34 Commits

Author SHA1 Message Date
Jason A. Donenfeld
22943e4fe4 x86/coco: Require seeding RNG with RDRAND on CoCo systems
commit 99485c4c026f024e7cb82da84c7951dbe3deb584 upstream.

There are few uses of CoCo that don't rely on working cryptography and
hence a working RNG. Unfortunately, the CoCo threat model means that the
VM host cannot be trusted and may actively work against guests to
extract secrets or manipulate computation. Since a malicious host can
modify or observe nearly all inputs to guests, the only remaining source
of entropy for CoCo guests is RDRAND.

If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole
is meant to gracefully continue on gathering entropy from other sources,
but since there aren't other sources on CoCo, this is catastrophic.
This is mostly a concern at boot time when initially seeding the RNG, as
after that the consequences of a broken RDRAND are much more
theoretical.

So, try at boot to seed the RNG using 256 bits of RDRAND output. If this
fails, panic(). This will also trigger if the system is booted without
RDRAND, as RDRAND is essential for a safe CoCo boot.

Add this deliberately to be "just a CoCo x86 driver feature" and not
part of the RNG itself. Many device drivers and platforms have some
desire to contribute something to the RNG, and add_device_randomness()
is specifically meant for this purpose.

Any driver can call it with seed data of any quality, or even garbage
quality, and it can only possibly make the quality of the RNG better or
have no effect, but can never make it worse.

Rather than trying to build something into the core of the RNG, consider
the particular CoCo issue just a CoCo issue, and therefore separate it
all out into driver (well, arch/platform) code.

  [ bp: Massage commit message. ]

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240326160735.73531-1-Jason@zx2c4.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:28:33 +02:00
Ard Biesheuvel
fe272b6150 x86/sev: Fix position dependent variable references in startup code
commit 1c811d403afd73f04bde82b83b24c754011bd0e8 upstream.

The early startup code executes from a 1:1 mapping of memory, which
differs from the mapping that the code was linked and/or relocated to
run at. The latter mapping is not active yet at this point, and so
symbol references that rely on it will fault.

Given that the core kernel is built without -fPIC, symbol references are
typically emitted as absolute, and so any such references occuring in
the early startup code will therefore crash the kernel.

While an attempt was made to work around this for the early SEV/SME
startup code, by forcing RIP-relative addressing for certain global
SEV/SME variables via inline assembly (see snp_cpuid_get_table() for
example), RIP-relative addressing must be pervasively enforced for
SEV/SME global variables when accessed prior to page table fixups.

__startup_64() already handles this issue for select non-SEV/SME global
variables using fixup_pointer(), which adjusts the pointer relative to a
`physaddr` argument. To avoid having to pass around this `physaddr`
argument across all functions needing to apply pointer fixups, introduce
a macro RIP_RELATIVE_REF() which generates a RIP-relative reference to
a given global variable. It is used where necessary to force
RIP-relative accesses to global variables.

For backporting purposes, this patch makes no attempt at cleaning up
other occurrences of this pattern, involving either inline asm or
fixup_pointer(). Those will be addressed later.

  [ bp: Call it "rip_rel_ref" everywhere like other code shortens
    "rIP-relative reference" and make the asm wrapper __always_inline. ]

Co-developed-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/all/20240130220845.1978329-1-kevinloughlin@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:19:47 +02:00
Borislav Petkov (AMD)
851ddc3587 x86/coco: Get rid of accessor functions
commit da86eb9611840772a459693832e54c63cbcc040a upstream.

cc_vendor is __ro_after_init and thus can be used directly.

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230508121957.32341-1-bp@alien8.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:19:47 +02:00
Borislav Petkov (AMD)
452a382970 x86/coco: Export cc_vendor
commit 3d91c537296794d5d0773f61abbe7b63f2f132d8 upstream.

It will be used in different checks in future changes. Export it directly
and provide accessor functions and stubs so this can be used in general
code when CONFIG_ARCH_HAS_CC_PLATFORM is not set.

No functional changes.

[ tglx: Add accessor functions ]

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230318115634.9392-2-bp@alien8.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:19:47 +02:00
Kirill A. Shutemov
cde700ceb0 x86/tdx: Allow 32-bit emulation by default
[ upstream commit f4116bfc44621882556bbf70f5284fbf429a5cf6 ]

32-bit emulation was disabled on TDX to prevent a possible attack by
a VMM injecting an interrupt on vector 0x80.

Now that int80_emulation() has a check for external interrupts the
limitation can be lifted.

To distinguish software interrupts from external ones, int80_emulation()
checks the APIC ISR bit relevant to the 0x80 vector. For
software interrupts, this bit will be 0.

On TDX, the VAPIC state (including ISR) is protected and cannot be
manipulated by the VMM. The ISR bit is set by the microcode flow during
the handling of posted interrupts.

[ dhansen: more changelog tweaks ]

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:39:05 +01:00
Kirill A. Shutemov
b8ec27ae22 x86/coco: Disable 32-bit emulation by default on TDX and SEV
[ upstream commit b82a8dbd3d2f4563156f7150c6f2ecab6e960b30 ]

The INT 0x80 instruction is used for 32-bit x86 Linux syscalls. The
kernel expects to receive a software interrupt as a result of the INT
0x80 instruction. However, an external interrupt on the same vector
triggers the same handler.

The kernel interprets an external interrupt on vector 0x80 as a 32-bit
system call that came from userspace.

A VMM can inject external interrupts on any arbitrary vector at any
time.  This remains true even for TDX and SEV guests where the VMM is
untrusted.

Put together, this allows an untrusted VMM to trigger int80 syscall
handling at any given point. The content of the guest register file at
that moment defines what syscall is triggered and its arguments. It
opens the guest OS to manipulation from the VMM side.

Disable 32-bit emulation by default for TDX and SEV. User can override
it with the ia32_emulation=y command line option.

[ dhansen: reword the changelog ]

Reported-by: Supraja Sridhara <supraja.sridhara@inf.ethz.ch>
Reported-by: Benedict Schlüter <benedict.schlueter@inf.ethz.ch>
Reported-by: Mark Kuhne <mark.kuhne@inf.ethz.ch>
Reported-by: Andrin Bertschi <andrin.bertschi@inf.ethz.ch>
Reported-by: Shweta Shinde <shweta.shinde@inf.ethz.ch>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # 6.0+: 1da5c9b x86: Introduce ia32_enabled()
Cc: <stable@vger.kernel.org> # 6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:39:04 +01:00
Kirill A. Shutemov
6b025ec148 x86/tdx: Fix race between set_memory_encrypted() and load_unaligned_zeropad()
[ Upstream commit 195edce08b63d293377f615f4f7f086715d2d212 ]

tl;dr: There is a race in the TDX private<=>shared conversion code
       which could kill the TDX guest.  Fix it by changing conversion
       ordering to eliminate the window.

TDX hardware maintains metadata to track which pages are private and
shared. Additionally, TDX guests use the guest x86 page tables to
specify whether a given mapping is intended to be private or shared.
Bad things happen when the intent and metadata do not match.

So there are two thing in play:
 1. "the page" -- the physical TDX page metadata
 2. "the mapping" -- the guest-controlled x86 page table intent

For instance, an unrecoverable exit to VMM occurs if a guest touches a
private mapping that points to a shared physical page.

In summary:
	* Private mapping => Private Page == OK (obviously)
	* Shared mapping  => Shared Page  == OK (obviously)
	* Private mapping => Shared Page  == BIG BOOM!
	* Shared mapping  => Private Page == OK-ish
	  (It will read generate a recoverable #VE via handle_mmio())

Enter load_unaligned_zeropad(). It can touch memory that is adjacent but
otherwise unrelated to the memory it needs to touch. It will cause one
of those unrecoverable exits (aka. BIG BOOM) if it blunders into a
shared mapping pointing to a private page.

This is a problem when __set_memory_enc_pgtable() converts pages from
shared to private. It first changes the mapping and second modifies
the TDX page metadata.  It's moving from:

        * Shared mapping  => Shared Page  == OK
to:
        * Private mapping => Shared Page  == BIG BOOM!

This means that there is a window with a shared mapping pointing to a
private page where load_unaligned_zeropad() can strike.

Add a TDX handler for guest.enc_status_change_prepare(). This converts
the page from shared to private *before* the page becomes private.  This
ensures that there is never a private mapping to a shared page.

Leave a guest.enc_status_change_finish() in place but only use it for
private=>shared conversions.  This will delay updating the TDX metadata
marking the page private until *after* the mapping matches the metadata.
This also ensures that there is never a private mapping to a shared page.

[ dhansen: rewrite changelog ]

Fixes: 7dbde7631629 ("x86/mm/cpa: Add support for TDX shared memory")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/all/20230606095622.1939-3-kirill.shutemov%40linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:21:00 +02:00
Kirill A. Shutemov
373e715e31 x86/tdx: Panic on bad configs that #VE on "private" memory access
All normal kernel memory is "TDX private memory".  This includes
everything from kernel stacks to kernel text.  Handling
exceptions on arbitrary accesses to kernel memory is essentially
impossible because they can happen in horribly nasty places like
kernel entry/exit.  But, TDX hardware can theoretically _deliver_
a virtualization exception (#VE) on any access to private memory.

But, it's not as bad as it sounds.  TDX can be configured to never
deliver these exceptions on private memory with a "TD attribute"
called ATTR_SEPT_VE_DISABLE.  The guest has no way to *set* this
attribute, but it can check it.

Ensure ATTR_SEPT_VE_DISABLE is set in early boot.  panic() if it
is unset.  There is no sane way for Linux to run with this
attribute clear so a panic() is appropriate.

There's small window during boot before the check where kernel
has an early #VE handler. But the handler is only for port I/O
and will also panic() as soon as it sees any other #VE, such as
a one generated by a private memory access.

[ dhansen: Rewrite changelog and rebase on new tdx_parse_tdinfo().
	   Add Kirill's tested-by because I made changes since
	   he wrote this. ]

Fixes: 9a22bf6debbf ("x86/traps: Add #VE support for TDX guest")
Reported-by: ruogui.ygr@alibaba-inc.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20221028141220.29217-3-kirill.shutemov%40linux.intel.com
2022-11-01 16:02:40 -07:00
Dave Hansen
a6dd6f3900 x86/tdx: Prepare for using "INFO" call for a second purpose
The TDG.VP.INFO TDCALL provides the guest with various details about
the TDX system that the guest needs to run.  Only one field is currently
used: 'gpa_width' which tells the guest which PTE bits mark pages shared
or private.

A second field is now needed: the guest "TD attributes" to tell if
virtualization exceptions are configured in a way that can harm the guest.

Make the naming and calling convention more generic and discrete from the
mask-centric one.

Thanks to Sathya for the inspiration here, but there's no code, comments
or changelogs left from where he started.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: stable@vger.kernel.org
2022-11-01 10:07:15 -07:00
Kirill A. Shutemov
1e7769653b x86/tdx: Handle load_unaligned_zeropad() page-cross to a shared page
load_unaligned_zeropad() can lead to unwanted loads across page boundaries.
The unwanted loads are typically harmless. But, they might be made to
totally unrelated or even unmapped memory. load_unaligned_zeropad()
relies on exception fixup (#PF, #GP and now #VE) to recover from these
unwanted loads.

In TDX guests, the second page can be shared page and a VMM may configure
it to trigger #VE.

The kernel assumes that #VE on a shared page is an MMIO access and tries to
decode instruction to handle it. In case of load_unaligned_zeropad() it
may result in confusion as it is not MMIO access.

Fix it by detecting split page MMIO accesses and failing them.
load_unaligned_zeropad() will recover using exception fixups.

The issue was discovered by analysis and reproduced artificially. It was
not triggered during testing.

[ dhansen: fix up changelogs and comments for grammar and clarity,
	   plus incorporate Kirill's off-by-one fix]

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-4-kirill.shutemov@linux.intel.com
2022-06-17 15:37:33 -07:00
Kirill A. Shutemov
cdd85786f4 x86/tdx: Clarify RIP adjustments in #VE handler
After successful #VE handling, tdx_handle_virt_exception() has to move
RIP to the next instruction. The handler needs to know the length of the
instruction.

If the #VE happened due to instruction execution, the GET_VEINFO TDX
module call provides info on the instruction in R10, including its length.

For #VE due to EPT violation, the info in R10 is not populand and the
kernel must decode the instruction manually to find out its length.

Restructure the code to make it explicit that the instruction length
depends on the type of #VE. Make individual #VE handlers return
the instruction length on success or -errno on failure.

[ dhansen: fix up changelog and comments ]

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-3-kirill.shutemov@linux.intel.com
2022-06-15 11:05:16 -07:00
Kirill A. Shutemov
60428d8bc2 x86/tdx: Fix early #VE handling
tdx_early_handle_ve() does not increment RIP after successfully
handling the exception.  That leads to infinite loop of exceptions.

Move RIP when exceptions are successfully handled.

[ dhansen: make problem statement more clear ]

Fixes: 32e72854fa5f ("x86/tdx: Port I/O: Add early boot support")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-2-kirill.shutemov@linux.intel.com
2022-06-15 10:52:59 -07:00
Linus Torvalds
3a755ebcc2 Intel Trust Domain Extensions
This is the Intel version of a confidential computing solution called
 Trust Domain Extensions (TDX). This series adds support to run the
 kernel as part of a TDX guest. It provides similar guest protections to
 AMD's SEV-SNP like guest memory and register state encryption, memory
 integrity protection and a lot more.
 
 Design-wise, it differs from AMD's solution considerably: it uses
 a software module which runs in a special CPU mode called (Secure
 Arbitration Mode) SEAM. As the name suggests, this module serves as sort
 of an arbiter which the confidential guest calls for services it needs
 during its lifetime.
 
 Just like AMD's SNP set, this series reworks and streamlines certain
 parts of x86 arch code so that this feature can be properly accomodated.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe
 VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv
 kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT
 pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm
 khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw
 r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX
 fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy
 HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs
 IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G
 tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n
 HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq
 VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM=
 =ac9K
 -----END PGP SIGNATURE-----

Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull Intel TDX support from Borislav Petkov:
 "Intel Trust Domain Extensions (TDX) support.

  This is the Intel version of a confidential computing solution called
  Trust Domain Extensions (TDX). This series adds support to run the
  kernel as part of a TDX guest. It provides similar guest protections
  to AMD's SEV-SNP like guest memory and register state encryption,
  memory integrity protection and a lot more.

  Design-wise, it differs from AMD's solution considerably: it uses a
  software module which runs in a special CPU mode called (Secure
  Arbitration Mode) SEAM. As the name suggests, this module serves as
  sort of an arbiter which the confidential guest calls for services it
  needs during its lifetime.

  Just like AMD's SNP set, this series reworks and streamlines certain
  parts of x86 arch code so that this feature can be properly
  accomodated"

* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  x86/tdx: Fix RETs in TDX asm
  x86/tdx: Annotate a noreturn function
  x86/mm: Fix spacing within memory encryption features message
  x86/kaslr: Fix build warning in KASLR code in boot stub
  Documentation/x86: Document TDX kernel architecture
  ACPICA: Avoid cache flush inside virtual machines
  x86/tdx/ioapic: Add shared bit for IOAPIC base address
  x86/mm: Make DMA memory shared for TD guest
  x86/mm/cpa: Add support for TDX shared memory
  x86/tdx: Make pages shared in ioremap()
  x86/topology: Disable CPU online/offline control for TDX guests
  x86/boot: Avoid #VE during boot for TDX platforms
  x86/boot: Set CR0.NE early and keep it set during the boot
  x86/acpi/x86/boot: Add multiprocessor wake-up support
  x86/boot: Add a trampoline for booting APs via firmware handoff
  x86/tdx: Wire up KVM hypercalls
  x86/tdx: Port I/O: Add early boot support
  x86/tdx: Port I/O: Add runtime hypercalls
  x86/boot: Port I/O: Add decompression-time support for TDX
  x86/boot: Port I/O: Allow to hook up alternative helpers
  ...
2022-05-23 17:51:12 -07:00
Peter Zijlstra
c796f02162 x86/tdx: Fix RETs in TDX asm
Because build-testing is over-rated, fix a few trivial objtool complaints:

  vmlinux.o: warning: objtool: __tdx_module_call+0x3e: missing int3 after ret
  vmlinux.o: warning: objtool: __tdx_hypercall+0x6e: missing int3 after ret

Fixes: eb94f1b6a70a ("x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220520083839.GR2578@worktop.programming.kicks-ass.net
2022-05-20 12:53:22 +02:00
Borislav Petkov
5af14c29f7 x86/tdx: Annotate a noreturn function
objdump complains:

  vmlinux.o: warning: objtool: __tdx_hypercall()+0x74: unreachable instruction

because __tdx_hypercall_failed() won't return but panic the guest.
Annotate that that is ok and desired.

Fixes: eb94f1b6a70a ("x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions")
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220420115025.5448-1-bp@alien8.de
2022-04-21 12:54:08 +02:00
Kirill A. Shutemov
968b493173 x86/mm: Make DMA memory shared for TD guest
Intel TDX doesn't allow VMM to directly access guest private memory.
Any memory that is required for communication with the VMM must be
shared explicitly. The same rule applies for any DMA to and from the
TDX guest. All DMA pages have to be marked as shared pages. A generic way
to achieve this without any changes to device drivers is to use the
SWIOTLB framework.

The previous patch ("Add support for TDX shared memory") gave TDX guests
the _ability_ to make some pages shared, but did not make any pages
shared. This actually marks SWIOTLB buffers *as* shared.

Start returning true for cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) in
TDX guests.  This has several implications:

 - Allows the existing mem_encrypt_init() to be used for TDX which
   sets SWIOTLB buffers shared (aka. "decrypted").
 - Ensures that all DMA is routed via the SWIOTLB mechanism (see
   pci_swiotlb_detect())

Stop selecting DYNAMIC_PHYSICAL_MASK directly. It will get set
indirectly by selecting X86_MEM_ENCRYPT.

mem_encrypt_init() is currently under an AMD-specific #ifdef. Move it to
a generic area of the header.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-28-kirill.shutemov@linux.intel.com
2022-04-07 08:27:53 -07:00
Kirill A. Shutemov
7dbde76316 x86/mm/cpa: Add support for TDX shared memory
Intel TDX protects guest memory from VMM access. Any memory that is
required for communication with the VMM must be explicitly shared.

It is a two-step process: the guest sets the shared bit in the page
table entry and notifies VMM about the change. The notification happens
using MapGPA hypercall.

Conversion back to private memory requires clearing the shared bit,
notifying VMM with MapGPA hypercall following with accepting the memory
with AcceptPage hypercall.

Provide a TDX version of x86_platform.guest.* callbacks. It makes
__set_memory_enc_pgtable() work right in TDX guest.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-27-kirill.shutemov@linux.intel.com
2022-04-07 08:27:53 -07:00
Kuppuswamy Sathyanarayanan
bae1a962ac x86/topology: Disable CPU online/offline control for TDX guests
Unlike regular VMs, TDX guests use the firmware hand-off wakeup method
to wake up the APs during the boot process. This wakeup model uses a
mailbox to communicate with firmware to bring up the APs. As per the
design, this mailbox can only be used once for the given AP, which means
after the APs are booted, the same mailbox cannot be used to
offline/online the given AP. More details about this requirement can be
found in Intel TDX Virtual Firmware Design Guide, sec titled "AP
initialization in OS" and in sec titled "Hotplug Device".

Since the architecture does not support any method of offlining the
CPUs, disable CPU hotplug support in the kernel.

Since this hotplug disable feature can be re-used by other VM guests,
add a new CC attribute CC_ATTR_HOTPLUG_DISABLED and use it to disable
the hotplug support.

Attempt to offline CPU will fail with -EOPNOTSUPP.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-25-kirill.shutemov@linux.intel.com
2022-04-07 08:27:53 -07:00
Kuppuswamy Sathyanarayanan
cfb8ec7a31 x86/tdx: Wire up KVM hypercalls
KVM hypercalls use the VMCALL or VMMCALL instructions. Although the ABI
is similar, those instructions no longer function for TDX guests.

Make vendor-specific TDVMCALLs instead of VMCALL. This enables TDX
guests to run with KVM acting as the hypervisor.

Among other things, KVM hypercall is used to send IPIs.

Since the KVM driver can be built as a kernel module, export
tdx_kvm_hypercall() to make the symbols visible to kvm.ko.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-20-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Andi Kleen
32e72854fa x86/tdx: Port I/O: Add early boot support
TDX guests cannot do port I/O directly. The TDX module triggers a #VE
exception to let the guest kernel emulate port I/O by converting them
into TDCALLs to call the host.

But before IDT handlers are set up, port I/O cannot be emulated using
normal kernel #VE handlers. To support the #VE-based emulation during
this boot window, add a minimal early #VE handler support in early
exception handlers. This is similar to what AMD SEV does. This is
mainly to support earlyprintk's serial driver, as well as potentially
the VGA driver.

The early handler only supports I/O-related #VE exceptions. Unhandled or
failed exceptions will be handled via early_fixup_exceptions() (like
normal exception failures). At runtime I/O-related #VE exceptions (along
with other types) handled by virt_exception_kernel().

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-19-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Kuppuswamy Sathyanarayanan
0314994883 x86/tdx: Port I/O: Add runtime hypercalls
TDX hypervisors cannot emulate instructions directly. This includes
port I/O which is normally emulated in the hypervisor. All port I/O
instructions inside TDX trigger the #VE exception in the guest and
would be normally emulated there.

Use a hypercall to emulate port I/O. Extend the
tdx_handle_virt_exception() and add support to handle the #VE due to
port I/O instructions.

String I/O operations are not supported in TDX. Unroll them by declaring
CC_ATTR_GUEST_UNROLL_STRING_IO confidential computing attribute.

== Userspace Implications ==

The ioperm() facility allows userspace access to I/O instructions like
inb/outb.  Among other things, this allows writing userspace device
drivers.

This series has no special handling for ioperm(). Users will be able to
successfully request I/O permissions but will induce a #VE on their
first I/O instruction which leads SIGSEGV. If this is undesirable users
can enable kernel lockdown feature with 'lockdown=integrity' kernel
command line option. It makes ioperm() fail.

More robust handling of this situation (denying ioperm() in all TDX
guests) will be addressed in follow-on work.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-18-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Kirill A. Shutemov
31d58c4e55 x86/tdx: Handle in-kernel MMIO
In non-TDX VMs, MMIO is implemented by providing the guest a mapping
which will cause a VMEXIT on access and then the VMM emulating the
instruction that caused the VMEXIT. That's not possible for TDX VM.

To emulate an instruction an emulator needs two things:

  - R/W access to the register file to read/modify instruction arguments
    and see RIP of the faulted instruction.

  - Read access to memory where instruction is placed to see what to
    emulate. In this case it is guest kernel text.

Both of them are not available to VMM in TDX environment:

  - Register file is never exposed to VMM. When a TD exits to the module,
    it saves registers into the state-save area allocated for that TD.
    The module then scrubs these registers before returning execution
    control to the VMM, to help prevent leakage of TD state.

  - TDX does not allow guests to execute from shared memory. All executed
    instructions are in TD-private memory. Being private to the TD, VMMs
    have no way to access TD-private memory and no way to read the
    instruction to decode and emulate it.

In TDX the MMIO regions are instead configured by VMM to trigger a #VE
exception in the guest.

Add #VE handling that emulates the MMIO instruction inside the guest and
converts it into a controlled hypercall to the host.

This approach is bad for performance. But, it has (virtually) no impact
on the size of the kernel image and will work for a wide variety of
drivers. This allows TDX deployments to use arbitrary devices and device
drivers, including virtio. TDX customers have asked for the capability
to use random devices in their deployments.

In other words, even if all of the work was done to paravirtualize all
x86 MMIO users and virtio, this approach would still be needed. There
is essentially no way to get rid of this code.

This approach is functional for all in-kernel MMIO users current and
future and does so with a minimal amount of code and kernel image bloat.

MMIO addresses can be used with any CPU instruction that accesses
memory. Address only MMIO accesses done via io.h helpers, such as
'readl()' or 'writeq()'.

Any CPU instruction that accesses memory can also be used to access
MMIO.  However, by convention, MMIO access are typically performed via
io.h helpers such as 'readl()' or 'writeq()'.

The io.h helpers intentionally use a limited set of instructions when
accessing MMIO.  This known, limited set of instructions makes MMIO
instruction decoding and emulation feasible in KVM hosts and SEV guests
today.

MMIO accesses performed without the io.h helpers are at the mercy of the
compiler.  Compilers can and will generate a much more broad set of
instructions which can not practically be decoded and emulated.  TDX
guests will oops if they encounter one of these decoding failures.

This means that TDX guests *must* use the io.h helpers to access MMIO.

This requirement is not new.  Both KVM hosts and AMD SEV guests have the
same limitations on MMIO access.

=== Potential alternative approaches ===

== Paravirtualizing all MMIO ==

An alternative to letting MMIO induce a #VE exception is to avoid
the #VE in the first place. Similar to the port I/O case, it is
theoretically possible to paravirtualize MMIO accesses.

Like the exception-based approach offered here, a fully paravirtualized
approach would be limited to MMIO users that leverage common
infrastructure like the io.h macros.

However, any paravirtual approach would be patching approximately 120k
call sites. Any paravirtual approach would need to replace a bare memory
access instruction with (at least) a function call. With a conservative
overhead estimation of 5 bytes per call site (CALL instruction),
it leads to bloating code by 600k.

Many drivers will never be used in the TDX environment and the bloat
cannot be justified.

== Patching TDX drivers ==

Rather than touching the entire kernel, it might also be possible to
just go after drivers that use MMIO in TDX guests *and* are performance
critical to justify the effrort. Right now, that's limited only to virtio.

All virtio MMIO appears to be done through a single function, which
makes virtio eminently easy to patch.

This approach will be adopted in the future, removing the bulk of
MMIO #VEs. The #VE-based MMIO will remain serving non-virtio use cases.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-12-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
c141fa2c2b x86/tdx: Handle CPUID via #VE
In TDX guests, most CPUID leaf/sub-leaf combinations are virtualized
by the TDX module while some trigger #VE.

Implement the #VE handling for EXIT_REASON_CPUID by handing it through
the hypercall, which in turn lets the TDX module handle it by invoking
the host VMM.

More details on CPUID Virtualization can be found in the TDX module
specification, the section titled "CPUID Virtualization".

Note that VMM that handles the hypercall is not trusted. It can return
data that may steer the guest kernel in wrong direct. Only allow  VMM
to control range reserved for hypervisor communication.

Return all-zeros for any CPUID outside the hypervisor range. It matches
CPU behaviour for non-supported leaf.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-11-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
ae87f609cd x86/tdx: Add MSR support for TDX guests
Use hypercall to emulate MSR read/write for the TDX platform.

There are two viable approaches for doing MSRs in a TD guest:

1. Execute the RDMSR/WRMSR instructions like most VMs and bare metal
   do. Some will succeed, others will cause a #VE. All of those that
   cause a #VE will be handled with a TDCALL.
2. Use paravirt infrastructure.  The paravirt hook has to keep a list
   of which MSRs would cause a #VE and use a TDCALL.  All other MSRs
   execute RDMSR/WRMSR instructions directly.

The second option can be ruled out because the list of MSRs was
challenging to maintain. That leaves option #1 as the only viable
solution for the minimal TDX support.

Kernel relies on the exception fixup machinery to handle MSR access
errors. #VE handler uses the same exception fixup code as #GP. It
covers MSR accesses along with other types of fixups.

For performance-critical MSR writes (like TSC_DEADLINE), future patches
will replace the WRMSR/#VE sequence with the direct TDCALL.

RDMSR and WRMSR specification details can be found in
Guest-Host-Communication Interface (GHCI) for Intel Trust Domain
Extensions (Intel TDX) specification, sec titled "TDG.VP.
VMCALL<Instruction.RDMSR>" and "TDG.VP.VMCALL<Instruction.WRMSR>".

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-10-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
bfe6ed0c67 x86/tdx: Add HLT support for TDX guests
The HLT instruction is a privileged instruction, executing it stops
instruction execution and places the processor in a HALT state. It
is used in kernel for cases like reboot, idle loop and exception fixup
handlers. For the idle case, interrupts will be enabled (using STI)
before the HLT instruction (this is also called safe_halt()).

To support the HLT instruction in TDX guests, it needs to be emulated
using TDVMCALL (hypercall to VMM). More details about it can be found
in Intel Trust Domain Extensions (Intel TDX) Guest-Host-Communication
Interface (GHCI) specification, section TDVMCALL[Instruction.HLT].

In TDX guests, executing HLT instruction will generate a #VE, which is
used to emulate the HLT instruction. But #VE based emulation will not
work for the safe_halt() flavor, because it requires STI instruction to
be executed just before the TDCALL. Since idle loop is the only user of
safe_halt() variant, handle it as a special case.

To avoid *safe_halt() call in the idle function, define the
tdx_guest_idle() and use it to override the "x86_idle" function pointer
for a valid TDX guest.

Alternative choices like PV ops have been considered for adding
safe_halt() support. But it was rejected because HLT paravirt calls
only exist under PARAVIRT_XXL, and enabling it in TDX guest just for
safe_halt() use case is not worth the cost.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-9-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
9a22bf6deb x86/traps: Add #VE support for TDX guest
Virtualization Exceptions (#VE) are delivered to TDX guests due to
specific guest actions which may happen in either user space or the
kernel:

 * Specific instructions (WBINVD, for example)
 * Specific MSR accesses
 * Specific CPUID leaf accesses
 * Access to specific guest physical addresses

Syscall entry code has a critical window where the kernel stack is not
yet set up. Any exception in this window leads to hard to debug issues
and can be exploited for privilege escalation. Exceptions in the NMI
entry code also cause issues. Returning from the exception handler with
IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.

For these reasons, the kernel avoids #VEs during the syscall gap and
the NMI entry code. Entry code paths do not access TD-shared memory,
MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
that might generate #VE. VMM can remove memory from TD at any point,
but access to unaccepted (or missing) private memory leads to VM
termination, not to #VE.

Similarly to page faults and breakpoints, #VEs are allowed in NMI
handlers once the kernel is ready to deal with nested NMIs.

During #VE delivery, all interrupts, including NMIs, are blocked until
TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
the VE info.

TDGETVEINFO retrieves the #VE info from the TDX module, which also
clears the "#VE valid" flag.  This must be done before anything else as
any #VE that occurs while the valid flag is set escalates to #DF by TDX
module. It will result in an oops.

Virtual NMIs are inhibited if the #VE valid flag is set. NMI will not be
delivered until TDGETVEINFO is called.

For now, convert unhandled #VE's (everything, until later in this
series) so that they appear just like a #GP by calling the
ve_raise_fault() directly. The ve_raise_fault() function is similar
to #GP handler and is responsible for sending SIGSEGV to userspace
and CPU die and notifying debuggers and other die chain users.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-8-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
65fab5bc03 x86/tdx: Exclude shared bit from __PHYSICAL_MASK
In TDX guests, by default memory is protected from host access. If a
guest needs to communicate with the VMM (like the I/O use case), it uses
a single bit in the physical address to communicate the protected/shared
attribute of the given page.

In the x86 ARCH code, __PHYSICAL_MASK macro represents the width of the
physical address in the given architecture. It is used in creating
physical PAGE_MASK for address bits in the kernel. Since in TDX guest,
a single bit is used as metadata, it needs to be excluded from valid
physical address bits to avoid using incorrect addresses bits in the
kernel.

Enable DYNAMIC_PHYSICAL_MASK to support updating the __PHYSICAL_MASK.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-6-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kirill A. Shutemov
41394e33f3 x86/tdx: Extend the confidential computing API to support TDX guests
Confidential Computing (CC) features (like string I/O unroll support,
memory encryption/decryption support, etc) are conditionally enabled
in the kernel using cc_platform_has() API. Since TDX guests also need
to use these CC features, extend cc_platform_has() API and add TDX
guest-specific CC attributes support.

CC API also provides an interface to deal with encryption mask. Extend
it to cover TDX.

Details about which bit in the page table entry to be used to indicate
shared/private state is determined by using the TDINFO TDCALL.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-5-kirill.shutemov@linux.intel.com
2022-04-07 08:27:50 -07:00
Kuppuswamy Sathyanarayanan
eb94f1b6a7 x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions
Guests communicate with VMMs with hypercalls. Historically, these
are implemented using instructions that are known to cause VMEXITs
like VMCALL, VMLAUNCH, etc. However, with TDX, VMEXITs no longer
expose the guest state to the host. This prevents the old hypercall
mechanisms from working. So, to communicate with VMM, TDX
specification defines a new instruction called TDCALL.

In a TDX based VM, since the VMM is an untrusted entity, an intermediary
layer -- TDX module -- facilitates secure communication between the host
and the guest. TDX module is loaded like a firmware into a special CPU
mode called SEAM. TDX guests communicate with the TDX module using the
TDCALL instruction.

A guest uses TDCALL to communicate with both the TDX module and VMM.
The value of the RAX register when executing the TDCALL instruction is
used to determine the TDCALL type. A leaf of TDCALL used to communicate
with the VMM is called TDVMCALL.

Add generic interfaces to communicate with the TDX module and VMM
(using the TDCALL instruction).

__tdx_module_call()  - Used to communicate with the TDX module (via
		       TDCALL instruction).
__tdx_hypercall()    - Used by the guest to request services from
		       the VMM (via TDVMCALL leaf of TDCALL).

Also define an additional wrapper _tdx_hypercall(), which adds error
handling support for the TDCALL failure.

The __tdx_module_call() and __tdx_hypercall() helper functions are
implemented in assembly in a .S file.  The TDCALL ABI requires
shuffling arguments in and out of registers, which proved to be
awkward with inline assembly.

Just like syscalls, not all TDVMCALL use cases need to use the same
number of argument registers. The implementation here picks the current
worst-case scenario for TDCALL (4 registers). For TDCALLs with fewer
than 4 arguments, there will end up being a few superfluous (cheap)
instructions. But, this approach maximizes code reuse.

For registers used by the TDCALL instruction, please check TDX GHCI
specification, the section titled "TDCALL instruction" and "TDG.VP.VMCALL
Interface".

Based on previous patch by Sean Christopherson.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-4-kirill.shutemov@linux.intel.com
2022-04-07 08:27:50 -07:00
Kuppuswamy Sathyanarayanan
59bd54a84d x86/tdx: Detect running as a TDX guest in early boot
In preparation of extending cc_platform_has() API to support TDX guest,
use CPUID instruction to detect support for TDX guests in the early
boot code (via tdx_early_init()). Since copy_bootdata() is the first
user of cc_platform_has() API, detect the TDX guest status before it.

Define a synthetic feature flag (X86_FEATURE_TDX_GUEST) and set this
bit in a valid TDX guest platform.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-2-kirill.shutemov@linux.intel.com
2022-04-07 08:27:50 -07:00
Brijesh Singh
f742b90e61 x86/mm: Extend cc_attr to include AMD SEV-SNP
The CC_ATTR_GUEST_SEV_SNP can be used by the guest to query whether the
SNP (Secure Nested Paging) feature is active.

Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-10-brijesh.singh@amd.com
2022-04-06 13:02:34 +02:00
Kirill A. Shutemov
b577f542f9 x86/coco: Add API to handle encryption mask
AMD SME/SEV uses a bit in the page table entries to indicate that the
page is encrypted and not accessible to the VMM.

TDX uses a similar approach, but the polarity of the mask is opposite to
AMD: if the bit is set the page is accessible to VMM.

Provide vendor-neutral API to deal with the mask: cc_mkenc() and
cc_mkdec() modify given address to make it encrypted/decrypted. It can
be applied to phys_addr_t, pgprotval_t or page table entry value.

pgprot_encrypted() and pgprot_decrypted() reimplemented using new
helpers.

The implementation will be extended to cover TDX.

pgprot_decrypted() is used by drivers (i915, virtio_gpu, vfio).
cc_mkdec() called by pgprot_decrypted(). Export cc_mkdec().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-5-kirill.shutemov@linux.intel.com
2022-02-23 19:14:29 +01:00
Kirill A. Shutemov
655a0fa34b x86/coco: Explicitly declare type of confidential computing platform
The kernel derives the confidential computing platform
type it is running as from sme_me_mask on AMD or by using
hv_is_isolation_supported() on HyperV isolation VMs. This detection
process will be more complicated as more platforms get added.

Declare a confidential computing vendor variable explicitly and set it
via cc_set_vendor() on the respective platform.

  [ bp: Massage commit message, fixup HyperV check. ]

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-4-kirill.shutemov@linux.intel.com
2022-02-23 19:14:16 +01:00
Kirill A. Shutemov
6198311093 x86/cc: Move arch/x86/{kernel/cc_platform.c => coco/core.c}
Move cc_platform.c to arch/x86/coco/. The directory is going to be the
home space for code related to confidential computing.

Intel TDX code will land here. AMD SEV code will also eventually be
moved there.

No functional changes.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-3-kirill.shutemov@linux.intel.com
2022-02-23 18:25:58 +01:00