IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 7c9d845f0612e5bcd23456a2ec43be8ac43458f1 ]
In nfs4_callback_devicenotify(), if we don't find a matching entry for
the deviceid, we're left with a pointer to 'struct nfs_server' that
actually points to the list of super blocks associated with our struct
nfs_client.
Furthermore, even if we have a valid pointer, nothing pins the super
block, and so the struct nfs_server could end up getting freed while
we're using it.
Since all we want is a pointer to the struct pnfs_layoutdriver_type,
let's skip all the iteration over super blocks, and just use APIs to
find the layout driver directly.
Reported-by: Xiaomeng Tong <xiam0nd.tong@gmail.com>
Fixes: 1be5683b03a7 ("pnfs: CB_NOTIFY_DEVICEID")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d02d81efc7564b4d5446a02e0214a164cf00b1f3 ]
If __nfs_pageio_add_request() fails to add the request, it will return
with either desc->pg_error < 0, or mirror->pg_recoalesce will be set, so
we are guaranteed either to exit the function altogether, or to loop.
However if there is nothing left in mirror->pg_list to coalesce, we must
exit, so make sure that we clear mirror->pg_recoalesce every time we
loop.
Reported-by: Olga Kornievskaia <aglo@umich.edu>
Fixes: 70536bf4eb07 ("NFS: Clean up reset of the mirror accounting variables")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1d15d121cc2ad4d016a7dc1493132a9696f91fc5 ]
There is no reason to retry the operation if a session error had
occurred in such case result structure isn't filled out.
Fixes: dff58530c4ca ("NFSv4.1: fix handling of backchannel binding in BIND_CONN_TO_SESSION")
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2cc7cc01c15f57d056318c33705647f87dcd4aab ]
Syzbot reported divide error in dbNextAG(). The problem was in missing
validation check for malicious image.
Syzbot crafted an image with bmp->db_numag equal to 0. There wasn't any
validation checks, but dbNextAG() blindly use bmp->db_numag in divide
expression
Fix it by validating bmp->db_numag in dbMount() and return an error if
image is malicious
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-and-tested-by: syzbot+46f5c25af73eb8330eb6@syzkaller.appspotmail.com
Signed-off-by: Pavel Skripkin <paskripkin@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cb8fac6d2727f79f211e745b16c9abbf4d8be652 ]
[You don't often get email from khoroshilov@ispras.ru. Learn why this is important at http://aka.ms/LearnAboutSenderIdentification.]
Overflow check in not needed anymore after we switch to kmalloc_array().
Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Fixes: a4f743a6bb20 ("NFSv4.1: Convert open-coded array allocation calls to kmalloc_array()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 64cfca85bacde54caa64e0ab855c48734894fa37 ]
Valid return values for decode_dirent() callback functions are:
0: Success
-EBADCOOKIE: End of directory
-EAGAIN: End of xdr_stream
All errors need to map into one of those three values.
Fixes: 573c4e1ef53a ("NFS: Simplify ->decode_dirent() calling sequence")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6c984083ec2453dfd3fcf98f392f34500c73e3f2 ]
The use of mapping_set_error() in conjunction with calls to
filemap_check_errors() is problematic because every error gets reported
as either an EIO or an ENOSPC by filemap_check_errors() in functions
such as filemap_write_and_wait() or filemap_write_and_wait_range().
In almost all cases, we prefer to use the more nuanced wb errors.
Fixes: b8946d7bfb94 ("NFS: Revalidate the file mapping on all fatal writeback errors")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 50b3a818991074177a56c87124c7a7bdf5fa4f67 ]
We need to calculate the max file size accurately if the total blocks
that can address by block tree exceed the upper_limit. But this check is
not correct now, it only compute the total data blocks but missing
metadata blocks are needed. So in the case of "data blocks < upper_limit
&& total blocks > upper_limit", we will get wrong result. Fortunately,
this case could not happen in reality, but it's confused and better to
correct the computing.
bits data blocks metadatablocks upper_limit
10 16843020 66051 2147483647
11 134480396 263171 1073741823
12 1074791436 1050627 536870911 (*)
13 8594130956 4198403 268435455 (*)
14 68736258060 16785411 134217727 (*)
15 549822930956 67125251 67108863 (*)
16 4398314962956 268468227 33554431 (*)
[*] Need to calculate in depth.
Fixes: 1c2d14212b15 ("ext2: Fix underflow in ext2_max_size()")
Link: https://lore.kernel.org/r/20220212050532.179055-1-yi.zhang@huawei.com
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b56adcf525522e9ffa52471260298d91fc1d395 ]
When compressed file has blocks, f2fs_ioc_start_atomic_write will succeed,
but compressed flag will be remained in inode. If write partial compreseed
cluster and commit atomic write will cause data corruption.
This is the reproduction process:
Step 1:
create a compressed file ,write 64K data , call fsync(), then the blocks
are write as compressed cluster.
Step2:
iotcl(F2FS_IOC_START_ATOMIC_WRITE) --- this should be fail, but not.
write page 0 and page 3.
iotcl(F2FS_IOC_COMMIT_ATOMIC_WRITE) -- page 0 and 3 write as normal file,
Step3:
drop cache.
read page 0-4 -- Since page 0 has a valid block address, read as
non-compressed cluster, page 1 and 2 will be filled with compressed data
or zero.
The root cause is, after commit 7eab7a696827 ("f2fs: compress: remove
unneeded read when rewrite whole cluster"), in step 2, f2fs_write_begin()
only set target page dirty, and in f2fs_commit_inmem_pages(), we will write
partial raw pages into compressed cluster, result in corrupting compressed
cluster layout.
Fixes: 4c8ff7095bef ("f2fs: support data compression")
Fixes: 7eab7a696827 ("f2fs: compress: remove unneeded read when rewrite whole cluster")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Fengnan Chang <changfengnan@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f4613cdbe7739ce291554b316bff8e551383389 ]
When reflinking an inline extent, we assert that its file offset is 0 and
that its uncompressed length is not greater than the sector size. We then
return an error if one of those conditions is not satisfied. However we
use a return statement, which results in returning from btrfs_clone()
without freeing the path and buffer that were allocated before, as well as
not clearing the flag BTRFS_INODE_NO_DELALLOC_FLUSH for the destination
inode.
Fix that by jumping to the 'out' label instead, and also add a WARN_ON()
for each condition so that in case assertions are disabled, we get to
known which of the unexpected conditions triggered the error.
Fixes: a61e1e0df9f321 ("Btrfs: simplify inline extent handling when doing reflinks")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 344150999b7fc88502a65bbb147a47503eca2033 ]
Quoted from Jing Xia's report, there is a potential deadlock may happen
between kworker and checkpoint as below:
[T:writeback] [T:checkpoint]
- wb_writeback
- blk_start_plug
bio contains NodeA was plugged in writeback threads
- do_writepages -- sync write inodeB, inc wb_sync_req[DATA]
- f2fs_write_data_pages
- f2fs_write_single_data_page -- write last dirty page
- f2fs_do_write_data_page
- set_page_writeback -- clear page dirty flag and
PAGECACHE_TAG_DIRTY tag in radix tree
- f2fs_outplace_write_data
- f2fs_update_data_blkaddr
- f2fs_wait_on_page_writeback -- wait NodeA to writeback here
- inode_dec_dirty_pages
- writeback_sb_inodes
- writeback_single_inode
- do_writepages
- f2fs_write_data_pages -- skip writepages due to wb_sync_req[DATA]
- wbc->pages_skipped += get_dirty_pages() -- PAGECACHE_TAG_DIRTY is not set but get_dirty_pages() returns one
- requeue_inode -- requeue inode to wb->b_dirty queue due to non-zero.pages_skipped
- blk_finish_plug
Let's try to avoid deadlock condition by forcing unplugging previous bio via
blk_finish_plug(current->plug) once we'v skipped writeback in writepages()
due to valid sbi->wb_sync_req[DATA/NODE].
Fixes: 687de7f1010c ("f2fs: avoid IO split due to mixed WB_SYNC_ALL and WB_SYNC_NONE")
Signed-off-by: Zhiguo Niu <zhiguo.niu@unisoc.com>
Signed-off-by: Jing Xia <jing.xia@unisoc.com>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4d2eeafecd6c83b4444db3dc0ada201c89b1aa44 ]
The nfsd file cache table can be pretty large and its allocation
may require as many as 80 contigious pages.
Employ the same fix that was employed for similar issue that was
reported for the reply cache hash table allocation several years ago
by commit 8f97514b423a ("nfsd: more robust allocation failure handling
in nfsd_reply_cache_init").
Fixes: 65294c1f2c5e ("nfsd: add a new struct file caching facility to nfsd")
Link: https://lore.kernel.org/linux-nfs/e3cdaeec85a6cfec980e87fc294327c0381c1778.camel@kernel.org/
Suggested-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7d19e3dab0002e527052b0aaf986e8c32e5537bf ]
It needs to assign sbi->gc_mode with GC_IDLE_AT rather than GC_AT when
user tries to enable ATGC via gc_idle sysfs interface, fix it.
Fixes: 093749e296e2 ("f2fs: support age threshold based garbage collection")
Cc: Zhipeng Tan <tanzhipeng@hust.edu.cn>
Signed-off-by: Jicheng Shao <shaojicheng@hust.edu.cn>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5e929367468c8f97cd1ffb0417316cecfebef94b ]
The fix for not advancing the iterator if we're using fixed buffers is
broken in that it can hit a condition where we don't terminate the loop.
This results in io-wq looping forever, asking to read (or write) 0 bytes
for every subsequent loop.
Reported-by: Joel Jaeschke <joel.jaeschke@gmail.com>
Link: https://github.com/axboe/liburing/issues/549
Fixes: 16c8d2df7ec0 ("io_uring: ensure symmetry in handling iter types in loop_rw_iter()")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit adf3a9e9f556613197583a1884f0de40a8bb6fb9 ]
Looks like a victim of too much copy/paste, we should not be looking
at req->open.how in accept. The point is to check CLOEXEC and error
out, which we don't invalid direct descriptors on exec. Hence any
attempt to get a direct descriptor with CLOEXEC is invalid.
No harm is done here, as req->open.how.flags overlaps with
req->accept.flags, but it's very confusing and might change if either of
those command structs are modified.
Fixes: aaa4db12ef7b ("io_uring: accept directly into fixed file table")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3777369ff1518b579560611a0d0c33f930154f64 upstream.
[BUG]
There is a bug report that a bitflip in the transid part of an extent
buffer makes btrfs to reject certain tree blocks:
BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22
[CAUSE]
Note the failed transid check, hex(262166) = 0x40016, while
hex(22) = 0x16.
It's an obvious bitflip.
Furthermore, the reporter also confirmed the bitflip is from the
hardware, so it's a real hardware caused bitflip, and such problem can
not be detected by the existing tree-checker framework.
As tree-checker can only verify the content inside one tree block, while
generation of a tree block can only be verified against its parent.
So such problem remain undetected.
[FIX]
Although tree-checker can not verify it at write-time, we still have a
quick (but not the most accurate) way to catch such obvious corruption.
Function csum_one_extent_buffer() is called before we submit metadata
write.
Thus it means, all the extent buffer passed in should be dirty tree
blocks, and should be newer than last committed transaction.
Using that we can catch the above bitflip.
Although it's not a perfect solution, as if the corrupted generation is
higher than the correct value, we have no way to catch it at all.
Reported-by: Christoph Anton Mitterer <calestyo@scientia.org>
Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@sus,ree.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 06bae876634ebf837ba70ea3de532b288326103d upstream.
bytes_pinned is always accessed under space_info->lock, except in
btrfs_preempt_reclaim_metadata_space, however the other members are
accessed under that lock. The reserved member of the rsv's are also
partially accessed under a lock and partially not. Move all these
accesses into the same lock to ensure consistency.
This could potentially race and lead to a flush instead of a commit but
it's not a big problem as it's only for preemptive flush.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Niels Dossche <niels.dossche@ugent.be>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ca5e4ea0beaec8bc674121838bf8614c089effb9 upstream.
There is a hung_task issue with running generic/068 on an SMR
device. The hang occurs while a process is trying to thaw the
filesystem. The process is trying to take sb->s_umount to thaw the
FS. The lock is held by fsstress, which calls btrfs_sync_fs() and is
waiting for an ordered extent to finish. However, as the FS is frozen,
the ordered extents never finish.
Having an ordered extent while the FS is frozen is the root cause of
the hang. The ordered extent is initiated from btrfs_relocate_chunk()
which is called from btrfs_reclaim_bgs_work().
This commit adds sb_*_write() around btrfs_relocate_chunk() call
site. For the usual "btrfs balance" command, we already call it with
mnt_want_file() in btrfs_ioctl_balance().
Fixes: 18bb8bbf13c1 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.13+
Link: https://github.com/naota/linux/issues/56
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dcd46d897adb70d63e025f175a00a89797d31a43 upstream.
Quoting[1] Ariadne Conill:
"In several other operating systems, it is a hard requirement that the
second argument to execve(2) be the name of a program, thus prohibiting
a scenario where argc < 1. POSIX 2017 also recommends this behaviour,
but it is not an explicit requirement[2]:
The argument arg0 should point to a filename string that is
associated with the process being started by one of the exec
functions.
...
Interestingly, Michael Kerrisk opened an issue about this in 2008[3],
but there was no consensus to support fixing this issue then.
Hopefully now that CVE-2021-4034 shows practical exploitative use[4]
of this bug in a shellcode, we can reconsider.
This issue is being tracked in the KSPP issue tracker[5]."
While the initial code searches[6][7] turned up what appeared to be
mostly corner case tests, trying to that just reject argv == NULL
(or an immediately terminated pointer list) quickly started tripping[8]
existing userspace programs.
The next best approach is forcing a single empty string into argv and
adjusting argc to match. The number of programs depending on argc == 0
seems a smaller set than those calling execve with a NULL argv.
Account for the additional stack space in bprm_stack_limits(). Inject an
empty string when argc == 0 (and set argc = 1). Warn about the case so
userspace has some notice about the change:
process './argc0' launched './argc0' with NULL argv: empty string added
Additionally WARN() and reject NULL argv usage for kernel threads.
[1] https://lore.kernel.org/lkml/20220127000724.15106-1-ariadne@dereferenced.org/
[2] https://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
[3] https://bugzilla.kernel.org/show_bug.cgi?id=8408
[4] https://www.qualys.com/2022/01/25/cve-2021-4034/pwnkit.txt
[5] https://github.com/KSPP/linux/issues/176
[6] https://codesearch.debian.net/search?q=execve%5C+*%5C%28%5B%5E%2C%5D%2B%2C+*NULL&literal=0
[7] https://codesearch.debian.net/search?q=execlp%3F%5Cs*%5C%28%5B%5E%2C%5D%2B%2C%5Cs*NULL&literal=0
[8] https://lore.kernel.org/lkml/20220131144352.GE16385@xsang-OptiPlex-9020/
Reported-by: Ariadne Conill <ariadne@dereferenced.org>
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: Ariadne Conill <ariadne@dereferenced.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20220201000947.2453721-1-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8126b1c73108bc691f5643df19071a59a69d0bc6 upstream.
pstore_dump() is *always* invoked in atomic context (nowadays in an RCU
read-side critical section, before that under a spinlock).
It doesn't make sense to try to use semaphores here.
This is mostly a revert of commit ea84b580b955 ("pstore: Convert buf_lock
to semaphore"), except that two parts aren't restored back exactly as they
were:
- keep the lock initialization in pstore_register
- in efi_pstore_write(), always set the "block" flag to false
- omit "is_locked", that was unnecessary since
commit 959217c84c27 ("pstore: Actually give up during locking failure")
- fix the bailout message
The actual problem that the buggy commit was trying to address may have
been that the use of preemptible() in efi_pstore_write() was wrong - it
only looks at preempt_count() and the state of IRQs, but __rcu_read_lock()
doesn't touch either of those under CONFIG_PREEMPT_RCU.
(Sidenote: CONFIG_PREEMPT_RCU means that the scheduler can preempt tasks in
RCU read-side critical sections, but you're not allowed to actively
block/reschedule.)
Lockdep probably never caught the problem because it's very rare that you
actually hit the contended case, so lockdep always just sees the
down_trylock(), not the down_interruptible(), and so it can't tell that
there's a problem.
Fixes: ea84b580b955 ("pstore: Convert buf_lock to semaphore")
Cc: stable@vger.kernel.org
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220314185953.2068993-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7aab5c84a0f6ec2290e2ba4a6b245178b1bf949a upstream.
We inject IO error when rmdir non empty direcory, then got issue as follows:
step1: mkfs.ext4 -F /dev/sda
step2: mount /dev/sda test
step3: cd test
step4: mkdir -p 1/2
step5: rmdir 1
[ 110.920551] ext4_empty_dir: inject fault
[ 110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12:
comm rmdir: empty directory '1' has too many links (3)
step6: cd ..
step7: umount test
step8: fsck.ext4 -f /dev/sda
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Entry '..' in .../??? (13) has deleted/unused inode 12. Clear<y>? yes
Pass 3: Checking directory connectivity
Unconnected directory inode 13 (...)
Connect to /lost+found<y>? yes
Pass 4: Checking reference counts
Inode 13 ref count is 3, should be 2. Fix<y>? yes
Pass 5: Checking group summary information
/dev/sda: ***** FILE SYSTEM WAS MODIFIED *****
/dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks
ext4_rmdir
if (!ext4_empty_dir(inode))
goto end_rmdir;
ext4_empty_dir
bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
if (IS_ERR(bh))
return true;
Now if read directory block failed, 'ext4_empty_dir' will return true, assume
directory is empty. Obviously, it will lead to above issue.
To solve this issue, if read directory block failed 'ext4_empty_dir' just
return false. To avoid making things worse when file system is already
corrupted, 'ext4_empty_dir' also return false.
Signed-off-by: Ye Bin <yebin10@huawei.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20220228024815.3952506-1-yebin10@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 84158b7f6a0624b81800b4e7c90f7fb7fdecf66c upstream.
When I rewrote the VMA dumping logic for coredumps, I changed it to
recognize ELF library mappings based on the file being executable instead
of the mapping having an ELF header. But turns out, distros ship many ELF
libraries as non-executable, so the heuristic goes wrong...
Restore the old behavior where FILTER(ELF_HEADERS) dumps the first page of
any offset-0 readable mapping that starts with the ELF magic.
This fix is technically layer-breaking a bit, because it checks for
something ELF-specific in fs/coredump.c; but since we probably want to
share this between standard ELF and FDPIC ELF anyway, I guess it's fine?
And this also keeps the change small for backporting.
Cc: stable@vger.kernel.org
Fixes: 429a22e776a2 ("coredump: rework elf/elf_fdpic vma_dump_size() into common helper")
Reported-by: Bill Messmer <wmessmer@microsoft.com>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220126025739.2014888-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit de19433423c7bedabbd4f9a25f7dbc62c5e78921 upstream.
There is a reported crash when mounting ocfs2 with quota enabled.
RIP: 0010:ocfs2_qinfo_lock_res_init+0x44/0x50 [ocfs2]
Call Trace:
ocfs2_local_read_info+0xb9/0x6f0 [ocfs2]
dquot_load_quota_sb+0x216/0x470
dquot_load_quota_inode+0x85/0x100
ocfs2_enable_quotas+0xa0/0x1c0 [ocfs2]
ocfs2_fill_super.cold+0xc8/0x1bf [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x465/0xac0
__x64_sys_mount+0x103/0x140
It is caused by when initializing dqi_gqlock, the corresponding dqi_type
and dqi_sb are not properly initialized.
This issue is introduced by commit 6c85c2c72819, which wants to avoid
accessing uninitialized variables in error cases. So make global quota
info properly initialized.
Link: https://lkml.kernel.org/r/20220323023644.40084-1-joseph.qi@linux.alibaba.com
Link: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1007141
Fixes: 6c85c2c72819 ("ocfs2: quota_local: fix possible uninitialized-variable access in ocfs2_local_read_info()")
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reported-by: Dayvison <sathlerds@gmail.com>
Tested-by: Valentin Vidic <vvidic@valentin-vidic.from.hr>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c0226eb8bde854e016a594a16f5c0d98aca426fa upstream.
Check lru_cache_disabled under bh_lru_lock. Otherwise, it could introduce
race below and it fails to migrate pages containing buffer_head.
CPU 0 CPU 1
bh_lru_install
lru_cache_disable
lru_cache_disabled = false
atomic_inc(&lru_disable_count);
invalidate_bh_lrus_cpu of CPU 0
bh_lru_lock
__invalidate_bh_lrus
bh_lru_unlock
bh_lru_lock
install the bh
bh_lru_unlock
WHen this race happens a CMA allocation fails, which is critical for
the workload which depends on CMA.
Link: https://lkml.kernel.org/r/20220308180709.2017638-1-minchan@kernel.org
Fixes: 8cc621d2f45d ("mm: fs: invalidate BH LRU during page migration")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Dias <joaodias@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c7c44ee1650677fbe89d86edbad9497b7679b5c upstream.
When we mount a jffs2 image, assume that the first few blocks of
the image are normal and contain at least one xattr-related inode,
but the next block is abnormal. As a result, an error is returned
in jffs2_scan_eraseblock(). jffs2_clear_xattr_subsystem() is then
called in jffs2_build_filesystem() and then again in
jffs2_do_fill_super().
Finally we can observe the following report:
==================================================================
BUG: KASAN: use-after-free in jffs2_clear_xattr_subsystem+0x95/0x6ac
Read of size 8 at addr ffff8881243384e0 by task mount/719
Call Trace:
dump_stack+0x115/0x16b
jffs2_clear_xattr_subsystem+0x95/0x6ac
jffs2_do_fill_super+0x84f/0xc30
jffs2_fill_super+0x2ea/0x4c0
mtd_get_sb+0x254/0x400
mtd_get_sb_by_nr+0x4f/0xd0
get_tree_mtd+0x498/0x840
jffs2_get_tree+0x25/0x30
vfs_get_tree+0x8d/0x2e0
path_mount+0x50f/0x1e50
do_mount+0x107/0x130
__se_sys_mount+0x1c5/0x2f0
__x64_sys_mount+0xc7/0x160
do_syscall_64+0x45/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Allocated by task 719:
kasan_save_stack+0x23/0x60
__kasan_kmalloc.constprop.0+0x10b/0x120
kasan_slab_alloc+0x12/0x20
kmem_cache_alloc+0x1c0/0x870
jffs2_alloc_xattr_ref+0x2f/0xa0
jffs2_scan_medium.cold+0x3713/0x4794
jffs2_do_mount_fs.cold+0xa7/0x2253
jffs2_do_fill_super+0x383/0xc30
jffs2_fill_super+0x2ea/0x4c0
[...]
Freed by task 719:
kmem_cache_free+0xcc/0x7b0
jffs2_free_xattr_ref+0x78/0x98
jffs2_clear_xattr_subsystem+0xa1/0x6ac
jffs2_do_mount_fs.cold+0x5e6/0x2253
jffs2_do_fill_super+0x383/0xc30
jffs2_fill_super+0x2ea/0x4c0
[...]
The buggy address belongs to the object at ffff8881243384b8
which belongs to the cache jffs2_xattr_ref of size 48
The buggy address is located 40 bytes inside of
48-byte region [ffff8881243384b8, ffff8881243384e8)
[...]
==================================================================
The triggering of the BUG is shown in the following stack:
-----------------------------------------------------------
jffs2_fill_super
jffs2_do_fill_super
jffs2_do_mount_fs
jffs2_build_filesystem
jffs2_scan_medium
jffs2_scan_eraseblock <--- ERROR
jffs2_clear_xattr_subsystem <--- free
jffs2_clear_xattr_subsystem <--- free again
-----------------------------------------------------------
An error is returned in jffs2_do_mount_fs(). If the error is returned
by jffs2_sum_init(), the jffs2_clear_xattr_subsystem() does not need to
be executed. If the error is returned by jffs2_build_filesystem(), the
jffs2_clear_xattr_subsystem() also does not need to be executed again.
So move jffs2_clear_xattr_subsystem() from 'out_inohash' to 'out_root'
to fix this UAF problem.
Fixes: aa98d7cf59b5 ("[JFFS2][XATTR] XATTR support on JFFS2 (version. 5)")
Cc: stable@vger.kernel.org
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5b5b4f85b01604389f7a0f11ef180a725bf0e2d4 upstream.
As bughunter reported in bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=215709
f2fs may hang when mounting a fuzzed image, the dmesg shows as below:
__filemap_get_folio+0x3a9/0x590
pagecache_get_page+0x18/0x60
__get_meta_page+0x95/0x460 [f2fs]
get_checkpoint_version+0x2a/0x1e0 [f2fs]
validate_checkpoint+0x8e/0x2a0 [f2fs]
f2fs_get_valid_checkpoint+0xd0/0x620 [f2fs]
f2fs_fill_super+0xc01/0x1d40 [f2fs]
mount_bdev+0x18a/0x1c0
f2fs_mount+0x15/0x20 [f2fs]
legacy_get_tree+0x28/0x50
vfs_get_tree+0x27/0xc0
path_mount+0x480/0xaa0
do_mount+0x7c/0xa0
__x64_sys_mount+0x8b/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
The root cause is cp_pack_total_block_count field in checkpoint was fuzzed
to one, as calcuated, two cp pack block locates in the same block address,
so then read latter cp pack block, it will block on the page lock due to
the lock has already held when reading previous cp pack block, fix it by
adding sanity check for cp_pack_total_block_count.
Cc: stable@vger.kernel.org
Signed-off-by: Chao Yu <chao.yu@oppo.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d18762ed5cd549fde74fd0e05d4d87bac5a3beb upstream.
As Pavel Machek reported in below link [1]:
After commit 77900c45ee5c ("f2fs: fix to do sanity check in is_alive()"),
node page should be unlock via calling f2fs_put_page() in the error path
of is_alive(), otherwise, f2fs may hang when it tries to lock the node
page, fix it.
[1] https://lore.kernel.org/stable/20220124203637.GA19321@duo.ucw.cz/
Fixes: 77900c45ee5c ("f2fs: fix to do sanity check in is_alive()")
Cc: <stable@vger.kernel.org>
Reported-by: Pavel Machek <pavel@denx.de>
Signed-off-by: Pavel Machek <pavel@denx.de>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 184416d4b98509fb4c3d8fc3d6dc1437896cc159 upstream.
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue.
Cc: stable@vger.kernel.org
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b622ffe1d9ecbac71f0cddb52ff0831efdf8fb83 upstream.
Ensure that we always initialise the 'xattr_support' field in struct
nfs_fsinfo, so that nfs_server_set_fsinfo() doesn't declare our NFSv2/v3
client to be capable of supporting the NFSv4.2 xattr protocol by setting
the NFS_CAP_XATTR capability.
This configuration can cause nfs_do_access() to set access mode bits
that are unsupported by the NFSv3 ACCESS call, which may confuse
spec-compliant servers.
Reported-by: Olga Kornievskaia <kolga@netapp.com>
Fixes: b78ef845c35d ("NFSv4.2: query the server for extended attribute support")
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a14b65d590105d393b63f5320e1594edda7c672 upstream.
Remove the spinlock around the tree traversal as we are calling possibly
sleeping functions.
We do not need a spinlock here as there will be no modifications to this
tree at this point.
This prevents warnings like this to occur in dmesg:
[ 653.774996] BUG: sleeping function called from invalid context at kernel/loc\
king/mutex.c:280
[ 653.775088] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1827, nam\
e: umount
[ 653.775152] preempt_count: 1, expected: 0
[ 653.775191] CPU: 0 PID: 1827 Comm: umount Tainted: G W OE 5.17.0\
-rc7-00006-g4eb628dd74df #135
[ 653.775195] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-\
1.fc33 04/01/2014
[ 653.775197] Call Trace:
[ 653.775199] <TASK>
[ 653.775202] dump_stack_lvl+0x34/0x44
[ 653.775209] __might_resched.cold+0x13f/0x172
[ 653.775213] mutex_lock+0x75/0xf0
[ 653.775217] ? __mutex_lock_slowpath+0x10/0x10
[ 653.775220] ? _raw_write_lock_irq+0xd0/0xd0
[ 653.775224] ? dput+0x6b/0x360
[ 653.775228] cifs_kill_sb+0xff/0x1d0 [cifs]
[ 653.775285] deactivate_locked_super+0x85/0x130
[ 653.775289] cleanup_mnt+0x32c/0x4d0
[ 653.775292] ? path_umount+0x228/0x380
[ 653.775296] task_work_run+0xd8/0x180
[ 653.775301] exit_to_user_mode_loop+0x152/0x160
[ 653.775306] exit_to_user_mode_prepare+0x89/0xd0
[ 653.775315] syscall_exit_to_user_mode+0x12/0x30
[ 653.775322] do_syscall_64+0x48/0x90
[ 653.775326] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: 187af6e98b44e5d8f25e1d41a92db138eb54416f ("cifs: fix handlecache and multiuser")
Reported-by: kernel test robot <oliver.sang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 47178c7722ac528ea08aa82c3ef9ffa178962d7a upstream.
In multiuser each individual user has their own tcon structure for the
share and thus their own handle for a cached directory.
When we umount such a share we much make sure to release the pinned down dentry
for each such tcon and not just the master tcon.
Otherwise we will get nasty warnings on umount that dentries are still in use:
[ 3459.590047] BUG: Dentry 00000000115c6f41{i=12000000019d95,n=/} still in use\
(2) [unmount of cifs cifs]
...
[ 3459.590492] Call Trace:
[ 3459.590500] d_walk+0x61/0x2a0
[ 3459.590518] ? shrink_lock_dentry.part.0+0xe0/0xe0
[ 3459.590526] shrink_dcache_for_umount+0x49/0x110
[ 3459.590535] generic_shutdown_super+0x1a/0x110
[ 3459.590542] kill_anon_super+0x14/0x30
[ 3459.590549] cifs_kill_sb+0xf5/0x104 [cifs]
[ 3459.590773] deactivate_locked_super+0x36/0xa0
[ 3459.590782] cleanup_mnt+0x131/0x190
[ 3459.590789] task_work_run+0x5c/0x90
[ 3459.590798] exit_to_user_mode_loop+0x151/0x160
[ 3459.590809] exit_to_user_mode_prepare+0x83/0xd0
[ 3459.590818] syscall_exit_to_user_mode+0x12/0x30
[ 3459.590828] do_syscall_64+0x48/0x90
[ 3459.590833] entry_SYSCALL_64_after_hwframe+0x44/0xae
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Acked-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Cc: stable@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 40cdc509877bacb438213b83c7541c5e24a1d9ec upstream.
After the recent changes made by commit c2e39305299f01 ("btrfs: clear
extent buffer uptodate when we fail to write it") and its followup fix,
commit 651740a5024117 ("btrfs: check WRITE_ERR when trying to read an
extent buffer"), we can now end up not cleaning up space reservations of
log tree extent buffers after a transaction abort happens, as well as not
cleaning up still dirty extent buffers.
This happens because if writeback for a log tree extent buffer failed,
then we have cleared the bit EXTENT_BUFFER_UPTODATE from the extent buffer
and we have also set the bit EXTENT_BUFFER_WRITE_ERR on it. Later on,
when trying to free the log tree with free_log_tree(), which iterates
over the tree, we can end up getting an -EIO error when trying to read
a node or a leaf, since read_extent_buffer_pages() returns -EIO if an
extent buffer does not have EXTENT_BUFFER_UPTODATE set and has the
EXTENT_BUFFER_WRITE_ERR bit set. Getting that -EIO means that we return
immediately as we can not iterate over the entire tree.
In that case we never update the reserved space for an extent buffer in
the respective block group and space_info object.
When this happens we get the following traces when unmounting the fs:
[174957.284509] BTRFS: error (device dm-0) in cleanup_transaction:1913: errno=-5 IO failure
[174957.286497] BTRFS: error (device dm-0) in free_log_tree:3420: errno=-5 IO failure
[174957.399379] ------------[ cut here ]------------
[174957.402497] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:127 btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.407523] Modules linked in: btrfs overlay dm_zero (...)
[174957.424917] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.426689] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.428716] RIP: 0010:btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.429717] Code: 21 48 8b bd (...)
[174957.432867] RSP: 0018:ffffb70d41cffdd0 EFLAGS: 00010206
[174957.433632] RAX: 0000000000000001 RBX: ffff8b09c3848000 RCX: ffff8b0758edd1c8
[174957.434689] RDX: 0000000000000001 RSI: ffffffffc0b467e7 RDI: ffff8b0758edd000
[174957.436068] RBP: ffff8b0758edd000 R08: 0000000000000000 R09: 0000000000000000
[174957.437114] R10: 0000000000000246 R11: 0000000000000000 R12: ffff8b09c3848148
[174957.438140] R13: ffff8b09c3848198 R14: ffff8b0758edd188 R15: dead000000000100
[174957.439317] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.440402] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.441164] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.442117] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.443076] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.443948] Call Trace:
[174957.444264] <TASK>
[174957.444538] btrfs_free_block_groups+0x255/0x3c0 [btrfs]
[174957.445238] close_ctree+0x301/0x357 [btrfs]
[174957.445803] ? call_rcu+0x16c/0x290
[174957.446250] generic_shutdown_super+0x74/0x120
[174957.446832] kill_anon_super+0x14/0x30
[174957.447305] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.447890] deactivate_locked_super+0x31/0xa0
[174957.448440] cleanup_mnt+0x147/0x1c0
[174957.448888] task_work_run+0x5c/0xa0
[174957.449336] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.449934] syscall_exit_to_user_mode+0x16/0x40
[174957.450512] do_syscall_64+0x48/0xc0
[174957.450980] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.451605] RIP: 0033:0x7f328fdc4a97
[174957.452059] Code: 03 0c 00 f7 (...)
[174957.454320] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.455262] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.456131] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.457118] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.458005] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.459113] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.460193] </TASK>
[174957.460534] irq event stamp: 0
[174957.461003] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.461947] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.463147] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.465116] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.466323] ---[ end trace bc7ee0c490bce3af ]---
[174957.467282] ------------[ cut here ]------------
[174957.468184] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:3976 btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.470066] Modules linked in: btrfs overlay dm_zero (...)
[174957.483137] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.484691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.486853] RIP: 0010:btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.488050] Code: 00 00 00 ad de (...)
[174957.491479] RSP: 0018:ffffb70d41cffde0 EFLAGS: 00010206
[174957.492520] RAX: ffff8b08d79310b0 RBX: ffff8b09c3848000 RCX: 0000000000000000
[174957.493868] RDX: 0000000000000001 RSI: fffff443055ee600 RDI: ffffffffb1131846
[174957.495183] RBP: ffff8b08d79310b0 R08: 0000000000000000 R09: 0000000000000000
[174957.496580] R10: 0000000000000001 R11: 0000000000000000 R12: ffff8b08d7931000
[174957.498027] R13: ffff8b09c38492b0 R14: dead000000000122 R15: dead000000000100
[174957.499438] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.500990] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.502117] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.503513] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.504864] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.506167] Call Trace:
[174957.506654] <TASK>
[174957.507047] close_ctree+0x301/0x357 [btrfs]
[174957.507867] ? call_rcu+0x16c/0x290
[174957.508567] generic_shutdown_super+0x74/0x120
[174957.509447] kill_anon_super+0x14/0x30
[174957.510194] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.511123] deactivate_locked_super+0x31/0xa0
[174957.511976] cleanup_mnt+0x147/0x1c0
[174957.512610] task_work_run+0x5c/0xa0
[174957.513309] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.514231] syscall_exit_to_user_mode+0x16/0x40
[174957.515069] do_syscall_64+0x48/0xc0
[174957.515718] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.516688] RIP: 0033:0x7f328fdc4a97
[174957.517413] Code: 03 0c 00 f7 d8 (...)
[174957.521052] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.522514] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.523950] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.525375] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.526763] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.528058] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.529404] </TASK>
[174957.529843] irq event stamp: 0
[174957.530256] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.531061] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.532075] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.533083] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.533865] ---[ end trace bc7ee0c490bce3b0 ]---
[174957.534452] BTRFS info (device dm-0): space_info 4 has 1070841856 free, is not full
[174957.535404] BTRFS info (device dm-0): space_info total=1073741824, used=2785280, pinned=0, reserved=49152, may_use=0, readonly=65536 zone_unusable=0
[174957.537029] BTRFS info (device dm-0): global_block_rsv: size 0 reserved 0
[174957.537859] BTRFS info (device dm-0): trans_block_rsv: size 0 reserved 0
[174957.538697] BTRFS info (device dm-0): chunk_block_rsv: size 0 reserved 0
[174957.539552] BTRFS info (device dm-0): delayed_block_rsv: size 0 reserved 0
[174957.540403] BTRFS info (device dm-0): delayed_refs_rsv: size 0 reserved 0
This also means that in case we have log tree extent buffers that are
still dirty, we can end up not cleaning them up in case we find an
extent buffer with EXTENT_BUFFER_WRITE_ERR set on it, as in that case
we have no way for iterating over the rest of the tree.
This issue is very often triggered with test cases generic/475 and
generic/648 from fstests.
The issue could almost be fixed by iterating over the io tree attached to
each log root which keeps tracks of the range of allocated extent buffers,
log_root->dirty_log_pages, however that does not work and has some
inconveniences:
1) After we sync the log, we clear the range of the extent buffers from
the io tree, so we can't find them after writeback. We could keep the
ranges in the io tree, with a separate bit to signal they represent
extent buffers already written, but that means we need to hold into
more memory until the transaction commits.
How much more memory is used depends a lot on whether we are able to
allocate contiguous extent buffers on disk (and how often) for a log
tree - if we are able to, then a single extent state record can
represent multiple extent buffers, otherwise we need multiple extent
state record structures to track each extent buffer.
In fact, my earlier approach did that:
https://lore.kernel.org/linux-btrfs/3aae7c6728257c7ce2279d6660ee2797e5e34bbd.1641300250.git.fdmanana@suse.com/
However that can cause a very significant negative impact on
performance, not only due to the extra memory usage but also because
we get a larger and deeper dirty_log_pages io tree.
We got a report that, on beefy machines at least, we can get such
performance drop with fsmark for example:
https://lore.kernel.org/linux-btrfs/20220117082426.GE32491@xsang-OptiPlex-9020/
2) We would be doing it only to deal with an unexpected and exceptional
case, which is basically failure to read an extent buffer from disk
due to IO failures. On a healthy system we don't expect transaction
aborts to happen after all;
3) Instead of relying on iterating the log tree or tracking the ranges
of extent buffers in the dirty_log_pages io tree, using the radix
tree that tracks extent buffers (fs_info->buffer_radix) to find all
log tree extent buffers is not reliable either, because after writeback
of an extent buffer it can be evicted from memory by the release page
callback of the btree inode (btree_releasepage()).
Since there's no way to be able to properly cleanup a log tree without
being able to read its extent buffers from disk and without using more
memory to track the logical ranges of the allocated extent buffers do
the following:
1) When we fail to cleanup a log tree, setup a flag that indicates that
failure;
2) Trigger writeback of all log tree extent buffers that are still dirty,
and wait for the writeback to complete. This is just to cleanup their
state, page states, page leaks, etc;
3) When unmounting the fs, ignore if the number of bytes reserved in a
block group and in a space_info is not 0 if, and only if, we failed to
cleanup a log tree. Also ignore only for metadata block groups and the
metadata space_info object.
This is far from a perfect solution, but it serves to silence test
failures such as those from generic/475 and generic/648. However having
a non-zero value for the reserved bytes counters on unmount after a
transaction abort, is not such a terrible thing and it's completely
harmless, it does not affect the filesystem integrity in any way.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7b0b1332cfdb94489836b67d088a779699f8e47e upstream.
Once s_root is set, genric_shutdown_super() will be called if
fill_super() fails. That means, we will call ocfs2_dismount_volume()
twice in such case, which can lead to kernel crash.
Fix this issue by initializing filecheck kobj before setting s_root.
Link: https://lkml.kernel.org/r/20220310081930.86305-1-joseph.qi@linux.alibaba.com
Fixes: 5f483c4abb50 ("ocfs2: add kobject for online file check")
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d96b34248c2f4ea8cd09286090f2f6f77102eaab upstream.
We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.
The restriction between balance and send was added in commit 9e967495e0e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e664 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.
Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.
For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.
This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:
1) For all tree searches, send acquires a read lock on the commit root
semaphore;
2) After each tree search, and before releasing the commit root semaphore,
the leaf is cloned and placed in the search path (struct btrfs_path);
3) After releasing the commit root semaphore, the changed_cb() callback
is invoked, which operates on the leaf and writes commands to the pipe
(or file in case send/receive is not used with a pipe). It's important
here to not hold a lock on the commit root semaphore, because if we did
we could deadlock when sending and receiving to the same filesystem
using a pipe - the send task blocks on the pipe because it's full, the
receive task, which is the only consumer of the pipe, triggers a
transaction commit when attempting to create a subvolume or reserve
space for a write operation for example, but the transaction commit
blocks trying to write lock the commit root semaphore, resulting in a
deadlock;
4) Before moving to the next key, or advancing to the next change in case
of an incremental send, check if a transaction used for relocation was
committed (or is about to finish its commit). If so, release the search
path(s) and restart the search, to where we were before, so that we
don't operate on stale extent buffers. The search restarts are always
possible because both the send and parent roots are RO, and no one can
add, remove of update keys (change their offset) in RO trees - the
only exception is deduplication, but that is still not allowed to run
in parallel with send;
5) Periodically check if there is contention on the commit root semaphore,
which means there is a transaction commit trying to write lock it, and
release the semaphore and reschedule if there is contention, so as to
avoid causing any significant delays to transaction commits.
This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).
Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.
A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2ed147f015af2b48f41c6f0b6746aa9ea85c19f3 upstream.
There's nothing to synchronise post_one_notification() versus
pipe_read(). Whilst posting is done under pipe->rd_wait.lock, the
reader only takes pipe->mutex which cannot bar notification posting as
that may need to be made from contexts that cannot sleep.
Fix this by setting pipe->head with a barrier in post_one_notification()
and reading pipe->head with a barrier in pipe_read().
If that's not sufficient, the rd_wait.lock will need to be taken,
possibly in a ->confirm() op so that it only applies to notifications.
The lock would, however, have to be dropped before copy_page_to_iter()
is invoked.
Fixes: c73be61cede5 ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit db8facfc9fafacefe8a835416a6b77c838088f8b upstream.
In free_pipe_info(), free the watchqueue state after clearing the pipe
ring as each pipe ring descriptor has a release function, and in the
case of a notification message, this is watch_queue_pipe_buf_release()
which tries to mark the allocation bitmap that was previously released.
Fix this by moving the put of the pipe's ref on the watch queue to after
the ring has been cleared. We still need to call watch_queue_clear()
before doing that to make sure that the pipe is disconnected from any
notification sources first.
Fixes: c73be61cede5 ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0c4bcfdecb1ac0967619ee7ff44871d93c08c909 upstream.
In FOPEN_DIRECT_IO mode, fuse_file_write_iter() calls
fuse_direct_write_iter(), which normally calls fuse_direct_io(), which then
imports the write buffer with fuse_get_user_pages(), which uses
iov_iter_get_pages() to grab references to userspace pages instead of
actually copying memory.
On the filesystem device side, these pages can then either be read to
userspace (via fuse_dev_read()), or splice()d over into a pipe using
fuse_dev_splice_read() as pipe buffers with &nosteal_pipe_buf_ops.
This is wrong because after fuse_dev_do_read() unlocks the FUSE request,
the userspace filesystem can mark the request as completed, causing write()
to return. At that point, the userspace filesystem should no longer have
access to the pipe buffer.
Fix by copying pages coming from the user address space to new pipe
buffers.
Reported-by: Jann Horn <jannh@google.com>
Fixes: c3021629a0d8 ("fuse: support splice() reading from fuse device")
Cc: <stable@vger.kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a679a61520d8a7b0211a1da990404daf5cc80b72 upstream.
The fileattr API conversion broke lsattr on ntfs3g.
Previously the ioctl(... FS_IOC_GETFLAGS) returned an EINVAL error, but
after the conversion the error returned by the fuse filesystem was not
propagated back to the ioctl() system call, resulting in success being
returned with bogus values.
Fix by checking for outarg.result in fuse_priv_ioctl(), just as generic
ioctl code does.
Reported-by: Jean-Pierre André <jean-pierre.andre@wanadoo.fr>
Fixes: 72227eac177d ("fuse: convert to fileattr")
Cc: <stable@vger.kernel.org> # v5.13
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b4be6aefa73c9a6899ef3ba9c5faaa8a66e333ef upstream.
We hit a bug with a recovering relocation on mount for one of our file
systems in production. I reproduced this locally by injecting errors
into snapshot delete with balance running at the same time. This
presented as an error while looking up an extent item
WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680
CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8
RIP: 0010:lookup_inline_extent_backref+0x647/0x680
RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000
RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001
R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000
R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000
FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0
Call Trace:
<TASK>
insert_inline_extent_backref+0x46/0xd0
__btrfs_inc_extent_ref.isra.0+0x5f/0x200
? btrfs_merge_delayed_refs+0x164/0x190
__btrfs_run_delayed_refs+0x561/0xfa0
? btrfs_search_slot+0x7b4/0xb30
? btrfs_update_root+0x1a9/0x2c0
btrfs_run_delayed_refs+0x73/0x1f0
? btrfs_update_root+0x1a9/0x2c0
btrfs_commit_transaction+0x50/0xa50
? btrfs_update_reloc_root+0x122/0x220
prepare_to_merge+0x29f/0x320
relocate_block_group+0x2b8/0x550
btrfs_relocate_block_group+0x1a6/0x350
btrfs_relocate_chunk+0x27/0xe0
btrfs_balance+0x777/0xe60
balance_kthread+0x35/0x50
? btrfs_balance+0xe60/0xe60
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Normally snapshot deletion and relocation are excluded from running at
the same time by the fs_info->cleaner_mutex. However if we had a
pending balance waiting to get the ->cleaner_mutex, and a snapshot
deletion was running, and then the box crashed, we would come up in a
state where we have a half deleted snapshot.
Again, in the normal case the snapshot deletion needs to complete before
relocation can start, but in this case relocation could very well start
before the snapshot deletion completes, as we simply add the root to the
dead roots list and wait for the next time the cleaner runs to clean up
the snapshot.
Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that
had a pending drop_progress key. If they do then we know we were in the
middle of the drop operation and set a flag on the fs_info. Then
balance can wait until this flag is cleared to start up again.
If there are DEAD_ROOT's that don't have a drop_progress set then we're
safe to start balance right away as we'll be properly protected by the
cleaner_mutex.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4751dc99627e4d1465c5bfa8cb7ab31ed418eff5 upstream.
During log replay, whenever we need to check if a name (dentry) exists in
a directory we do searches on the subvolume tree for inode references or
or directory entries (BTRFS_DIR_INDEX_KEY keys, and BTRFS_DIR_ITEM_KEY
keys as well, before kernel 5.17). However when during log replay we
unlink a name, through btrfs_unlink_inode(), we may not delete inode
references and dir index keys from a subvolume tree and instead just add
the deletions to the delayed inode's delayed items, which will only be
run when we commit the transaction used for log replay. This means that
after an unlink operation during log replay, if we attempt to search for
the same name during log replay, we will not see that the name was already
deleted, since the deletion is recorded only on the delayed items.
We run delayed items after every unlink operation during log replay,
except at unlink_old_inode_refs() and at add_inode_ref(). This was due
to an overlook, as delayed items should be run after evert unlink, for
the reasons stated above.
So fix those two cases.
Fixes: 0d836392cadd5 ("Btrfs: fix mount failure after fsync due to hard link recreation")
Fixes: 1f250e929a9c9 ("Btrfs: fix log replay failure after unlink and link combination")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a upstream.
The commit e804861bd4e6 ("btrfs: fix deadlock between quota disable and
qgroup rescan worker") by Kawasaki resolves deadlock between quota
disable and qgroup rescan worker. But also there is a deadlock case like
it. It's about enabling or disabling quota and creating or removing
qgroup. It can be reproduced in simple script below.
for i in {1..100}
do
btrfs quota enable /mnt &
btrfs qgroup create 1/0 /mnt &
btrfs qgroup destroy 1/0 /mnt &
btrfs quota disable /mnt &
done
Here's why the deadlock happens:
1) The quota rescan task is running.
2) Task A calls btrfs_quota_disable(), locks the qgroup_ioctl_lock
mutex, and then calls btrfs_qgroup_wait_for_completion(), to wait for
the quota rescan task to complete.
3) Task B calls btrfs_remove_qgroup() and it blocks when trying to lock
the qgroup_ioctl_lock mutex, because it's being held by task A. At that
point task B is holding a transaction handle for the current transaction.
4) The quota rescan task calls btrfs_commit_transaction(). This results
in it waiting for all other tasks to release their handles on the
transaction, but task B is blocked on the qgroup_ioctl_lock mutex
while holding a handle on the transaction, and that mutex is being held
by task A, which is waiting for the quota rescan task to complete,
resulting in a deadlock between these 3 tasks.
To resolve this issue, the thread disabling quota should unlock
qgroup_ioctl_lock before waiting rescan completion. Move
btrfs_qgroup_wait_for_completion() after unlock of qgroup_ioctl_lock.
Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: Sidong Yang <realwakka@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a50e1fcbc9b85fd4e95b89a75c0884cb032a3e06 upstream.
Whenever we do any extent buffer operations we call
assert_eb_page_uptodate() to complain loudly if we're operating on an
non-uptodate page. Our overnight tests caught this warning earlier this
week
WARNING: CPU: 1 PID: 553508 at fs/btrfs/extent_io.c:6849 assert_eb_page_uptodate+0x3f/0x50
CPU: 1 PID: 553508 Comm: kworker/u4:13 Tainted: G W 5.17.0-rc3+ #564
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: btrfs-cache btrfs_work_helper
RIP: 0010:assert_eb_page_uptodate+0x3f/0x50
RSP: 0018:ffffa961440a7c68 EFLAGS: 00010246
RAX: 0017ffffc0002112 RBX: ffffe6e74453f9c0 RCX: 0000000000001000
RDX: ffffe6e74467c887 RSI: ffffe6e74453f9c0 RDI: ffff8d4c5efc2fc0
RBP: 0000000000000d56 R08: ffff8d4d4a224000 R09: 0000000000000000
R10: 00015817fa9d1ef0 R11: 000000000000000c R12: 00000000000007b1
R13: ffff8d4c5efc2fc0 R14: 0000000001500000 R15: 0000000001cb1000
FS: 0000000000000000(0000) GS:ffff8d4dbbd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff31d3448d8 CR3: 0000000118be8004 CR4: 0000000000370ee0
Call Trace:
extent_buffer_test_bit+0x3f/0x70
free_space_test_bit+0xa6/0xc0
load_free_space_tree+0x1f6/0x470
caching_thread+0x454/0x630
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? lock_release+0x1f0/0x2d0
btrfs_work_helper+0xf2/0x3e0
? lock_release+0x1f0/0x2d0
? finish_task_switch.isra.0+0xf9/0x3a0
process_one_work+0x26d/0x580
? process_one_work+0x580/0x580
worker_thread+0x55/0x3b0
? process_one_work+0x580/0x580
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
This was partially fixed by c2e39305299f01 ("btrfs: clear extent buffer
uptodate when we fail to write it"), however all that fix did was keep
us from finding extent buffers after a failed writeout. It didn't keep
us from continuing to use a buffer that we already had found.
In this case we're searching the commit root to cache the block group,
so we can start committing the transaction and switch the commit root
and then start writing. After the switch we can look up an extent
buffer that hasn't been written yet and start processing that block
group. Then we fail to write that block out and clear Uptodate on the
page, and then we start spewing these errors.
Normally we're protected by the tree lock to a certain degree here. If
we read a block we have that block read locked, and we block the writer
from locking the block before we submit it for the write. However this
isn't necessarily fool proof because the read could happen before we do
the submit_bio and after we locked and unlocked the extent buffer.
Also in this particular case we have path->skip_locking set, so that
won't save us here. We'll simply get a block that was valid when we
read it, but became invalid while we were using it.
What we really want is to catch the case where we've "read" a block but
it's not marked Uptodate. On read we ClearPageError(), so if we're
!Uptodate and !Error we know we didn't do the right thing for reading
the page.
Fix this by checking !Uptodate && !Error, this way we will not complain
if our buffer gets invalidated while we're using it, and we'll maintain
the spirit of the check which is to make sure we have a fully in-cache
block while we're messing with it.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>