24195 Commits

Author SHA1 Message Date
Mateusz Nosek
cec1580fb0 futex: Fix incorrect should_fail_futex() handling
commit 921c7ebd1337d1a46783d7e15a850e12aed2eaa0 upstream.

If should_futex_fail() returns true in futex_wake_pi(), then the 'ret'
variable is set to -EFAULT and then immediately overwritten. So the failure
injection is non-functional.

Fix it by actually leaving the function and returning -EFAULT.

The Fixes tag is kinda blury because the initial commit which introduced
failure injection was already sloppy, but the below mentioned commit broke
it completely.

[ tglx: Massaged changelog ]

Fixes: 6b4f4bc9cb22 ("locking/futex: Allow low-level atomic operations to return -EAGAIN")
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200927000858.24219-1-mateusznosek0@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Yang Tao
b90aa237f4 futex: Prevent robust futex exit race
commit ca16d5bee59807bf04deaab0a8eccecd5061528c upstream.

Robust futexes utilize the robust_list mechanism to allow the kernel to
release futexes which are held when a task exits. The exit can be voluntary
or caused by a signal or fault. This prevents that waiters block forever.

The futex operations in user space store a pointer to the futex they are
either locking or unlocking in the op_pending member of the per task robust
list.

After a lock operation has succeeded the futex is queued in the robust list
linked list and the op_pending pointer is cleared.

After an unlock operation has succeeded the futex is removed from the
robust list linked list and the op_pending pointer is cleared.

The robust list exit code checks for the pending operation and any futex
which is queued in the linked list. It carefully checks whether the futex
value is the TID of the exiting task. If so, it sets the OWNER_DIED bit and
tries to wake up a potential waiter.

This is race free for the lock operation but unlock has two race scenarios
where waiters might not be woken up. These issues can be observed with
regular robust pthread mutexes. PI aware pthread mutexes are not affected.

(1) Unlocking task is killed after unlocking the futex value in user space
    before being able to wake a waiter.

        pthread_mutex_unlock()
                |
                V
        atomic_exchange_rel (&mutex->__data.__lock, 0)
                        <------------------------killed
            lll_futex_wake ()                   |
                                                |
                                                |(__lock = 0)
                                                |(enter kernel)
                                                |
                                                V
                                            do_exit()
                                            exit_mm()
                                          mm_release()
                                        exit_robust_list()
                                        handle_futex_death()
                                                |
                                                |(__lock = 0)
                                                |(uval = 0)
                                                |
                                                V
        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
                return 0;

    The sanity check which ensures that the user space futex is owned by
    the exiting task prevents the wakeup of waiters which in consequence
    block infinitely.

(2) Waiting task is killed after a wakeup and before it can acquire the
    futex in user space.

        OWNER                         WAITER
				futex_wait()
   pthread_mutex_unlock()               |
                |                       |
                |(__lock = 0)           |
                |                       |
                V                       |
         futex_wake() ------------>  wakeup()
                                        |
                                        |(return to userspace)
                                        |(__lock = 0)
                                        |
                                        V
                        oldval = mutex->__data.__lock
                                          <-----------------killed
    atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,  |
                        id | assume_other_futex_waiters, 0)      |
                                                                 |
                                                                 |
                                                   (enter kernel)|
                                                                 |
                                                                 V
                                                         do_exit()
                                                        |
                                                        |
                                                        V
                                        handle_futex_death()
                                        |
                                        |(__lock = 0)
                                        |(uval = 0)
                                        |
                                        V
        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
                return 0;

    The sanity check which ensures that the user space futex is owned
    by the exiting task prevents the wakeup of waiters, which seems to
    be correct as the exiting task does not own the futex value, but
    the consequence is that other waiters wont be woken up and block
    infinitely.

In both scenarios the following conditions are true:

   - task->robust_list->list_op_pending != NULL
   - user space futex value == 0
   - Regular futex (not PI)

If these conditions are met then it is reasonably safe to wake up a
potential waiter in order to prevent the above problems.

As this might be a false positive it can cause spurious wakeups, but the
waiter side has to handle other types of unrelated wakeups, e.g. signals
gracefully anyway. So such a spurious wakeup will not affect the
correctness of these operations.

This workaround must not touch the user space futex value and cannot set
the OWNER_DIED bit because the lock value is 0, i.e. uncontended. Setting
OWNER_DIED in this case would result in inconsistent state and subsequently
in malfunction of the owner died handling in user space.

The rest of the user space state is still consistent as no other task can
observe the list_op_pending entry in the exiting tasks robust list.

The eventually woken up waiter will observe the uncontended lock value and
take it over.

[ tglx: Massaged changelog and comment. Made the return explicit and not
  	depend on the subsequent check and added constants to hand into
  	handle_futex_death() instead of plain numbers. Fixed a few coding
	style issues. ]

Fixes: 0771dfefc9e5 ("[PATCH] lightweight robust futexes: core")
Signed-off-by: Yang Tao <yang.tao172@zte.com.cn>
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1573010582-35297-1-git-send-email-wang.yi59@zte.com.cn
Link: https://lkml.kernel.org/r/20191106224555.943191378@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Will Deacon
8682c2e2cc locking/futex: Allow low-level atomic operations to return -EAGAIN
commit 6b4f4bc9cb22875f97023984a625386f0c7cc1c0 upstream.

Some futex() operations, including FUTEX_WAKE_OP, require the kernel to
perform an atomic read-modify-write of the futex word via the userspace
mapping. These operations are implemented by each architecture in
arch_futex_atomic_op_inuser() and futex_atomic_cmpxchg_inatomic(), which
are called in atomic context with the relevant hash bucket locks held.

Although these routines may return -EFAULT in response to a page fault
generated when accessing userspace, they are expected to succeed (i.e.
return 0) in all other cases. This poses a problem for architectures
that do not provide bounded forward progress guarantees or fairness of
contended atomic operations and can lead to starvation in some cases.

In these problematic scenarios, we must return back to the core futex
code so that we can drop the hash bucket locks and reschedule if
necessary, much like we do in the case of a page fault.

Allow architectures to return -EAGAIN from their implementations of
arch_futex_atomic_op_inuser() and futex_atomic_cmpxchg_inatomic(), which
will cause the core futex code to reschedule if necessary and return
back to the architecture code later on.

Cc: <stable@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Peter Zijlstra
5083fb8338 futex: Fix (possible) missed wakeup
commit b061c38bef43406df8e73c5be06cbfacad5ee6ad upstream.

We must not rely on wake_q_add() to delay the wakeup; in particular
commit:

  1d0dcb3ad9d3 ("futex: Implement lockless wakeups")

moved wake_q_add() before smp_store_release(&q->lock_ptr, NULL), which
could result in futex_wait() waking before observing ->lock_ptr ==
NULL and going back to sleep again.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 1d0dcb3ad9d3 ("futex: Implement lockless wakeups")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Thomas Gleixner
b4f92d8dec futex: Handle early deadlock return correctly
commit 1a1fb985f2e2b85ec0d3dc2e519ee48389ec2434 upstream.

commit 56222b212e8e ("futex: Drop hb->lock before enqueueing on the
rtmutex") changed the locking rules in the futex code so that the hash
bucket lock is not longer held while the waiter is enqueued into the
rtmutex wait list. This made the lock and the unlock path symmetric, but
unfortunately the possible early exit from __rt_mutex_proxy_start() due to
a detected deadlock was not updated accordingly. That allows a concurrent
unlocker to observe inconsitent state which triggers the warning in the
unlock path.

futex_lock_pi()                         futex_unlock_pi()
  lock(hb->lock)
  queue(hb_waiter)				lock(hb->lock)
  lock(rtmutex->wait_lock)
  unlock(hb->lock)
                                        // acquired hb->lock
                                        hb_waiter = futex_top_waiter()
                                        lock(rtmutex->wait_lock)
  __rt_mutex_proxy_start()
     ---> fail
          remove(rtmutex_waiter);
     ---> returns -EDEADLOCK
  unlock(rtmutex->wait_lock)
                                        // acquired wait_lock
                                        wake_futex_pi()
                                        rt_mutex_next_owner()
					  --> returns NULL
                                          --> WARN

  lock(hb->lock)
  unqueue(hb_waiter)

The problem is caused by the remove(rtmutex_waiter) in the failure case of
__rt_mutex_proxy_start() as this lets the unlocker observe a waiter in the
hash bucket but no waiter on the rtmutex, i.e. inconsistent state.

The original commit handles this correctly for the other early return cases
(timeout, signal) by delaying the removal of the rtmutex waiter until the
returning task reacquired the hash bucket lock.

Treat the failure case of __rt_mutex_proxy_start() in the same way and let
the existing cleanup code handle the eventual handover of the rtmutex
gracefully. The regular rt_mutex_proxy_start() gains the rtmutex waiter
removal for the failure case, so that the other callsites are still
operating correctly.

Add proper comments to the code so all these details are fully documented.

Thanks to Peter for helping with the analysis and writing the really
valuable code comments.

Fixes: 56222b212e8e ("futex: Drop hb->lock before enqueueing on the rtmutex")
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Stefan Liebler <stli@linux.ibm.com>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1901292311410.1950@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Peter Zijlstra
99f4e930a7 futex,rt_mutex: Fix rt_mutex_cleanup_proxy_lock()
commit 04dc1b2fff4e96cb4142227fbdc63c8871ad4ed9 upstream.

Markus reported that the glibc/nptl/tst-robustpi8 test was failing after
commit:

  cfafcd117da0 ("futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()")

The following trace shows the problem:

 ld-linux-x86-64-2161  [019] ....   410.760971: SyS_futex: 00007ffbeb76b028: 80000875  op=FUTEX_LOCK_PI
 ld-linux-x86-64-2161  [019] ...1   410.760972: lock_pi_update_atomic: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000875 ret=0
 ld-linux-x86-64-2165  [011] ....   410.760978: SyS_futex: 00007ffbeb76b028: 80000875  op=FUTEX_UNLOCK_PI
 ld-linux-x86-64-2165  [011] d..1   410.760979: do_futex: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000871 ret=0
 ld-linux-x86-64-2165  [011] ....   410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=0000
 ld-linux-x86-64-2161  [019] ....   410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=ETIMEDOUT

Task 2165 does an UNLOCK_PI, assigning the lock to the waiter task 2161
which then returns with -ETIMEDOUT. That wrecks the lock state, because now
the owner isn't aware it acquired the lock and removes the pending robust
list entry.

If 2161 is killed, the robust list will not clear out this futex and the
subsequent acquire on this futex will then (correctly) result in -ESRCH
which is unexpected by glibc, triggers an internal assertion and dies.

Task 2161			Task 2165

rt_mutex_wait_proxy_lock()
   timeout();
   /* T2161 is still queued in  the waiter list */
   return -ETIMEDOUT;

				futex_unlock_pi()
				spin_lock(hb->lock);
				rtmutex_unlock()
				  remove_rtmutex_waiter(T2161);
				   mark_lock_available();
				/* Make the next waiter owner of the user space side */
				futex_uval = 2161;
				spin_unlock(hb->lock);
spin_lock(hb->lock);
rt_mutex_cleanup_proxy_lock()
  if (rtmutex_owner() !== current)
     ...
     return FAIL;
....
return -ETIMEOUT;

This means that rt_mutex_cleanup_proxy_lock() needs to call
try_to_take_rt_mutex() so it can take over the rtmutex correctly which was
assigned by the waker. If the rtmutex is owned by some other task then this
call is harmless and just confirmes that the waiter is not able to acquire
it.

While there, fix what looks like a merge error which resulted in
rt_mutex_cleanup_proxy_lock() having two calls to
fixup_rt_mutex_waiters() and rt_mutex_wait_proxy_lock() not having any.
Both should have one, since both potentially touch the waiter list.

Fixes: 38d589f2fd08 ("futex,rt_mutex: Restructure rt_mutex_finish_proxy_lock()")
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Bug-Spotted-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Link: http://lkml.kernel.org/r/20170519154850.mlomgdsd26drq5j6@hirez.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Thomas Gleixner
85de471416 futex: Avoid freeing an active timer
commit 97181f9bd57405b879403763284537e27d46963d upstream.

Alexander reported a hrtimer debug_object splat:

  ODEBUG: free active (active state 0) object type: hrtimer hint: hrtimer_wakeup (kernel/time/hrtimer.c:1423)

  debug_object_free (lib/debugobjects.c:603)
  destroy_hrtimer_on_stack (kernel/time/hrtimer.c:427)
  futex_lock_pi (kernel/futex.c:2740)
  do_futex (kernel/futex.c:3399)
  SyS_futex (kernel/futex.c:3447 kernel/futex.c:3415)
  do_syscall_64 (arch/x86/entry/common.c:284)
  entry_SYSCALL64_slow_path (arch/x86/entry/entry_64.S:249)

Which was caused by commit:

  cfafcd117da0 ("futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()")

... losing the hrtimer_cancel() in the shuffle. Where previously the
hrtimer_cancel() was done by rt_mutex_slowlock() we now need to do it
manually.

Reported-by: Alexander Levin <alexander.levin@verizon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: cfafcd117da0 ("futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704101802370.2906@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Peter Zijlstra
fc9f98f6e5 futex: Drop hb->lock before enqueueing on the rtmutex
commit 56222b212e8edb1cf51f5dd73ff645809b082b40 upstream.

When PREEMPT_RT_FULL does the spinlock -> rt_mutex substitution the PI
chain code will (falsely) report a deadlock and BUG.

The problem is that it hold hb->lock (now an rt_mutex) while doing
task_blocks_on_rt_mutex on the futex's pi_state::rtmutex. This, when
interleaved just right with futex_unlock_pi() leads it to believe to see an
AB-BA deadlock.

  Task1 (holds rt_mutex,	Task2 (does FUTEX_LOCK_PI)
         does FUTEX_UNLOCK_PI)

				lock hb->lock
				lock rt_mutex (as per start_proxy)
  lock hb->lock

Which is a trivial AB-BA.

It is not an actual deadlock, because it won't be holding hb->lock by the
time it actually blocks on the rt_mutex, but the chainwalk code doesn't
know that and it would be a nightmare to handle this gracefully.

To avoid this problem, do the same as in futex_unlock_pi() and drop
hb->lock after acquiring wait_lock. This still fully serializes against
futex_unlock_pi(), since adding to the wait_list does the very same lock
dance, and removing it holds both locks.

Aside of solving the RT problem this makes the lock and unlock mechanism
symetric and reduces the hb->lock held time.

Reported-and-tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.161341537@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:42 +02:00
Peter Zijlstra
13c98b088c futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()
commit cfafcd117da0216520568c195cb2f6cd1980c4bb upstream.

By changing futex_lock_pi() to use rt_mutex_*_proxy_lock() all wait_list
modifications are done under both hb->lock and wait_lock.

This closes the obvious interleave pattern between futex_lock_pi() and
futex_unlock_pi(), but not entirely so. See below:

Before:

futex_lock_pi()			futex_unlock_pi()
  unlock hb->lock

				  lock hb->lock
				  unlock hb->lock

				  lock rt_mutex->wait_lock
				  unlock rt_mutex_wait_lock
				    -EAGAIN

  lock rt_mutex->wait_lock
  list_add
  unlock rt_mutex->wait_lock

  schedule()

  lock rt_mutex->wait_lock
  list_del
  unlock rt_mutex->wait_lock

				  <idem>
				    -EAGAIN

  lock hb->lock

After:

futex_lock_pi()			futex_unlock_pi()

  lock hb->lock
  lock rt_mutex->wait_lock
  list_add
  unlock rt_mutex->wait_lock
  unlock hb->lock

  schedule()
				  lock hb->lock
				  unlock hb->lock
  lock hb->lock
  lock rt_mutex->wait_lock
  list_del
  unlock rt_mutex->wait_lock

				  lock rt_mutex->wait_lock
				  unlock rt_mutex_wait_lock
				    -EAGAIN

  unlock hb->lock

It does however solve the earlier starvation/live-lock scenario which got
introduced with the -EAGAIN since unlike the before scenario; where the
-EAGAIN happens while futex_unlock_pi() doesn't hold any locks; in the
after scenario it happens while futex_unlock_pi() actually holds a lock,
and then it is serialized on that lock.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.062785528@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:41 +02:00
Peter Zijlstra
55404ebc97 futex,rt_mutex: Introduce rt_mutex_init_waiter()
commit 50809358dd7199aa7ce232f6877dd09ec30ef374 upstream.

Since there's already two copies of this code, introduce a helper now
before adding a third one.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.950039479@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:41 +02:00
Peter Zijlstra
77d6a4cf9f futex: Use smp_store_release() in mark_wake_futex()
commit 1b367ece0d7e696cab1c8501bab282cc6a538b3f upstream.

Since the futex_q can dissapear the instruction after assigning NULL,
this really should be a RELEASE barrier. That stops loads from hitting
dead memory too.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.604296452@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30 14:41:41 +02:00
Thomas Gleixner
528d3b767e genirq: Disable interrupts for force threaded handlers
commit 81e2073c175b887398e5bca6c004efa89983f58d upstream.

With interrupt force threading all device interrupt handlers are invoked
from kernel threads. Contrary to hard interrupt context the invocation only
disables bottom halfs, but not interrupts. This was an oversight back then
because any code like this will have an issue:

thread(irq_A)
  irq_handler(A)
    spin_lock(&foo->lock);

interrupt(irq_B)
  irq_handler(B)
    spin_lock(&foo->lock);

This has been triggered with networking (NAPI vs. hrtimers) and console
drivers where printk() happens from an interrupt which interrupted the
force threaded handler.

Now people noticed and started to change the spin_lock() in the handler to
spin_lock_irqsave() which affects performance or add IRQF_NOTHREAD to the
interrupt request which in turn breaks RT.

Fix the root cause and not the symptom and disable interrupts before
invoking the force threaded handler which preserves the regular semantics
and the usefulness of the interrupt force threading as a general debugging
tool.

For not RT this is not changing much, except that during the execution of
the threaded handler interrupts are delayed until the handler
returns. Vs. scheduling and softirq processing there is no difference.

For RT kernels there is no issue.

Fixes: 8d32a307e4fa ("genirq: Provide forced interrupt threading")
Reported-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Johan Hovold <johan@kernel.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20210317143859.513307808@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 10:59:26 +01:00
Oleg Nesterov
376a76aa92 kernel, fs: Introduce and use set_restart_fn() and arch_set_restart_data()
commit 5abbe51a526253b9f003e9a0a195638dc882d660 upstream.

Preparation for fixing get_nr_restart_syscall() on X86 for COMPAT.

Add a new helper which sets restart_block->fn and calls a dummy
arch_set_restart_data() helper.

Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174641.GA17871@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 10:59:25 +01:00
Muchun Song
beb25678ff printk: fix deadlock when kernel panic
commit 8a8109f303e25a27f92c1d8edd67d7cbbc60a4eb upstream.

printk_safe_flush_on_panic() caused the following deadlock on our
server:

CPU0:                                         CPU1:
panic                                         rcu_dump_cpu_stacks
  kdump_nmi_shootdown_cpus                      nmi_trigger_cpumask_backtrace
    register_nmi_handler(crash_nmi_callback)      printk_safe_flush
                                                    __printk_safe_flush
                                                      raw_spin_lock_irqsave(&read_lock)
    // send NMI to other processors
    apic_send_IPI_allbutself(NMI_VECTOR)
                                                        // NMI interrupt, dead loop
                                                        crash_nmi_callback
  printk_safe_flush_on_panic
    printk_safe_flush
      __printk_safe_flush
        // deadlock
        raw_spin_lock_irqsave(&read_lock)

DEADLOCK: read_lock is taken on CPU1 and will never get released.

It happens when panic() stops a CPU by NMI while it has been in
the middle of printk_safe_flush().

Handle the lock the same way as logbuf_lock. The printk_safe buffers
are flushed only when both locks can be safely taken. It can avoid
the deadlock _in this particular case_ at expense of losing contents
of printk_safe buffers.

Note: It would actually be safe to re-init the locks when all CPUs were
      stopped by NMI. But it would require passing this information
      from arch-specific code. It is not worth the complexity.
      Especially because logbuf_lock and printk_safe buffers have been
      obsoleted by the lockless ring buffer.

Fixes: cf9b1106c81c ("printk/nmi: flush NMI messages on the system panic")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: <stable@vger.kernel.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20210210034823.64867-1-songmuchun@bytedance.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:56 +01:00
Ben Hutchings
69015306e3 futex: Don't enable IRQs unconditionally in put_pi_state()
From: Dan Carpenter <dan.carpenter@oracle.com>

commit 1e106aa3509b86738769775969822ffc1ec21bf4 upstream.

The exit_pi_state_list() function calls put_pi_state() with IRQs disabled
and is not expecting that IRQs will be enabled inside the function.

Use the _irqsave() variant so that IRQs are restored to the original state
instead of being enabled unconditionally.

Fixes: 153fbd1226fb ("futex: Fix more put_pi_state() vs. exit_pi_state_list() races")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20201106085205.GA1159983@mwanda
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:55 +01:00
Ben Hutchings
da1b9ad9f0 futex: Fix more put_pi_state() vs. exit_pi_state_list() races
From: Peter Zijlstra <peterz@infradead.org>

commit 153fbd1226fb30b8630802aa5047b8af5ef53c9f upstream.

Dmitry (through syzbot) reported being able to trigger the WARN in
get_pi_state() and a use-after-free on:

	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

Both are due to this race:

  exit_pi_state_list()				put_pi_state()

  lock(&curr->pi_lock)
  while() {
	pi_state = list_first_entry(head);
	hb = hash_futex(&pi_state->key);
	unlock(&curr->pi_lock);

						dec_and_test(&pi_state->refcount);

	lock(&hb->lock)
	lock(&pi_state->pi_mutex.wait_lock)	// uaf if pi_state free'd
	lock(&curr->pi_lock);

	....

	unlock(&curr->pi_lock);
	get_pi_state();				// WARN; refcount==0

The problem is we take the reference count too late, and don't allow it
being 0. Fix it by using inc_not_zero() and simply retrying the loop
when we fail to get a refcount. In that case put_pi_state() should
remove the entry from the list.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Gratian Crisan <gratian.crisan@ni.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dvhart@infradead.org
Cc: syzbot <bot+2af19c9e1ffe4d4ee1d16c56ae7580feaee75765@syzkaller.appspotmail.com>
Cc: syzkaller-bugs@googlegroups.com
Cc: <stable@vger.kernel.org>
Fixes: c74aef2d06a9 ("futex: Fix pi_state->owner serialization")
Link: http://lkml.kernel.org/r/20171031101853.xpfh72y643kdfhjs@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:55 +01:00
Ben Hutchings
9787adc793 futex: Fix pi_state->owner serialization
From: Peter Zijlstra <peterz@infradead.org>

commit c74aef2d06a9f59cece89093eecc552933cba72a upstream.

There was a reported suspicion about a race between exit_pi_state_list()
and put_pi_state(). The same report mentioned the comment with
put_pi_state() said it should be called with hb->lock held, and it no
longer is in all places.

As it turns out, the pi_state->owner serialization is indeed broken. As per
the new rules:

  734009e96d19 ("futex: Change locking rules")

pi_state->owner should be serialized by pi_state->pi_mutex.wait_lock.
For the sites setting pi_state->owner we already hold wait_lock (where
required) but exit_pi_state_list() and put_pi_state() were not and
raced on clearing it.

Fixes: 734009e96d19 ("futex: Change locking rules")
Reported-by: Gratian Crisan <gratian.crisan@ni.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: dvhart@infradead.org
Cc: stable@vger.kernel.org
Link:
https://lkml.kernel.org/r/20170922154806.jd3ffltfk24m4o4y@hirez.programming.kicks-ass.net
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:55 +01:00
Ben Hutchings
25a678da6d futex: Futex_unlock_pi() determinism
From: Peter Zijlstra <peterz@infradead.org>

commit bebe5b514345f09be2c15e414d076b02ecb9cce8 upstream.

The problem with returning -EAGAIN when the waiter state mismatches is that
it becomes very hard to proof a bounded execution time on the
operation. And seeing that this is a RT operation, this is somewhat
important.

While in practise; given the previous patch; it will be very unlikely to
ever really take more than one or two rounds, proving so becomes rather
hard.

However, now that modifying wait_list is done while holding both hb->lock
and wait_lock, the scenario can be avoided entirely by acquiring wait_lock
while still holding hb-lock. Doing a hand-over, without leaving a hole.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.112378812@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:55 +01:00
Ben Hutchings
312d9d66a7 futex: Pull rt_mutex_futex_unlock() out from under hb->lock
From: Peter Zijlstra <peterz@infradead.org>

commit 16ffa12d742534d4ff73e8b3a4e81c1de39196f0 upstream.

There's a number of 'interesting' problems, all caused by holding
hb->lock while doing the rt_mutex_unlock() equivalient.

Notably:

 - a PI inversion on hb->lock; and,

 - a SCHED_DEADLINE crash because of pointer instability.

The previous changes:

 - changed the locking rules to cover {uval,pi_state} with wait_lock.

 - allow to do rt_mutex_futex_unlock() without dropping wait_lock; which in
   turn allows to rely on wait_lock atomicity completely.

 - simplified the waiter conundrum.

It's now sufficient to hold rtmutex::wait_lock and a reference on the
pi_state to protect the state consistency, so hb->lock can be dropped
before calling rt_mutex_futex_unlock().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.900002056@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:54 +01:00
Ben Hutchings
921a7e30b1 futex: Cleanup refcounting
From: Peter Zijlstra <peterz@infradead.org>

commit bf92cf3a5100f5a0d5f9834787b130159397cb22 upstream.

Add a put_pit_state() as counterpart for get_pi_state() so the refcounting
becomes consistent.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.801778516@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:54 +01:00
Ben Hutchings
bfefc9e38d futex: Cleanup variable names for futex_top_waiter()
From: Peter Zijlstra <peterz@infradead.org>

commit 499f5aca2cdd5e958b27e2655e7e7f82524f46b1 upstream.

futex_top_waiter() returns the top-waiter on the pi_mutex. Assinging
this to a variable 'match' totally obscures the code.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.554710645@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 4.9: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 11:25:54 +01:00
Thomas Gleixner
91509e8494 futex: fix dead code in attach_to_pi_owner()
The handle_exit_race() function is defined in commit 9c3f39860367
 ("futex: Cure exit race"), which never returns -EBUSY. This results
in a small piece of dead code in the attach_to_pi_owner() function:

	int ret = handle_exit_race(uaddr, uval, p); /* Never return -EBUSY */
	...
	if (ret == -EBUSY)
		*exiting = p; /* dead code */

The return value -EBUSY is added to handle_exit_race() in upsteam
commit ac31c7ff8624409 ("futex: Provide distinct return value when
owner is exiting"). This commit was incorporated into v4.9.255, before
the function handle_exit_race() was introduced, whitout Modify
handle_exit_race().

To fix dead code, extract the change of handle_exit_race() from
commit ac31c7ff8624409 ("futex: Provide distinct return value when owner
 is exiting"), re-incorporated.

Lee writes:

This commit takes the remaining functional snippet of:

 ac31c7ff8624409 ("futex: Provide distinct return value when owner is exiting")

... and is the correct fix for this issue.


Fixes: 9c3f39860367 ("futex: Cure exit race")
Cc: stable@vger.kernel.org # v4.9.258
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Reviewed-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-03 17:44:45 +01:00
Peter Zijlstra
0d351804d4 futex: Fix OWNER_DEAD fixup
commit a97cb0e7b3f4c6297fd857055ae8e895f402f501 upstream.

Both Geert and DaveJ reported that the recent futex commit:

  c1e2f0eaf015 ("futex: Avoid violating the 10th rule of futex")

introduced a problem with setting OWNER_DEAD. We set the bit on an
uninitialized variable and then entirely optimize it away as a
dead-store.

Move the setting of the bit to where it is more useful.

Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: c1e2f0eaf015 ("futex: Avoid violating the 10th rule of futex")
Link: http://lkml.kernel.org/r/20180122103947.GD2228@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-03 17:44:45 +01:00
Fangrui Song
3d852076ed module: Ignore _GLOBAL_OFFSET_TABLE_ when warning for undefined symbols
commit ebfac7b778fac8b0e8e92ec91d0b055f046b4604 upstream.

clang-12 -fno-pic (since
a084c0388e)
can emit `call __stack_chk_fail@PLT` instead of `call __stack_chk_fail`
on x86.  The two forms should have identical behaviors on x86-64 but the
former causes GNU as<2.37 to produce an unreferenced undefined symbol
_GLOBAL_OFFSET_TABLE_.

(On x86-32, there is an R_386_PC32 vs R_386_PLT32 difference but the
linker behavior is identical as far as Linux kernel is concerned.)

Simply ignore _GLOBAL_OFFSET_TABLE_ for now, like what
scripts/mod/modpost.c:ignore_undef_symbol does. This also fixes the
problem for gcc/clang -fpie and -fpic, which may emit `call foo@PLT` for
external function calls on x86.

Note: ld -z defs and dynamic loaders do not error for unreferenced
undefined symbols so the module loader is reading too much.  If we ever
need to ignore more symbols, the code should be refactored to ignore
unreferenced symbols.

Cc: <stable@vger.kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1250
Link: https://sourceware.org/bugzilla/show_bug.cgi?id=27178
Reported-by: Marco Elver <elver@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Marco Elver <elver@google.com>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-03 17:44:44 +01:00
Paul Cercueil
e2e1857a87 seccomp: Add missing return in non-void function
commit 04b38d012556199ba4c31195940160e0c44c64f0 upstream.

We don't actually care about the value, since the kernel will panic
before that; but a value should nonetheless be returned, otherwise the
compiler will complain.

Fixes: 8112c4f140fa ("seccomp: remove 2-phase API")
Cc: stable@vger.kernel.org # 4.7+
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210111172839.640914-1-paul@crapouillou.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-03 17:44:43 +01:00
Steven Rostedt (VMware)
75f4d0fb87 tracepoint: Do not fail unregistering a probe due to memory failure
[ Upstream commit befe6d946551d65cddbd32b9cb0170b0249fd5ed ]

The list of tracepoint callbacks is managed by an array that is protected
by RCU. To update this array, a new array is allocated, the updates are
copied over to the new array, and then the list of functions for the
tracepoint is switched over to the new array. After a completion of an RCU
grace period, the old array is freed.

This process happens for both adding a callback as well as removing one.
But on removing a callback, if the new array fails to be allocated, the
callback is not removed, and may be used after it is freed by the clients
of the tracepoint.

There's really no reason to fail if the allocation for a new array fails
when removing a function. Instead, the function can simply be replaced by a
stub function that could be cleaned up on the next modification of the
array. That is, instead of calling the function registered to the
tracepoint, it would call a stub function in its place.

Link: https://lore.kernel.org/r/20201115055256.65625-1-mmullins@mmlx.us
Link: https://lore.kernel.org/r/20201116175107.02db396d@gandalf.local.home
Link: https://lore.kernel.org/r/20201117211836.54acaef2@oasis.local.home
Link: https://lkml.kernel.org/r/20201118093405.7a6d2290@gandalf.local.home

[ Note, this version does use undefined compiler behavior (assuming that
  a stub function with no parameters or return, can be called by a location
  that thinks it has parameters but still no return value. Static calls
  do the same thing, so this trick is not without precedent.

  There's another solution that uses RCU tricks and is more complex, but
  can be an alternative if this solution becomes an issue.

  Link: https://lore.kernel.org/lkml/20210127170721.58bce7cc@gandalf.local.home/
]

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@chromium.org>
Cc: netdev <netdev@vger.kernel.org>
Cc: bpf <bpf@vger.kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Florian Weimer <fw@deneb.enyo.de>
Fixes: 97e1c18e8d17b ("tracing: Kernel Tracepoints")
Reported-by: syzbot+83aa762ef23b6f0d1991@syzkaller.appspotmail.com
Reported-by: syzbot+d29e58bb557324e55e5e@syzkaller.appspotmail.com
Reported-by: Matt Mullins <mmullins@mmlx.us>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Matt Mullins <mmullins@mmlx.us>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-03 17:44:38 +01:00
Sumit Garg
e918edb24c kdb: Make memory allocations more robust
commit 93f7a6d818deef69d0ba652d46bae6fbabbf365c upstream.

Currently kdb uses in_interrupt() to determine whether its library
code has been called from the kgdb trap handler or from a saner calling
context such as driver init. This approach is broken because
in_interrupt() alone isn't able to determine kgdb trap handler entry from
normal task context. This can happen during normal use of basic features
such as breakpoints and can also be trivially reproduced using:
echo g > /proc/sysrq-trigger

We can improve this by adding check for in_dbg_master() instead which
explicitly determines if we are running in debugger context.

Cc: stable@vger.kernel.org
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Link: https://lore.kernel.org/r/1611313556-4004-1-git-send-email-sumit.garg@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-03 17:44:31 +01:00
Bui Quang Minh
253150830a bpf: Check for integer overflow when using roundup_pow_of_two()
[ Upstream commit 6183f4d3a0a2ad230511987c6c362ca43ec0055f ]

On 32-bit architecture, roundup_pow_of_two() can return 0 when the argument
has upper most bit set due to resulting 1UL << 32. Add a check for this case.

Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210127063653.3576-1-minhquangbui99@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-23 13:59:16 +01:00
Steven Rostedt (VMware)
2e584b1a02 tracing: Check length before giving out the filter buffer
commit b220c049d5196dd94d992dd2dc8cba1a5e6123bf upstream.

When filters are used by trace events, a page is allocated on each CPU and
used to copy the trace event fields to this page before writing to the ring
buffer. The reason to use the filter and not write directly into the ring
buffer is because a filter may discard the event and there's more overhead
on discarding from the ring buffer than the extra copy.

The problem here is that there is no check against the size being allocated
when using this page. If an event asks for more than a page size while being
filtered, it will get only a page, leading to the caller writing more that
what was allocated.

Check the length of the request, and if it is more than PAGE_SIZE minus the
header default back to allocating from the ring buffer directly. The ring
buffer may reject the event if its too big anyway, but it wont overflow.

Link: https://lore.kernel.org/ath10k/1612839593-2308-1-git-send-email-wgong@codeaurora.org/

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1ff4 ("tracing: Use temp buffer when filtering events")
Reported-by: Wen Gong <wgong@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:15 +01:00
Steven Rostedt (VMware)
8b1e20baa5 tracing: Do not count ftrace events in top level enable output
commit 256cfdd6fdf70c6fcf0f7c8ddb0ebd73ce8f3bc9 upstream.

The file /sys/kernel/tracing/events/enable is used to enable all events by
echoing in "1", or disabling all events when echoing in "0". To know if all
events are enabled, disabled, or some are enabled but not all of them,
cating the file should show either "1" (all enabled), "0" (all disabled), or
"X" (some enabled but not all of them). This works the same as the "enable"
files in the individule system directories (like tracing/events/sched/enable).

But when all events are enabled, the top level "enable" file shows "X". The
reason is that its checking the "ftrace" events, which are special events
that only exist for their format files. These include the format for the
function tracer events, that are enabled when the function tracer is
enabled, but not by the "enable" file. The check includes these events,
which will always be disabled, and even though all true events are enabled,
the top level "enable" file will show "X" instead of "1".

To fix this, have the check test the event's flags to see if it has the
"IGNORE_ENABLE" flag set, and if so, not test it.

Cc: stable@vger.kernel.org
Fixes: 553552ce1796c ("tracing: Combine event filter_active and enable into single flags field")
Reported-by: "Yordan Karadzhov (VMware)" <y.karadz@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:15 +01:00
Thomas Gleixner
9c3f398603 futex: Cure exit race
commit da791a667536bf8322042e38ca85d55a78d3c273 upstream.

Stefan reported, that the glibc tst-robustpi4 test case fails
occasionally. That case creates the following race between
sys_exit() and sys_futex_lock_pi():

 CPU0				CPU1

 sys_exit()			sys_futex()
  do_exit()			 futex_lock_pi()
   exit_signals(tsk)		  No waiters:
    tsk->flags |= PF_EXITING;	  *uaddr == 0x00000PID
  mm_release(tsk)		  Set waiter bit
   exit_robust_list(tsk) {	  *uaddr = 0x80000PID;
      Set owner died		  attach_to_pi_owner() {
    *uaddr = 0xC0000000;	   tsk = get_task(PID);
   }				   if (!tsk->flags & PF_EXITING) {
  ...				     attach();
  tsk->flags |= PF_EXITPIDONE;	   } else {
				     if (!(tsk->flags & PF_EXITPIDONE))
				       return -EAGAIN;
				     return -ESRCH; <--- FAIL
				   }

ESRCH is returned all the way to user space, which triggers the glibc test
case assert. Returning ESRCH unconditionally is wrong here because the user
space value has been changed by the exiting task to 0xC0000000, i.e. the
FUTEX_OWNER_DIED bit is set and the futex PID value has been cleared. This
is a valid state and the kernel has to handle it, i.e. taking the futex.

Cure it by rereading the user space value when PF_EXITING and PF_EXITPIDONE
is set in the task which 'owns' the futex. If the value has changed, let
the kernel retry the operation, which includes all regular sanity checks
and correctly handles the FUTEX_OWNER_DIED case.

If it hasn't changed, then return ESRCH as there is no way to distinguish
this case from malfunctioning user space. This happens when the exiting
task did not have a robust list, the robust list was corrupted or the user
space value in the futex was simply bogus.

Reported-by: Stefan Liebler <stli@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200467
Link: https://lkml.kernel.org/r/20181210152311.986181245@linutronix.de
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[Lee: Required to satisfy functional dependency from futex back-port.
 Re-add the missing handle_exit_race() parts from:
 3d4775df0a89 ("futex: Replace PF_EXITPIDONE with a state")]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:15 +01:00
Peter Zijlstra
dc3f2ff117 futex: Change locking rules
Currently futex-pi relies on hb->lock to serialize everything. But hb->lock
creates another set of problems, especially priority inversions on RT where
hb->lock becomes a rt_mutex itself.

The rt_mutex::wait_lock is the most obvious protection for keeping the
futex user space value and the kernel internal pi_state in sync.

Rework and document the locking so rt_mutex::wait_lock is held accross all
operations which modify the user space value and the pi state.

This allows to invoke rt_mutex_unlock() (including deboost) without holding
hb->lock as a next step.

Nothing yet relies on the new locking rules.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.751993333@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[Lee: Back-ported in support of a previous futex back-port attempt]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:15 +01:00
Thomas Gleixner
ad8fdbabcc futex: Ensure the correct return value from futex_lock_pi()
commit 12bb3f7f1b03d5913b3f9d4236a488aa7774dfe9 upstream

In case that futex_lock_pi() was aborted by a signal or a timeout and the
task returned without acquiring the rtmutex, but is the designated owner of
the futex due to a concurrent futex_unlock_pi() fixup_owner() is invoked to
establish consistent state. In that case it invokes fixup_pi_state_owner()
which in turn tries to acquire the rtmutex again. If that succeeds then it
does not propagate this success to fixup_owner() and futex_lock_pi()
returns -EINTR or -ETIMEOUT despite having the futex locked.

Return success from fixup_pi_state_owner() in all cases where the current
task owns the rtmutex and therefore the futex and propagate it correctly
through fixup_owner(). Fixup the other callsite which does not expect a
positive return value.

Fixes: c1e2f0eaf015 ("futex: Avoid violating the 10th rule of futex")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[Lee: Back-ported in support of a previous futex attempt]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:15 +01:00
Steven Rostedt (VMware)
028bd866c4 fgraph: Initialize tracing_graph_pause at task creation
commit 7e0a9220467dbcfdc5bc62825724f3e52e50ab31 upstream.

On some archs, the idle task can call into cpu_suspend(). The cpu_suspend()
will disable or pause function graph tracing, as there's some paths in
bringing down the CPU that can have issues with its return address being
modified. The task_struct structure has a "tracing_graph_pause" atomic
counter, that when set to something other than zero, the function graph
tracer will not modify the return address.

The problem is that the tracing_graph_pause counter is initialized when the
function graph tracer is enabled. This can corrupt the counter for the idle
task if it is suspended in these architectures.

   CPU 1				CPU 2
   -----				-----
  do_idle()
    cpu_suspend()
      pause_graph_tracing()
          task_struct->tracing_graph_pause++ (0 -> 1)

				start_graph_tracing()
				  for_each_online_cpu(cpu) {
				    ftrace_graph_init_idle_task(cpu)
				      task-struct->tracing_graph_pause = 0 (1 -> 0)

      unpause_graph_tracing()
          task_struct->tracing_graph_pause-- (0 -> -1)

The above should have gone from 1 to zero, and enabled function graph
tracing again. But instead, it is set to -1, which keeps it disabled.

There's no reason that the field tracing_graph_pause on the task_struct can
not be initialized at boot up.

Cc: stable@vger.kernel.org
Fixes: 380c4b1411ccd ("tracing/function-graph-tracer: append the tracing_graph_flag")
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211339
Reported-by: pierre.gondois@arm.com
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-23 13:59:14 +01:00
Wang ShaoBo
87ab565117 kretprobe: Avoid re-registration of the same kretprobe earlier
commit 0188b87899ffc4a1d36a0badbe77d56c92fd91dc upstream.

Our system encountered a re-init error when re-registering same kretprobe,
where the kretprobe_instance in rp->free_instances is illegally accessed
after re-init.

Implementation to avoid re-registration has been introduced for kprobe
before, but lags for register_kretprobe(). We must check if kprobe has
been re-registered before re-initializing kretprobe, otherwise it will
destroy the data struct of kretprobe registered, which can lead to memory
leak, system crash, also some unexpected behaviors.

We use check_kprobe_rereg() to check if kprobe has been re-registered
before running register_kretprobe()'s body, for giving a warning message
and terminate registration process.

Link: https://lkml.kernel.org/r/20210128124427.2031088-1-bobo.shaobowang@huawei.com

Cc: stable@vger.kernel.org
Fixes: 1f0ab40976460 ("kprobes: Prevent re-registration of the same kprobe")
[ The above commit should have been done for kretprobes too ]
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@linux.ibm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com>
Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:25 +01:00
Arnd Bergmann
f54be213e2 elfcore: fix building with clang
commit 6e7b64b9dd6d96537d816ea07ec26b7dedd397b9 upstream.

kernel/elfcore.c only contains weak symbols, which triggers a bug with
clang in combination with recordmcount:

  Cannot find symbol for section 2: .text.
  kernel/elfcore.o: failed

Move the empty stubs into linux/elfcore.h as inline functions.  As only
two architectures use these, just use the architecture specific Kconfig
symbols to key off the declaration.

Link: https://lkml.kernel.org/r/20201204165742.3815221-2-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Barret Rhoden <brho@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:25 +01:00
Thomas Gleixner
b960d9ae7f futex: Handle faults correctly for PI futexes
fixup_pi_state_owner() tries to ensure that the state of the rtmutex,
pi_state and the user space value related to the PI futex are consistent
before returning to user space. In case that the user space value update
faults and the fault cannot be resolved by faulting the page in via
fault_in_user_writeable() the function returns with -EFAULT and leaves
the rtmutex and pi_state owner state inconsistent.

A subsequent futex_unlock_pi() operates on the inconsistent pi_state and
releases the rtmutex despite not owning it which can corrupt the RB tree of
the rtmutex and cause a subsequent kernel stack use after free.

It was suggested to loop forever in fixup_pi_state_owner() if the fault
cannot be resolved, but that results in runaway tasks which is especially
undesired when the problem happens due to a programming error and not due
to malice.

As the user space value cannot be fixed up, the proper solution is to make
the rtmutex and the pi_state consistent so both have the same owner. This
leaves the user space value out of sync. Any subsequent operation on the
futex will fail because the 10th rule of PI futexes (pi_state owner and
user space value are consistent) has been violated.

As a consequence this removes the inept attempts of 'fixing' the situation
in case that the current task owns the rtmutex when returning with an
unresolvable fault by unlocking the rtmutex which left pi_state::owner and
rtmutex::owner out of sync in a different and only slightly less dangerous
way.

Fixes: 1b7558e457ed ("futexes: fix fault handling in futex_lock_pi")
Reported-by: gzobqq@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:24 +01:00
Thomas Gleixner
48ab8e8e40 futex: Simplify fixup_pi_state_owner()
[ Upstream commit f2dac39d93987f7de1e20b3988c8685523247ae2 ]

Too many gotos already and an upcoming fix would make it even more
unreadable.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:24 +01:00
Thomas Gleixner
7d455bb66a futex: Use pi_state_update_owner() in put_pi_state()
[ Upstream commit 6ccc84f917d33312eb2846bd7b567639f585ad6d ]

No point in open coding it. This way it gains the extra sanity checks.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:24 +01:00
Thomas Gleixner
285b624ec7 rtmutex: Remove unused argument from rt_mutex_proxy_unlock()
[ Upstream commit 2156ac1934166d6deb6cd0f6ffc4c1076ec63697 ]
Nothing uses the argument. Remove it as preparation to use
pi_state_update_owner().

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:24 +01:00
Thomas Gleixner
76bc0eca09 futex: Provide and use pi_state_update_owner()
[ Upstream commit c5cade200ab9a2a3be9e7f32a752c8d86b502ec7 ]

Updating pi_state::owner is done at several places with the same
code. Provide a function for it and use that at the obvious places.

This is also a preparation for a bug fix to avoid yet another copy of the
same code or alternatively introducing a completely unpenetratable mess of
gotos.

Originally-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:24 +01:00
Thomas Gleixner
083895e364 futex: Replace pointless printk in fixup_owner()
[ Upstream commit 04b79c55201f02ffd675e1231d731365e335c307 ]

If that unexpected case of inconsistent arguments ever happens then the
futex state is left completely inconsistent and the printk is not really
helpful. Replace it with a warning and make the state consistent.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:23 +01:00
Peter Zijlstra
781691c797 futex: Avoid violating the 10th rule of futex
commit c1e2f0eaf015fb7076d51a339011f2383e6dd389 upstream.

Julia reported futex state corruption in the following scenario:

   waiter                                  waker                                            stealer (prio > waiter)

   futex(WAIT_REQUEUE_PI, uaddr, uaddr2,
         timeout=[N ms])
      futex_wait_requeue_pi()
         futex_wait_queue_me()
            freezable_schedule()
            <scheduled out>
                                           futex(LOCK_PI, uaddr2)
                                           futex(CMP_REQUEUE_PI, uaddr,
                                                 uaddr2, 1, 0)
                                              /* requeues waiter to uaddr2 */
                                           futex(UNLOCK_PI, uaddr2)
                                                 wake_futex_pi()
                                                    cmp_futex_value_locked(uaddr2, waiter)
                                                    wake_up_q()
           <woken by waker>
           <hrtimer_wakeup() fires,
            clears sleeper->task>
                                                                                           futex(LOCK_PI, uaddr2)
                                                                                              __rt_mutex_start_proxy_lock()
                                                                                                 try_to_take_rt_mutex() /* steals lock */
                                                                                                    rt_mutex_set_owner(lock, stealer)
                                                                                              <preempted>
         <scheduled in>
         rt_mutex_wait_proxy_lock()
            __rt_mutex_slowlock()
               try_to_take_rt_mutex() /* fails, lock held by stealer */
               if (timeout && !timeout->task)
                  return -ETIMEDOUT;
            fixup_owner()
               /* lock wasn't acquired, so,
                  fixup_pi_state_owner skipped */

   return -ETIMEDOUT;

   /* At this point, we've returned -ETIMEDOUT to userspace, but the
    * futex word shows waiter to be the owner, and the pi_mutex has
    * stealer as the owner */

   futex_lock(LOCK_PI, uaddr2)
     -> bails with EDEADLK, futex word says we're owner.

And suggested that what commit:

  73d786bd043e ("futex: Rework inconsistent rt_mutex/futex_q state")

removes from fixup_owner() looks to be just what is needed. And indeed
it is -- I completely missed that requeue_pi could also result in this
case. So we need to restore that, except that subsequent patches, like
commit:

  16ffa12d7425 ("futex: Pull rt_mutex_futex_unlock() out from under hb->lock")

changed all the locking rules. Even without that, the sequence:

-               if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) {
-                       locked = 1;
-                       goto out;
-               }

-               raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
-               owner = rt_mutex_owner(&q->pi_state->pi_mutex);
-               if (!owner)
-                       owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
-               raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
-               ret = fixup_pi_state_owner(uaddr, q, owner);

already suggests there were races; otherwise we'd never have to look
at next_owner.

So instead of doing 3 consecutive wait_lock sections with who knows
what races, we do it all in a single section. Additionally, the usage
of pi_state->owner in fixup_owner() was only safe because only the
rt_mutex owner would modify it, which this additional case wrecks.

Luckily the values can only change away and not to the value we're
testing, this means we can do a speculative test and double check once
we have the wait_lock.

Fixes: 73d786bd043e ("futex: Rework inconsistent rt_mutex/futex_q state")
Reported-by: Julia Cartwright <julia@ni.com>
Reported-by: Gratian Crisan <gratian.crisan@ni.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Julia Cartwright <julia@ni.com>
Tested-by: Gratian Crisan <gratian.crisan@ni.com>
Cc: Darren Hart <dvhart@infradead.org>
Link: https://lkml.kernel.org/r/20171208124939.7livp7no2ov65rrc@hirez.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[Lee: Back-ported to solve a dependency]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:23 +01:00
Peter Zijlstra
71f093c5e9 futex: Rework inconsistent rt_mutex/futex_q state
[Upstream commit 73d786bd043ebc855f349c81ea805f6b11cbf2aa ]

There is a weird state in the futex_unlock_pi() path when it interleaves
with a concurrent futex_lock_pi() at the point where it drops hb->lock.

In this case, it can happen that the rt_mutex wait_list and the futex_q
disagree on pending waiters, in particular rt_mutex will find no pending
waiters where futex_q thinks there are. In this case the rt_mutex unlock
code cannot assign an owner.

The futex side fixup code has to cleanup the inconsistencies with quite a
bunch of interesting corner cases.

Simplify all this by changing wake_futex_pi() to return -EAGAIN when this
situation occurs. This then gives the futex_lock_pi() code the opportunity
to continue and the retried futex_unlock_pi() will now observe a coherent
state.

The only problem is that this breaks RT timeliness guarantees. That
is, consider the following scenario:

  T1 and T2 are both pinned to CPU0. prio(T2) > prio(T1)

    CPU0

    T1
      lock_pi()
      queue_me()  <- Waiter is visible

    preemption

    T2
      unlock_pi()
	loops with -EAGAIN forever

Which is undesirable for PI primitives. Future patches will rectify
this.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.850383690@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[Lee: Back-ported to solve a dependency]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:23 +01:00
Peter Zijlstra
d4dd758855 futex: Remove rt_mutex_deadlock_account_*()
These are unused and clutter up the code.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.652692478@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[Lee: Back-ported to solve a dependency]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:23 +01:00
Peter Zijlstra
2c60d4aa88 futex,rt_mutex: Provide futex specific rt_mutex API
[ Upstream commit 5293c2efda37775346885c7e924d4ef7018ea60b ]

Part of what makes futex_unlock_pi() intricate is that
rt_mutex_futex_unlock() -> rt_mutex_slowunlock() can drop
rt_mutex::wait_lock.

This means it cannot rely on the atomicy of wait_lock, which would be
preferred in order to not rely on hb->lock so much.

The reason rt_mutex_slowunlock() needs to drop wait_lock is because it can
race with the rt_mutex fastpath, however futexes have their own fast path.

Since futexes already have a bunch of separate rt_mutex accessors, complete
that set and implement a rt_mutex variant without fastpath for them.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.702962446@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[Lee: Back-ported to solve a dependency]
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:09:23 +01:00
Thomas Gleixner
cf16e42709 futex: Prevent exit livelock
commit 3ef240eaff36b8119ac9e2ea17cbf41179c930ba upstream.

Oleg provided the following test case:

int main(void)
{
	struct sched_param sp = {};

	sp.sched_priority = 2;
	assert(sched_setscheduler(0, SCHED_FIFO, &sp) == 0);

	int lock = vfork();
	if (!lock) {
		sp.sched_priority = 1;
		assert(sched_setscheduler(0, SCHED_FIFO, &sp) == 0);
		_exit(0);
	}

	syscall(__NR_futex, &lock, FUTEX_LOCK_PI, 0,0,0);
	return 0;
}

This creates an unkillable RT process spinning in futex_lock_pi() on a UP
machine or if the process is affine to a single CPU. The reason is:

 parent	    	    			child

  set FIFO prio 2

  vfork()			->	set FIFO prio 1
   implies wait_for_child()	 	sched_setscheduler(...)
 			   		exit()
					do_exit()
 					....
					mm_release()
					  tsk->futex_state = FUTEX_STATE_EXITING;
					  exit_futex(); (NOOP in this case)
					  complete() --> wakes parent
  sys_futex()
    loop infinite because
    tsk->futex_state == FUTEX_STATE_EXITING

The same problem can happen just by regular preemption as well:

  task holds futex
  ...
  do_exit()
    tsk->futex_state = FUTEX_STATE_EXITING;

  --> preemption (unrelated wakeup of some other higher prio task, e.g. timer)

  switch_to(other_task)

  return to user
  sys_futex()
	loop infinite as above

Just for the fun of it the futex exit cleanup could trigger the wakeup
itself before the task sets its futex state to DEAD.

To cure this, the handling of the exiting owner is changed so:

   - A refcount is held on the task

   - The task pointer is stored in a caller visible location

   - The caller drops all locks (hash bucket, mmap_sem) and blocks
     on task::futex_exit_mutex. When the mutex is acquired then
     the exiting task has completed the cleanup and the state
     is consistent and can be reevaluated.

This is not a pretty solution, but there is no choice other than returning
an error code to user space, which would break the state consistency
guarantee and open another can of problems including regressions.

For stable backports the preparatory commits ac31c7ff8624 .. ba31c1a48538
are required as well, but for anything older than 5.3.y the backports are
going to be provided when this hits mainline as the other dependencies for
those kernels are definitely not stable material.

Fixes: 778e9a9c3e71 ("pi-futex: fix exit races and locking problems")
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Stable Team <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20191106224557.041676471@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:19:50 +01:00
Thomas Gleixner
c27f392040 futex: Provide distinct return value when owner is exiting
commit ac31c7ff8624409ba3c4901df9237a616c187a5d upstream.

attach_to_pi_owner() returns -EAGAIN for various cases:

 - Owner task is exiting
 - Futex value has changed

The caller drops the held locks (hash bucket, mmap_sem) and retries the
operation. In case of the owner task exiting this can result in a live
lock.

As a preparatory step for seperating those cases, provide a distinct return
value (EBUSY) for the owner exiting case.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191106224556.935606117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:19:50 +01:00
Thomas Gleixner
ad3466ae9d futex: Add mutex around futex exit
commit 3f186d974826847a07bc7964d79ec4eded475ad9 upstream.

The mutex will be used in subsequent changes to replace the busy looping of
a waiter when the futex owner is currently executing the exit cleanup to
prevent a potential live lock.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191106224556.845798895@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:19:50 +01:00
Thomas Gleixner
ff3a33f3c9 futex: Provide state handling for exec() as well
commit af8cbda2cfcaa5515d61ec500498d46e9a8247e2 upstream.

exec() attempts to handle potentially held futexes gracefully by running
the futex exit handling code like exit() does.

The current implementation has no protection against concurrent incoming
waiters. The reason is that the futex state cannot be set to
FUTEX_STATE_DEAD after the cleanup because the task struct is still active
and just about to execute the new binary.

While its arguably buggy when a task holds a futex over exec(), for
consistency sake the state handling can at least cover the actual futex
exit cleanup section. This provides state consistency protection accross
the cleanup. As the futex state of the task becomes FUTEX_STATE_OK after the
cleanup has been finished, this cannot prevent subsequent attempts to
attach to the task in case that the cleanup was not successfull in mopping
up all leftovers.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191106224556.753355618@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:19:50 +01:00