
data-race.
This patch (of 2):
pipe_poll() runs locklessly and assigns 1 to poll_usage. Once poll_usage
is set to 1, it never changes in other places. However, concurrent writes
of a value trigger KCSAN, so let's make KCSAN happy.
BUG: KCSAN: data-race in pipe_poll / pipe_poll
write to 0xffff8880042f6678 of 4 bytes by task 174 on cpu 3:
pipe_poll (fs/pipe.c:656)
ep_item_poll.isra.0 (./include/linux/poll.h:88 fs/eventpoll.c:853)
do_epoll_wait (fs/eventpoll.c:1692 fs/eventpoll.c:1806 fs/eventpoll.c:2234)
__x64_sys_epoll_wait (fs/eventpoll.c:2246 fs/eventpoll.c:2241 fs/eventpoll.c:2241)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)
write to 0xffff8880042f6678 of 4 bytes by task 177 on cpu 1:
pipe_poll (fs/pipe.c:656)
ep_item_poll.isra.0 (./include/linux/poll.h:88 fs/eventpoll.c:853)
do_epoll_wait (fs/eventpoll.c:1692 fs/eventpoll.c:1806 fs/eventpoll.c:2234)
__x64_sys_epoll_wait (fs/eventpoll.c:2246 fs/eventpoll.c:2241 fs/eventpoll.c:2241)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 177 Comm: epoll_race Not tainted 5.17.0-58927-gf443e374ae13 #6
Hardware name: Red Hat KVM, BIOS 1.11.0-2.amzn2 04/01/2014
Link: https://lkml.kernel.org/r/20220322002653.33865-1-kuniyu@amazon.co.jp
Link: https://lkml.kernel.org/r/20220322002653.33865-2-kuniyu@amazon.co.jp
Fixes: 3b844826b6c6 ("pipe: avoid unnecessary EPOLLET wakeups under normal loads")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kuniyuki Iwashima <kuni1840@gmail.com>
Cc: "Soheil Hassas Yeganeh" <soheil@google.com>
Cc: "Sridhar Samudrala" <sridhar.samudrala@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 520778042ccca019f3ffa136dd0ca565c486cedd upstream.
Since 3e135cd499bf ("netfilter: nft_dynset: dynamic stateful expression
instantiation"), it is possible to attach stateful expressions to set
elements.
cd5125d8f518 ("netfilter: nf_tables: split set destruction in deactivate
and destroy phase") introduces conditional destruction on the object to
accomodate transaction semantics.
nft_expr_init() calls expr->ops->init() first, then check for
NFT_STATEFUL_EXPR, this stills allows to initialize a non-stateful
lookup expressions which points to a set, which might lead to UAF since
the set is not properly detached from the set->binding for this case.
Anyway, this combination is non-sense from nf_tables perspective.
This patch fixes this problem by checking for NFT_STATEFUL_EXPR before
expr->ops->init() is called.
The reporter provides a KASAN splat and a poc reproducer (similar to
those autogenerated by syzbot to report use-after-free errors). It is
unknown to me if they are using syzbot or if they use similar automated
tool to locate the bug that they are reporting.
For the record, this is the KASAN splat.
[ 85.431824] ==================================================================
[ 85.432901] BUG: KASAN: use-after-free in nf_tables_bind_set+0x81b/0xa20
[ 85.433825] Write of size 8 at addr ffff8880286f0e98 by task poc/776
[ 85.434756]
[ 85.434999] CPU: 1 PID: 776 Comm: poc Tainted: G W 5.18.0+ #2
[ 85.436023] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Fixes: 0b2d8a7b638b ("netfilter: nf_tables: add helper functions for expression handling")
Reported-and-tested-by: Aaron Adams <edg-e@nccgroup.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 03a35bc856ddc09f2cc1f4701adecfbf3b464cb3 ]
Due to i2c->adap.dev.fwnode not being set, ACPI_COMPANION() wasn't properly
found for TWSI controllers.
Signed-off-by: Szymon Balcerak <sbalcerak@marvell.com>
Signed-off-by: Piyush Malgujar <pmalgujar@marvell.com>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 17a0f3acdc6ec8b89ad40f6e22165a4beee25663 ]
Before sending a MSI the hardware writes information pertinent to the
interrupt cause to a memory location pointed by SMTICL register. This
memory holds three double words where the least significant bit tells
whether the interrupt cause of master/target/error is valid. The driver
does not use this but we need to set it up because otherwise it will
perform DMA write to the default address (0) and this will cause an
IOMMU fault such as below:
DMAR: DRHD: handling fault status reg 2
DMAR: [DMA Write] Request device [00:12.0] PASID ffffffff fault addr 0
[fault reason 05] PTE Write access is not set
To prevent this from happening, provide a proper DMA buffer for this
that then gets mapped by the IOMMU accordingly.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: From: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6fd45e79e8b93b8d22fb8fe22c32fbad7e9190bd ]
The AST2600 when using the i210 NIC over NC-SI has been observed to
produce incorrect checksum results with specific MTU values. This was
first observed when sending data across a long distance set of networks.
On a local network, the following test was performed using a 1MB file of
random data.
On the receiver run this script:
#!/bin/bash
while [ 1 ]; do
# Zero the stats
nstat -r > /dev/null
nc -l 9899 > test-file
# Check for checksum errors
TcpInCsumErrors=$(nstat | grep TcpInCsumErrors)
if [ -z "$TcpInCsumErrors" ]; then
echo No TcpInCsumErrors
else
echo TcpInCsumErrors = $TcpInCsumErrors
fi
done
On an AST2600 system:
# nc <IP of receiver host> 9899 < test-file
The test was repeated with various MTU values:
# ip link set mtu 1410 dev eth0
The observed results:
1500 - good
1434 - bad
1400 - good
1410 - bad
1420 - good
The test was repeated after disabling tx checksumming:
# ethtool -K eth0 tx-checksumming off
And all MTU values tested resulted in transfers without error.
An issue with the driver cannot be ruled out, however there has been no
bug discovered so far.
David has done the work to take the original bug report of slow data
transfer between long distance connections and triaged it down to this
test case.
The vendor suspects this this is a hardware issue when using NC-SI. The
fixes line refers to the patch that introduced AST2600 support.
Reported-by: David Wilder <wilder@us.ibm.com>
Reviewed-by: Dylan Hung <dylan_hung@aspeedtech.com>
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8cedb7093b2d1394cae9b86494cba4b62d3a30a ]
When removing the pn533 device (i2c or USB), there is a logic error. The
original code first cancels the worker (flush_delayed_work) and then
destroys the workqueue (destroy_workqueue), leaving the timer the last
one to be deleted (del_timer). This result in a possible race condition
in a multi-core preempt-able kernel. That is, if the cleanup
(pn53x_common_clean) is concurrently run with the timer handler
(pn533_listen_mode_timer), the timer can queue the poll_work to the
already destroyed workqueue, causing use-after-free.
This patch reorder the cleanup: it uses the del_timer_sync to make sure
the handler is finished before the routine will destroy the workqueue.
Note that the timer cannot be activated by the worker again.
static void pn533_wq_poll(struct work_struct *work)
...
rc = pn533_send_poll_frame(dev);
if (rc)
return;
if (cur_mod->len == 0 && dev->poll_mod_count > 1)
mod_timer(&dev->listen_timer, ...);
That is, the mod_timer can be called only when pn533_send_poll_frame()
returns no error, which is impossible because the device is detaching
and the lower driver should return ENODEV code.
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 015c44d7bff3f44d569716117becd570c179ca32 ]
Since the recent introduction supporting the SM3 and SM4 hash algos for IPsec, the kernel
produces invalid pfkey acquire messages, when these encryption modules are disabled. This
happens because the availability of the algos wasn't checked in all necessary functions.
This patch adds these checks.
Signed-off-by: Thomas Bartschies <thomas.bartschies@cvk.de>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a91714312eb16f9ecd1f7f8b3efe1380075f28d4 ]
That way percpu_ref_exit() is safe after failing percpu_ref_init().
At least one user (cgroup_create()) had a double-free that way;
there might be other similar bugs. Easier to fix in percpu_ref_init(),
rather than playing whack-a-mole in sloppy users...
Usual symptoms look like a messed refcounting in one of subsystems
that use percpu allocations (might be percpu-refcount, might be
something else). Having refcounts for two different objects share
memory is Not Nice(tm)...
Reported-by: syzbot+5b1e53987f858500ec00@syzkaller.appspotmail.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fa8785e5931367e2b43f2c507f26bcf3e281c0ca ]
Change suniv f1c100s pinctrl,PD14 multiplexing function lvds1 to uart2
When the pin PD13 and PD14 is setting up to uart2 function in dts,
there's an error occurred:
1c20800.pinctrl: unsupported function uart2 on pin PD14
Because 'uart2' is not any one multiplexing option of PD14,
and pinctrl don't know how to configure it.
So change the pin PD14 lvds1 function to uart2.
Signed-off-by: IotaHydrae <writeforever@foxmail.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Link: https://lore.kernel.org/r/tencent_70C1308DDA794C81CAEF389049055BACEC09@qq.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1b073ebb174d0c7109b438e0a5eb4495137803ec upstream.
Adds the PCI ID for X-Fi cards sold under the Platnum and XtremeMusic names
Before: snd_ctxfi 0000:05:05.0: chip 20K1 model Unknown (1102:0021) is found
After: snd_ctxfi 0000:05:05.0: chip 20K1 model SB046x (1102:0021) is found
[ This is only about defining the model name string, and the rest is
handled just like before, as a default unknown device.
Edward confirmed that the stuff has been working fine -- tiwai ]
Signed-off-by: Edward Matijevic <motolav@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/cae7d1a4-8bd9-7dfe-7427-db7e766f7272@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1ce6c8d68f8ac587f54d0a271ac594d3d51f3efb upstream.
get_random_bytes_user() checks for signals after producing a PAGE_SIZE
worth of output, just like /dev/zero does. write_pool() is doing
basically the same work (actually, slightly more expensive), and so
should stop to check for signals in the same way. Let's also name it
write_pool_user() to match get_random_bytes_user(), so this won't be
misused in the future.
Before this patch, massive writes to /dev/urandom would tie up the
process for an extremely long time and make it unterminatable. After, it
can be successfully interrupted. The following test program can be used
to see this works as intended:
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
static unsigned char x[~0U];
static void handle(int) { }
int main(int argc, char *argv[])
{
pid_t pid = getpid(), child;
int fd;
signal(SIGUSR1, handle);
if (!(child = fork())) {
for (;;)
kill(pid, SIGUSR1);
}
fd = open("/dev/urandom", O_WRONLY);
pause();
printf("interrupted after writing %zd bytes\n", write(fd, x, sizeof(x)));
close(fd);
kill(child, SIGTERM);
return 0;
}
Result before: "interrupted after writing 2147479552 bytes"
Result after: "interrupted after writing 4096 bytes"
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79025e727a846be6fd215ae9cdb654368ac3f9a6 upstream.
Now that random/urandom is using {read,write}_iter, we can wire it up to
using the generic splice handlers.
Fixes: 36e2c7421f02 ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: added the splice_write path. Note that sendfile() and such still
does not work for read, though it does for write, because of a file
type restriction in splice_direct_to_actor(), which I'll address
separately.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22b0a222af4df8ee9bb8e07013ab44da9511b047 upstream.
Now that the read side has been converted to fix a regression with
splice, convert the write side as well to have some symmetry in the
interface used (and help deprecate ->write()).
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: cleaned up random_ioctl a bit, require full writes in
RNDADDENTROPY since it's crediting entropy, simplify control flow of
write_pool(), and incorporate suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b388e7765f2eaa137cf5d92b47ef5925ad83ced upstream.
This is a pre-requisite to wiring up splice() again for the random
and urandom drivers. It also allows us to remove the INT_MAX check in
getrandom(), because import_single_range() applies capping internally.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: rewrote get_random_bytes_user() to simplify and also incorporate
additional suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3092adcef3ffd2ef59634998297ca8358461ebce upstream.
There are currently two separate batched entropy implementations, for
u32 and u64, with nearly identical code, with the goal of avoiding
unaligned memory accesses and letting the buffers be used more
efficiently. Having to maintain these two functions independently is a
bit of a hassle though, considering that they always need to be kept in
sync.
This commit factors them out into a type-generic macro, so that the
expansion produces the same code as before, such that diffing the
assembly shows no differences. This will also make it easier in the
future to add u16 and u8 batches.
This was initially tested using an always_inline function and letting
gcc constant fold the type size in, but the code gen was less efficient,
and in general it was more verbose and harder to follow. So this patch
goes with the boring macro solution, similar to what's already done for
the _wait functions in random.h.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ad7dd882e45d7fe432c32e896e2aaa0b21746ea upstream.
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 560181c27b582557d633ecb608110075433383af upstream.
Much of random.c is devoted to initializing the rng and accounting for
when a sufficient amount of entropy has been added. In a perfect world,
this would all happen during init, and so we could mark these functions
as __init. But in reality, this isn't the case: sometimes the rng only
finishes initializing some seconds after system init is finished.
For this reason, at the moment, a whole host of functions that are only
used relatively close to system init and then never again are intermixed
with functions that are used in hot code all the time. This creates more
cache misses than necessary.
In order to pack the hot code closer together, this commit moves the
initialization functions that can't be marked as __init into
.text.unlikely by way of the __cold attribute.
Of particular note is moving credit_init_bits() into a macro wrapper
that inlines the crng_ready() static branch check. This avoids a
function call to a nop+ret, and most notably prevents extra entropy
arithmetic from being computed in mix_interrupt_randomness().
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a19402634c435a4eae226df53c141cdbb9922e7b upstream.
The current code was a mix of "nbytes", "count", "size", "buffer", "in",
and so forth. Instead, let's clean this up by naming input parameters
"buf" (or "ubuf") and "len", so that you always understand that you're
reading this variety of function argument.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c3a8a1db5e03d02cc0abb3357a84b8b326dfac3 upstream.
Before these were returning signed values, but the API is intended to be
used with unsigned values.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7782cfeca7d420e8bb707613d4cfb0f7ff29bb3a upstream.
Accoriding to the kernel style guide, having `extern` on functions in
headers is old school and deprecated, and doesn't add anything. So remove
them from random.h, and tidy up the file a little bit too.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f5bda35fba615ace70a656d4700423fa6c9bebee upstream.
Since crng_ready() is only false briefly during initialization and then
forever after becomes true, we don't need to evaluate it after, making
it a prime candidate for a static branch.
One complication, however, is that it changes state in a particular call
to credit_init_bits(), which might be made from atomic context, which
means we must kick off a workqueue to change the static key. Further
complicating things, credit_init_bits() may be called sufficiently early
on in system initialization such that system_wq is NULL.
Fortunately, there exists the nice function execute_in_process_context(),
which will immediately execute the function if !in_interrupt(), and
otherwise defer it to a workqueue. During early init, before workqueues
are available, in_interrupt() is always false, because interrupts
haven't even been enabled yet, which means the function in that case
executes immediately. Later on, after workqueues are available,
in_interrupt() might be true, but in that case, the work is queued in
system_wq and all goes well.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 12e45a2a6308105469968951e6d563e8f4fea187 upstream.
RDRAND and RDSEED can fail sometimes, which is fine. We currently
initialize the RNG with 512 bits of RDRAND/RDSEED. We only need 256 bits
of those to succeed in order to initialize the RNG. Instead of the
current "all or nothing" approach, actually credit these contributions
the amount that is actually contributed.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>