1325 Commits

Author SHA1 Message Date
Keisuke Nishimura
47a3075109 sched/fair: Fix the decision for load balance
[ Upstream commit 6d7e4782bcf549221b4ccfffec2cf4d1a473f1a3 ]

should_we_balance is called for the decision to do load-balancing.
When sched ticks invoke this function, only one CPU should return
true. However, in the current code, two CPUs can return true. The
following situation, where b means busy and i means idle, is an
example, because CPU 0 and CPU 2 return true.

        [0, 1] [2, 3]
         b  b   i  b

This fix checks if there exists an idle CPU with busy sibling(s)
after looking for a CPU on an idle core. If some idle CPUs with busy
siblings are found, just the first one should do load-balancing.

Fixes: b1bfeab9b002 ("sched/fair: Consider the idle state of the whole core for load balance")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-03 07:33:02 +01:00
Abel Wu
14204acc09 sched/eevdf: Fix vruntime adjustment on reweight
[ Upstream commit eab03c23c2a162085b13200d7942fc5a00b5ccc8 ]

vruntime of the (on_rq && !0-lag) entity needs to be adjusted when
it gets re-weighted, and the calculations can be simplified based
on the fact that re-weight won't change the w-average of all the
entities. Please check the proofs in comments.

But adjusting vruntime can also cause position change in RB-tree
hence require re-queue to fix up which might be costly. This might
be avoided by deferring adjustment to the time the entity actually
leaves tree (dequeue/pick), but that will negatively affect task
selection and probably not good enough either.

Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-03 07:33:02 +01:00
Peter Zijlstra
d03b481743 sched: Fix stop_one_cpu_nowait() vs hotplug
[ Upstream commit f0498d2a54e7966ce23cd7c7ff42c64fa0059b07 ]

Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.

Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().

The race scenario is:

	CPU0					CPU1

					// doing _cpu_down()

  __set_cpus_allowed_ptr()
    task_rq_lock();
					takedown_cpu()
					  stop_machine_cpuslocked(take_cpu_down..)

					<PREEMPT: cpu_stopper_thread()
					  MULTI_STOP_PREPARE
					  ...
    __set_cpus_allowed_ptr_locked()
      affine_move_task()
        task_rq_unlock();

  <PREEMPT: cpu_stopper_thread()\>
    ack_state()
					  MULTI_STOP_RUN
					    take_cpu_down()
					      __cpu_disable();
					      stop_machine_park();
						stopper->enabled = false;
					 />
   />
	stop_one_cpu_nowait(.fn = migration_cpu_stop);
          if (stopper->enabled) // false!!!

That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.

OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.

Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:

	preempt_disable();
	task_rq_unlock(...);
	if (!stop_pending)
	  stop_one_cpu_nowait(...)
	preempt_enable();

This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.

Apply this pattern to all similar stop_one_cpu_nowait() invocations.

Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Qais Yousef
294e3c797d sched/uclamp: Ignore (util == 0) optimization in feec() when p_util_max = 0
[ Upstream commit 23c9519def98ee0fa97ea5871535e9b136f522fc ]

find_energy_efficient_cpu() bails out early if effective util of the
task is 0 as the delta at this point will be zero and there's nothing
for EAS to do. When uclamp is being used, this could lead to wrong
decisions when uclamp_max is set to 0. In this case the task is capped
to performance point 0, but it is actually running and consuming energy
and we can benefit from EAS energy calculations.

Rework the condition so that it bails out when both util and uclamp_min
are 0.

We can do that without needing to use uclamp_task_util(); remove it.

Fixes: d81304bc6193 ("sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-3-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Qais Yousef
60bbc99f7d sched/uclamp: Set max_spare_cap_cpu even if max_spare_cap is 0
[ Upstream commit 6b00a40147653c8ea748e8f4396510f252763364 ]

When uclamp_max is being used, the util of the task could be higher than
the spare capacity of the CPU, but due to uclamp_max value we force-fit
it there.

The way the condition for checking for max_spare_cap in
find_energy_efficient_cpu() was constructed; it ignored any CPU that has
its spare_cap less than or _equal_ to max_spare_cap. Since we initialize
max_spare_cap to 0; this lead to never setting max_spare_cap_cpu and
hence ending up never performing compute_energy() for this cluster and
missing an opportunity for a better energy efficient placement to honour
uclamp_max setting.

	max_spare_cap = 0;
	cpu_cap = capacity_of(cpu) - cpu_util(p);  // 0 if cpu_util(p) is high

	...

	util_fits_cpu(...);		// will return true if uclamp_max forces it to fit

	...

	// this logic will fail to update max_spare_cap_cpu if cpu_cap is 0
	if (cpu_cap > max_spare_cap) {
		max_spare_cap = cpu_cap;
		max_spare_cap_cpu = cpu;
	}

prev_spare_cap suffers from a similar problem.

Fix the logic by converting the variables into long and treating -1
value as 'not populated' instead of 0 which is a viable and correct
spare capacity value. We need to be careful signed comparison is used
when comparing with cpu_cap in one of the conditions.

Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-2-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Chengming Zhou
f6df646b7e sched/fair: Fix cfs_rq_is_decayed() on !SMP
[ Upstream commit c0490bc9bb62d9376f3dd4ec28e03ca0fef97152 ]

We don't need to maintain per-queue leaf_cfs_rq_list on !SMP, since
it's used for cfs_rq load tracking & balancing on SMP.

But sched debug interface uses it to print per-cfs_rq stats.

This patch fixes the !SMP version of cfs_rq_is_decayed(), so the
per-queue leaf_cfs_rq_list is also maintained correctly on !SMP,
to fix the warning in assert_list_leaf_cfs_rq().

Fixes: 0a00a354644e ("sched/fair: Delete useless condition in tg_unthrottle_up()")
Reported-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Closes: https://lore.kernel.org/all/ZN87UsqkWcFLDxea@swlinux02/
Link: https://lore.kernel.org/r/20230913132031.2242151-1-chengming.zhou@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:51 +01:00
Peter Zijlstra
d2929762cc sched/eevdf: Fix heap corruption more
Because someone is a flaming idiot... and forgot we have current as
se->on_rq but not actually in the tree itself, and walking rb_parent()
on an entry not in the tree is 'funky' and KASAN complains.

Fixes: 8dafa9d0eb1a ("sched/eevdf: Fix min_deadline heap integrity")
Reported-by: 0599jiangyc@gmail.com
Reported-by: Dmitry Safonov <0x7f454c46@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dmitry Safonov <0x7f454c46@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218020
Link: https://lkml.kernel.org/r/CAJwJo6ZGXO07%3DQvW4fgQfbsDzQPs9xj5sAQ1zp%3DmAyPMNbHYww%40mail.gmail.com
2023-10-18 10:22:13 +02:00
Benjamin Segall
b01db23d59 sched/eevdf: Fix pick_eevdf()
The old pick_eevdf() could fail to find the actual earliest eligible
deadline when it descended to the right looking for min_deadline, but
it turned out that that min_deadline wasn't actually eligible. In that
case we need to go back and search through any left branches we
skipped looking for the actual best _eligible_ min_deadline.

This is more expensive, but still O(log n), and at worst should only
involve descending two branches of the rbtree.

I've run this through a userspace stress test (thank you
tools/lib/rbtree.c), so hopefully this implementation doesn't miss any
corner cases.

Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/xm261qego72d.fsf_-_@google.com
2023-10-09 09:48:33 +02:00
Peter Zijlstra
8dafa9d0eb sched/eevdf: Fix min_deadline heap integrity
Marek and Biju reported instances of:

  "EEVDF scheduling fail, picking leftmost"

which Mike correlated with cgroup scheduling and the min_deadline heap
getting corrupted; some trace output confirms:

> And yeah, min_deadline is hosed somehow:
>
>    validate_cfs_rq: --- /
>    __print_se: ffff88845cf48080 w: 1024 ve: -58857638 lag: 870381 vd: -55861854 vmd: -66302085 E (11372/tr)
>    __print_se:   ffff88810d165800 w: 25 ve: -80323686 lag: 22336429 vd: -41496434 vmd: -66302085 E (-1//autogroup-31)
>    __print_se:   ffff888108379000 w: 25 ve: 0 lag: -57987257 vd: 114632828 vmd: 114632828 N (-1//autogroup-33)
>    validate_cfs_rq: min_deadline: -55861854 avg_vruntime: -62278313462 / 1074 = -57987256

Turns out that reweight_entity(), which tries really hard to be fast,
does not do the normal dequeue+update+enqueue pattern but *does* scale
the deadline.

However, it then fails to propagate the updated deadline value up the
heap.

Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Biju Das <biju.das.jz@bp.renesas.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Biju Das <biju.das.jz@bp.renesas.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lkml.kernel.org/r/20231006192445.GE743@noisy.programming.kicks-ass.net
2023-10-09 09:48:32 +02:00
Peter Zijlstra
650cad561c sched/eevdf: Fix avg_vruntime()
The expectation is that placing a task at avg_vruntime() makes it
eligible. Turns out there is a corner case where this is not the case.

Specifically, avg_vruntime() relies on the fact that integer division
is a flooring function (eg. it discards the remainder). By this
property the value returned is slightly left of the true average.

However! when the average is a negative (relative to min_vruntime) the
effect is flipped and it becomes a ceil, with the result that the
returned value is just right of the average and thus not eligible.

Fixes: af4cf40470c2 ("sched/fair: Add cfs_rq::avg_vruntime")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-10-03 12:32:29 +02:00
Peter Zijlstra
2f2fc17bab sched/eevdf: Also update slice on placement
Tasks that never consume their full slice would not update their slice value.
This means that tasks that are spawned before the sysctl scaling keep their
original (UP) slice length.

Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230915124822.847197830@noisy.programming.kicks-ass.net
2023-10-03 12:32:29 +02:00
Tim Chen
450e749707 sched/fair: Fix SMT4 group_smt_balance handling
For SMT4, any group with more than 2 tasks will be marked as
group_smt_balance. Retain the behaviour of group_has_spare by marking
the busiest group as the group which has the least number of idle_cpus.

Also, handle rounding effect of adding (ncores_local + ncores_busy) when
the local is fully idle and busy group imbalance is less than 2 tasks.
Local group should try to pull at least 1 task in this case so imbalance
should be set to 2 instead.

Fixes: fee1759e4f04 ("sched/fair: Determine active load balance for SMT sched groups")
Acked-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/6cd1633036bb6b651af575c32c2a9608a106702c.camel@linux.intel.com
2023-09-13 15:03:06 +02:00
Shrikanth Hegde
f8858d9606 sched/fair: Optimize should_we_balance() for large SMT systems
should_we_balance() is called in load_balance() to find out if the CPU that
is trying to do the load balance is the right one or not.

With commit:

  b1bfeab9b002("sched/fair: Consider the idle state of the whole core for load balance")

the code tries to find an idle core to do the load balancing
and falls back on an idle sibling CPU if there is no idle core.

However, on larger SMT systems, it could be needlessly iterating to find a
idle by scanning all the CPUs in an non-idle core. If the core is not idle,
and first SMT sibling which is idle has been found, then its not needed to
check other SMT siblings for idleness

Lets say in SMT4, Core0 has 0,2,4,6 and CPU0 is BUSY and rest are IDLE.
balancing domain is MC/DIE. CPU2 will be set as the first idle_smt and
same process would be repeated for CPU4 and CPU6 but this is unnecessary.
Since calling is_core_idle loops through all CPU's in the SMT mask, effect
is multiplied by weight of smt_mask. For example,when say 1 CPU is busy,
we would skip loop for 2 CPU's and skip iterating over 8CPU's. That
effect would be more in DIE/NUMA domain where there are more cores.

Testing and performance evaluation
==================================

The test has been done on this system which has 12 cores, i.e 24 small
cores with SMT=4:

  lscpu
  Architecture:            ppc64le
    Byte Order:            Little Endian
  CPU(s):                  96
    On-line CPU(s) list:   0-95
  Model name:              POWER10 (architected), altivec supported
    Thread(s) per core:    8

Used funclatency bcc tool to evaluate the time taken by should_we_balance(). For
base tip/sched/core the time taken is collected by making the
should_we_balance() noinline. time is in nanoseconds. The values are
collected by running the funclatency tracer for 60 seconds. values are
average of 3 such runs. This represents the expected reduced time with
patch.

tip/sched/core was at commit:

  2f88c8e802c8 ("sched/eevdf/doc: Modify the documented knob to base_slice_ns as well")

Results:

	------------------------------------------------------------------------------
	workload			   tip/sched/core	with_patch(%gain)
	------------------------------------------------------------------------------
	idle system				 809.3		 695.0(16.45)
	stress ng – 12 threads -l 100		1013.5		 893.1(13.49)
	stress ng – 24 threads -l 100		1073.5		 980.0(9.54)
	stress ng – 48 threads -l 100		 683.0		 641.0(6.55)
	stress ng – 96 threads -l 100		2421.0		2300(5.26)
	stress ng – 96 threads -l 15		 375.5		 377.5(-0.53)
	stress ng – 96 threads -l 25		 635.5		 637.5(-0.31)
	stress ng – 96 threads -l 35		 934.0		 891.0(4.83)

Ran schbench(old), hackbench and stress_ng  to evaluate the workload
performance between tip/sched/core and with patch.
No modification to tip/sched/core

TL;DR:

Good improvement is seen with schbench. when hackbench and stress_ng
runs for longer good improvement is seen.

	------------------------------------------------------------------------------
	schbench(old)		            tip		+patch(%gain)
	10 iterations			sched/core
	------------------------------------------------------------------------------
	1 Threads
	50.0th:		      		    8.00       9.00(-12.50)
	75.0th:   			    9.60       9.00(6.25)
	90.0th:   			   11.80      10.20(13.56)
	95.0th:   			   12.60      10.40(17.46)
	99.0th:   			   13.60      11.90(12.50)
	99.5th:   			   14.10      12.60(10.64)
	99.9th:   			   15.90      14.60(8.18)
	2 Threads
	50.0th:   			    9.90       9.20(7.07)
	75.0th:   			   12.60      10.10(19.84)
	90.0th:   			   15.50      12.00(22.58)
	95.0th:   			   17.70      14.00(20.90)
	99.0th:   			   21.20      16.90(20.28)
	99.5th:   			   22.60      17.50(22.57)
	99.9th:   			   30.40      19.40(36.18)
	4 Threads
	50.0th:   			   12.50      10.60(15.20)
	75.0th:   			   15.30      12.00(21.57)
	90.0th:   			   18.60      14.10(24.19)
	95.0th:   			   21.30      16.20(23.94)
	99.0th:   			   26.00      20.70(20.38)
	99.5th:   			   27.60      22.50(18.48)
	99.9th:   			   33.90      31.40(7.37)
	8 Threads
	50.0th:   			   16.30      14.30(12.27)
	75.0th:   			   20.20      17.40(13.86)
	90.0th:   			   24.50      21.90(10.61)
	95.0th:   			   27.30      24.70(9.52)
	99.0th:   			   35.00      31.20(10.86)
	99.5th:   			   46.40      33.30(28.23)
	99.9th:   			   89.30      57.50(35.61)
	16 Threads
	50.0th:   			   22.70      20.70(8.81)
	75.0th:   			   30.10      27.40(8.97)
	90.0th:   			   36.00      32.80(8.89)
	95.0th:   			   39.60      36.40(8.08)
	99.0th:   			   49.20      44.10(10.37)
	99.5th:   			   64.90      50.50(22.19)
	99.9th:   			  143.50     100.60(29.90)
	32 Threads
	50.0th:   			   34.60      35.50(-2.60)
	75.0th:   			   48.20      50.50(-4.77)
	90.0th:   			   59.20      62.40(-5.41)
	95.0th:   			   65.20      69.00(-5.83)
	99.0th:   			   80.40      83.80(-4.23)
	99.5th:   			  102.10      98.90(3.13)
	99.9th:   			  727.10     506.80(30.30)

schbench does improve in general. There is some run to run variation with
schbench. Did a validation run to confirm that trend is similar.

	------------------------------------------------------------------------------
	hackbench				tip	   +patch(%gain)
	20 iterations, 50000 loops	     sched/core
	------------------------------------------------------------------------------
	Process 10 groups                :      11.74      11.70(0.34)
	Process 20 groups                :      22.73      22.69(0.18)
	Process 30 groups                :      33.39      33.40(-0.03)
	Process 40 groups                :      43.73      43.61(0.27)
	Process 50 groups                :      53.82      54.35(-0.98)
	Process 60 groups                :      64.16      65.29(-1.76)
	thread 10 Time                   :      12.81      12.79(0.16)
	thread 20 Time                   :      24.63      24.47(0.65)
	Process(Pipe) 10 Time            :       6.40       6.34(0.94)
	Process(Pipe) 20 Time            :      10.62      10.63(-0.09)
	Process(Pipe) 30 Time            :      15.09      14.84(1.66)
	Process(Pipe) 40 Time            :      19.42      19.01(2.11)
	Process(Pipe) 50 Time            :      24.04      23.34(2.91)
	Process(Pipe) 60 Time            :      28.94      27.51(4.94)
	thread(Pipe) 10 Time             :       6.96       6.87(1.29)
	thread(Pipe) 20 Time             :      11.74      11.73(0.09)

hackbench shows slight improvement with pipe. Slight degradation in process.

	------------------------------------------------------------------------------
	stress_ng				tip        +patch(%gain)
	10 iterations 100000 cpu_ops	     sched/core
	------------------------------------------------------------------------------

	--cpu=96 -util=100 Time taken  	 :       5.30,       5.01(5.47)
	--cpu=48 -util=100 Time taken    :       7.94,       6.73(15.24)
	--cpu=24 -util=100 Time taken    :      11.67,       8.75(25.02)
	--cpu=12 -util=100 Time taken    :      15.71,      15.02(4.39)
	--cpu=96 -util=10 Time taken     :      22.71,      22.19(2.29)
	--cpu=96 -util=20 Time taken     :      12.14,      12.37(-1.89)
	--cpu=96 -util=30 Time taken     :       8.76,       8.86(-1.14)
	--cpu=96 -util=40 Time taken     :       7.13,       7.14(-0.14)
	--cpu=96 -util=50 Time taken     :       6.10,       6.13(-0.49)
	--cpu=96 -util=60 Time taken     :       5.42,       5.41(0.18)
	--cpu=96 -util=70 Time taken     :       4.94,       4.94(0.00)
	--cpu=96 -util=80 Time taken     :       4.56,       4.53(0.66)
	--cpu=96 -util=90 Time taken     :       4.27,       4.26(0.23)

Good improvement seen with 24 CPUs. In this case only one CPU is busy,
and no core is idle. Decent improvement with 100% utilization case. no
difference in other utilization.

Fixes: b1bfeab9b002 ("sched/fair: Consider the idle state of the whole core for load balance")
Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230902081204.232218-1-sshegde@linux.vnet.ibm.com
2023-09-02 12:56:04 +02:00
Hao Jia
c958ca2013 sched/fair: Make update_entity_lag() static
The function update_entity_lag() is only used inside the kernel/sched/fair.c file.
Make it static.

Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230829030325.69128-1-jiahao.os@bytedance.com
2023-08-29 21:05:28 +02:00
Linus Torvalds
97efd28334 Misc x86 cleanups.
The following commit deserves special mention:
 
    22dc02f81cddd Revert "sched/fair: Move unused stub functions to header"
 
 This is in x86/cleanups, because the revert is a re-application of a
 number of cleanups that got removed inadvertedly.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTtDkoRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jCMw//UvQGM8yxsTa57r0/ZpJHS2++P5pJxOsz
 45kBb3aBiDV6idArce4EHpthp3MvF3Pycibp9w0qg//NOtIHTKeagXv52abxsu1W
 hmS6gXJZDXZvjO1BFaUlmv97iYtzGfKnQppj32C4tMr9SaP49h3KvOHH1Z8CR3mP
 1nZaJJwYIi2qBh7msnmLGG+F0drb85O/dfHdoLX6iVJw9UP4n5nu9u8u1E0iC7J7
 2GC6AwP60A0EBRTK9EHQQEYwy9uvdS/TG5f2Qk1VP87KA9TTocs8MyapMG4DQu79
 hZKVEGuVQAlV3rYe9cJBNpDx1mTu3rmuMH0G71KEe3T6UcG5QRUiAPm8UfA9prPD
 uWjY4zm5o0W3tUio4V1MqqiLFIaBU63WmTY9RyM0QH8Ms8r8GugWKmnrTIuHfEC3
 9D+Uhyb5d8ID6qFGLTOvPm0g+v64lnH71qq83PcVJgsmZvUb2XvFA3d/A0h9JzLT
 2In/yfU10UsLUFTiNRyAgcLccjaGhliDB2oke9Kp0OyOTSQRcWmiq8kByVxCPImP
 auOWWcNXjcuOgjlnziEkMTDuRY12MgUB2If4zhELvdEFibIaaNW5sNCbY2msWaN1
 CUD7fcj0L3HZvzujUm72l5hxL2brJMuPwVNJfuOe4T8wzy569d6VJULrd1URBM1B
 vfaPs1Dz46Q=
 =kiAA
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Ingo Molnar:
 "The following commit deserves special mention:

   22dc02f81cddd Revert "sched/fair: Move unused stub functions to header"

  This is in x86/cleanups, because the revert is a re-application of a
  number of cleanups that got removed inadvertedly"

[ This also effectively undoes the amd_check_microcode() microcode
  declaration change I had done in my microcode loader merge in commit
  42a7f6e3ffe0 ("Merge tag 'x86_microcode_for_v6.6_rc1' [...]").

  I picked the declaration change by Arnd from this branch instead,
  which put it in <asm/processor.h> instead of <asm/microcode.h> like I
  had done in my merge resolution   - Linus ]

* tag 'x86-cleanups-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/platform/uv: Refactor code using deprecated strncpy() interface to use strscpy()
  x86/hpet: Refactor code using deprecated strncpy() interface to use strscpy()
  x86/platform/uv: Refactor code using deprecated strcpy()/strncpy() interfaces to use strscpy()
  x86/qspinlock-paravirt: Fix missing-prototype warning
  x86/paravirt: Silence unused native_pv_lock_init() function warning
  x86/alternative: Add a __alt_reloc_selftest() prototype
  x86/purgatory: Include header for warn() declaration
  x86/asm: Avoid unneeded __div64_32 function definition
  Revert "sched/fair: Move unused stub functions to header"
  x86/apic: Hide unused safe_smp_processor_id() on 32-bit UP
  x86/cpu: Fix amd_check_microcode() declaration
2023-08-28 17:05:58 -07:00
Linus Torvalds
3ca9a836ff Scheduler changes for v6.6:
- The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler.
 
   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only.
   It completely reworks the base scheduler: placement, preemption,
   picking -- everything.
 
   LWN.net, as usual, has a terrific writeup about EEVDF:
 
      https://lwn.net/Articles/925371/
 
   Preemption (both tick and wakeup) is driven by testing against
   a fresh pick. Because the tree is now effectively an interval
   tree, and the selection is no longer the 'leftmost' task,
   over-scheduling is less of a problem. A lot of the CFS
   heuristics are removed or replaced by more natural latency-space
   parameters & constructs.
 
   In terms of expected performance regressions: we'll and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases,
   but in some cases it won't, especially in adversarial loads that
   got lucky with the previous code, such as some variants of hackbench.
   We are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations
   of that process.
 
 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again).
 
 - Improve & fix bandwidth-scheduling on nohz systems.
 
 - Improve bandwidth-throttling.
 
 - Use lock guards to simplify and de-goto-ify control flow.
 
 - Misc improvements, cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTtDOgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iS4g//b9yewVW9OPxetKoN8zIJA0TjFYuuOVHK
 BlCJi5dbzXeCTrtENI65BRA7kPbTQ3AjwLRQ2BallAZ4dJceK0RhlZJvcrMNsm4e
 Adcpoch/FbqPKCrtAJQY04Ln1B244n/KyVifYett9220dMgTFQGJJYxrTc2G2+Kp
 F44vdUHzRczIE+KeOgBild1CwfKv5Zn5xgaXgtuoPLZtWBE0C1fSSzbK/PTINcUx
 bS4NVxK0CpOqSiNjnugV8KsYb71/0U6IgShBVjfHsrlBYigOH2NbVTH5xyjF8f83
 WxiGstlhxj+N6Kv4L6FOJIAr2BIggH82j3FaPACmv4c8pzEoBBbvlAJkfinLEgbn
 Povg3OF2t6uZ8NoHjeu3WxOjBsphbpkFz7H5nno1ibXSIR/JyUH5MdBPSx93QITB
 QoUKQpr/L8zWauWDOEzSaJjEsZbl8rkcIVq5Bk0bR3qn2xkZsIeVte+vCEu3+tBc
 b4JOZjq7AuPDqPnsBLvuyiFZ7zwsAfm+pOD5UF3/zbLjPn1N/7wTNQZ29zjc04jl
 SifpCZGgF1KlG8m8wNTlSfVvq0ksppCzJt+C6VFuejZ191IGpirQHn4Vp0sluMhC
 WRzXhb7v37Bq5JY10GMfeKb/jAiRs68kozhzqVPsBSAPS6I6jJssONgedq+LbQdC
 tFsmE9n09do=
 =XtCD
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler

   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only. It
   completely reworks the base scheduler: placement, preemption, picking
   -- everything

   LWN.net, as usual, has a terrific writeup about EEVDF:

      https://lwn.net/Articles/925371/

   Preemption (both tick and wakeup) is driven by testing against a
   fresh pick. Because the tree is now effectively an interval tree, and
   the selection is no longer the 'leftmost' task, over-scheduling is
   less of a problem. A lot of the CFS heuristics are removed or
   replaced by more natural latency-space parameters & constructs

   In terms of expected performance regressions: we will and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases, but
   in some cases it won't, especially in adversarial loads that got
   lucky with the previous code, such as some variants of hackbench. We
   are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations of
   that process

 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again)

 - Improve & fix bandwidth-scheduling on nohz systems

 - Improve bandwidth-throttling

 - Use lock guards to simplify and de-goto-ify control flow

 - Misc improvements, cleanups and fixes

* tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  sched/eevdf/doc: Modify the documented knob to base_slice_ns as well
  sched/eevdf: Curb wakeup-preemption
  sched: Simplify sched_core_cpu_{starting,deactivate}()
  sched: Simplify try_steal_cookie()
  sched: Simplify sched_tick_remote()
  sched: Simplify sched_exec()
  sched: Simplify ttwu()
  sched: Simplify wake_up_if_idle()
  sched: Simplify: migrate_swap_stop()
  sched: Simplify sysctl_sched_uclamp_handler()
  sched: Simplify get_nohz_timer_target()
  sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
  sched/rt: Fix sysctl_sched_rr_timeslice intial value
  sched/fair: Block nohz tick_stop when cfs bandwidth in use
  sched, cgroup: Restore meaning to hierarchical_quota
  MAINTAINERS: Add Peter explicitly to the psi section
  sched/psi: Select KERNFS as needed
  sched/topology: Align group flags when removing degenerate domain
  sched/fair: remove util_est boosting
  sched/fair: Propagate enqueue flags into place_entity()
  ...
2023-08-28 16:43:39 -07:00
Peter Zijlstra
63304558ba sched/eevdf: Curb wakeup-preemption
Mike and others noticed that EEVDF does like to over-schedule quite a
bit -- which does hurt performance of a number of benchmarks /
workloads.

In particular, what seems to cause over-scheduling is that when lag is
of the same order (or larger) than the request / slice then placement
will not only cause the task to be placed left of current, but also
with a smaller deadline than current, which causes immediate
preemption.

[ notably, lag bounds are relative to HZ ]

Mike suggested we stick to picking 'current' for as long as it's
eligible to run, giving it uninterrupted runtime until it reaches
parity with the pack.

Augment Mike's suggestion by only allowing it to exhaust it's initial
request.

One random data point:

echo NO_RUN_TO_PARITY > /debug/sched/features
perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000

	3,723,554        context-switches      ( +-  0.56% )
	9.5136 +- 0.0394 seconds time elapsed  ( +-  0.41% )

echo RUN_TO_PARITY > /debug/sched/features
perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000

	2,556,535        context-switches      ( +-  0.51% )
	9.2427 +- 0.0302 seconds time elapsed  ( +-  0.33% )

Suggested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230816134059.GC982867@hirez.programming.kicks-ass.net
2023-08-17 17:07:07 +02:00
Ingo Molnar
b41bbb33cf Merge branch 'sched/eevdf' into sched/core
Pick up the EEVDF work into the main branch - it's looking good so far.

 Conflicts:
	kernel/sched/features.h

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-08-10 09:05:43 +02:00
Phil Auld
88c56cfeae sched/fair: Block nohz tick_stop when cfs bandwidth in use
CFS bandwidth limits and NOHZ full don't play well together.  Tasks
can easily run well past their quotas before a remote tick does
accounting.  This leads to long, multi-period stalls before such
tasks can run again. Currently, when presented with these conflicting
requirements the scheduler is favoring nohz_full and letting the tick
be stopped. However, nohz tick stopping is already best-effort, there
are a number of conditions that can prevent it, whereas cfs runtime
bandwidth is expected to be enforced.

Make the scheduler favor bandwidth over stopping the tick by setting
TICK_DEP_BIT_SCHED when the only running task is a cfs task with
runtime limit enabled. We use cfs_b->hierarchical_quota to
determine if the task requires the tick.

Add check in pick_next_task_fair() as well since that is where
we have a handle on the task that is actually going to be running.

Add check in sched_can_stop_tick() to cover some edge cases such
as nr_running going from 2->1 and the 1 remains the running task.

Reviewed-By: Ben Segall <bsegall@google.com>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
2023-08-02 16:19:26 +02:00
Phil Auld
c98c18270b sched, cgroup: Restore meaning to hierarchical_quota
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task
groups due to the previous fix simply taking the min.  It should
reflect a limit imposed at that level or by an ancestor. Even
though cgroupv2 does not require child quota to be less than or
equal to that of its ancestors the task group will still be
constrained by such a quota so this should be shown here. Cgroupv1
continues to set this correctly.

In both cases, add initialization when a new task group is created
based on the current parent's value (or RUNTIME_INF in the case of
root_task_group). Otherwise, the field is wrong until a quota is
changed after creation and __cfs_schedulable() is called.

Fixes: c53593e5cb69 ("sched, cgroup: Don't reject lower cpu.max on ancestors")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
2023-08-02 16:19:26 +02:00
Peter Zijlstra
22dc02f81c Revert "sched/fair: Move unused stub functions to header"
Revert commit 7aa55f2a5902 ("sched/fair: Move unused stub functions to
header"), for while it has the right Changelog, the actual patch
content a revert of the previous 4 patches:

  f7df852ad6db ("sched: Make task_vruntime_update() prototype visible")
  c0bdfd72fbfb ("sched/fair: Hide unused init_cfs_bandwidth() stub")
  378be384e01f ("sched: Add schedule_user() declaration")
  d55ebae3f312 ("sched: Hide unused sched_update_scaling()")

So in effect this is a revert of a revert and re-applies those
patches.

Fixes: 7aa55f2a5902 ("sched/fair: Move unused stub functions to header")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-31 11:47:08 +02:00
Vincent Guittot
c2e164ac33 sched/fair: remove util_est boosting
There is no need to use runnable_avg when estimating util_est and that
even generates wrong behavior because one includes blocked tasks whereas
the other one doesn't. This can lead to accounting twice the waking task p,
once with the blocked runnable_avg and another one when adding its
util_est.

cpu's runnable_avg is already used when computing util_avg which is then
compared with util_est.

In some situation, feec will not select prev_cpu but another one on the
same performance domain because of higher max_util

Fixes: 7d0583cf9ec7 ("sched/fair, cpufreq: Introduce 'runnable boosting'")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20230706135144.324311-1-vincent.guittot@linaro.org
2023-07-26 12:28:50 +02:00
Peter Zijlstra
d07f09a1f9 sched/fair: Propagate enqueue flags into place_entity()
This allows place_entity() to consider ENQUEUE_WAKEUP and
ENQUEUE_MIGRATED.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.274010996@infradead.org
2023-07-19 09:43:59 +02:00
Peter Zijlstra
e4ec3318a1 sched/debug: Rename sysctl_sched_min_granularity to sysctl_sched_base_slice
EEVDF uses this tunable as the base request/slice -- make sure the
name reflects this.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
2023-07-19 09:43:59 +02:00
Peter Zijlstra
5e963f2bd4 sched/fair: Commit to EEVDF
EEVDF is a better defined scheduling policy, as a result it has less
heuristics/tunables. There is no compelling reason to keep CFS around.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
e8f331bcc2 sched/smp: Use lag to simplify cross-runqueue placement
Using lag is both more correct and simpler when moving between
runqueues.

Notable, min_vruntime() was invented as a cheap approximation of
avg_vruntime() for this very purpose (SMP migration). Since we now
have the real thing; use it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.068911180@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
76cae9dbe1 sched/fair: Commit to lag based placement
Removes the FAIR_SLEEPERS code in favour of the new LAG based
placement.

Specifically, the whole FAIR_SLEEPER thing was a very crude
approximation to make up for the lack of lag based placement,
specifically the 'service owed' part. This is important for things
like 'starve' and 'hackbench'.

One side effect of FAIR_SLEEPER is that it caused 'small' unfairness,
specifically, by always ignoring up-to 'thresh' sleeptime it would
have a 50%/50% time distribution for a 50% sleeper vs a 100% runner,
while strictly speaking this should (of course) result in a 33%/67%
split (as CFS will also do if the sleep period exceeds 'thresh').

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.000198861@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
147f3efaa2 sched/fair: Implement an EEVDF-like scheduling policy
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.

Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.

EEVDF has two parameters:

 - weight, or time-slope: which is mapped to nice just as before

 - request size, or slice length: which is used to compute
   the virtual deadline as: vd_i = ve_i + r_i/w_i

Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.

Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.

Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
86bfbb7ce4 sched/fair: Add lag based placement
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.

Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
e0c2ff903c sched/fair: Remove sched_feat(START_DEBIT)
With the introduction of avg_vruntime() there is no need to use worse
approximations. Take the 0-lag point as starting point for inserting
new tasks.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.722361178@infradead.org
2023-07-19 09:43:58 +02:00
Peter Zijlstra
af4cf40470 sched/fair: Add cfs_rq::avg_vruntime
In order to move to an eligibility based scheduling policy, we need
to have a better approximation of the ideal scheduler.

Specifically, for a virtual time weighted fair queueing based
scheduler the ideal scheduler will be the weighted average of the
individual virtual runtimes (math in the comment).

As such, compute the weighted average to approximate the ideal
scheduler -- note that the approximation is in the individual task
behaviour, which isn't strictly conformant.

Specifically consider adding a task with a vruntime left of center, in
this case the average will move backwards in time -- something the
ideal scheduler would of course never do.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.654144274@infradead.org
2023-07-19 09:43:58 +02:00
Ingo Molnar
752182b24b Linux 6.5-rc2
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmS0at0eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG6m8H/RZCd2DWeM94CgK5
 DIxNLxu90PrEcrOnqeHFJtQoSiUQTHeseh9E4BH0JdPDxtlU89VwYRAevseWiVkp
 JyyJPB40UR4i2DO0P1+oWBBsGEG+bo8lZ1M+uxU5k6lgC0fAi96/O48mwwmI0Mtm
 P6BkWd3IkSXc7l4AGIrKa5P+pYEnm0Z6YAZILfdMVBcLXZWv1OAwEEkZNdUuhE3d
 5DxlQ8MLzlQIbe+LasiwdL9r606acFaJG9Hewl9x5DBlsObZ3d2rX4vEt1NEVh89
 shV29xm2AjCpLh4kstJFdTDCkDw/4H7TcFB/NMxXyzEXp3Bx8YXq+mjVd2mpq1FI
 hHtCsOA=
 =KiaU
 -----END PGP SIGNATURE-----

Merge tag 'v6.5-rc2' into sched/core, to pick up fixes

Sync with upstream fixes before applying EEVDF.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-07-19 09:43:25 +02:00
Peter Oskolkov
ab83f455f0 sched: add WF_CURRENT_CPU and externise ttwu
Add WF_CURRENT_CPU wake flag that advices the scheduler to
move the wakee to the current CPU. This is useful for fast on-CPU
context switching use cases.

In addition, make ttwu external rather than static so that
the flag could be passed to it from outside of sched/core.c.

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-3-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
2023-07-17 16:08:08 -07:00
Vincent Guittot
7ee7642c91 sched/fair: Stabilize asym cpu capacity system idle cpu selection
select_idle_capacity() not only looks for an idle cpu that fits for the
waking task but also for cpu with highest bandwidth when no cpu fits.
Start the loop with target cpu so it will be selected 1st when no cpu fits
but several cpus shared the same bandwidth. Starting with target cpu
prevents the task to migrate between cpus with same bandwidth at every
wakeup when no cpu fits.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230711081359.868862-1-vincent.guittot@linaro.org
2023-07-13 15:21:53 +02:00
Ricardo Neri
b1bfeab9b0 sched/fair: Consider the idle state of the whole core for load balance
should_we_balance() traverses the group_balance_mask (AND'ed with lb_env::
cpus) starting from lower numbered CPUs looking for the first idle CPU.

In hybrid x86 systems, the siblings of SMT cores get CPU numbers, before
non-SMT cores:

	[0, 1] [2, 3] [4, 5] 6 7 8 9
         b  i   b  i   b  i  b i i i

In the figure above, CPUs in brackets are siblings of an SMT core. The
rest are non-SMT cores. 'b' indicates a busy CPU, 'i' indicates an
idle CPU.

We should let a CPU on a fully idle core get the first chance to idle
load balance as it has more CPU capacity than a CPU on an idle SMT
CPU with busy sibling.  So for the figure above, if we are running
should_we_balance() to CPU 1, we should return false to let CPU 7 on
idle core to have a chance first to idle load balance.

A partially busy (i.e., of type group_has_spare) local group with SMT 
cores will often have only one SMT sibling busy. If the destination CPU
is a non-SMT core, partially busy, lower-numbered, SMT cores should not
be considered when finding the first idle CPU. 

However, in should_we_balance(), when we encounter idle SMT first in partially
busy core, we prematurely break the search for the first idle CPU.

Higher-numbered, non-SMT cores is not given the chance to have
idle balance done on their behalf. Those CPUs will only be considered
for idle balancing by chance via CPU_NEWLY_IDLE.

Instead, consider the idle state of the whole SMT core.

Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Co-developed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/807bdd05331378ea3bf5956bda87ded1036ba769.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:52 +02:00
Tim C Chen
7ff1693236 sched/fair: Implement prefer sibling imbalance calculation between asymmetric groups
In the current prefer sibling load balancing code, there is an implicit
assumption that the busiest sched group and local sched group are
equivalent, hence the tasks to be moved is simply the difference in
number of tasks between the two groups (i.e. imbalance) divided by two.

However, we may have different number of cores between the cluster groups,
say when we take CPU offline or we have hybrid groups.  In that case,
we should balance between the two groups such that #tasks/#cores ratio
is the same between the same between both groups.  Hence the imbalance
computed will need to reflect this.

Adjust the sibling imbalance computation to take into account of the
above considerations.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/4eacbaa236e680687dae2958378a6173654113df.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:52 +02:00
Tim C Chen
fee1759e4f sched/fair: Determine active load balance for SMT sched groups
On hybrid CPUs with scheduling cluster enabled, we will need to
consider balancing between SMT CPU cluster, and Atom core cluster.

Below shows such a hybrid x86 CPU with 4 big cores and 8 atom cores.
Each scheduling cluster span a L2 cache.

          --L2-- --L2-- --L2-- --L2-- ----L2---- -----L2------
          [0, 1] [2, 3] [4, 5] [5, 6] [7 8 9 10] [11 12 13 14]
          Big    Big    Big    Big    Atom       Atom
          core   core   core   core   Module     Module

If the busiest group is a big core with both SMT CPUs busy, we should
active load balance if destination group has idle CPU cores.  Such
condition is considered by asym_active_balance() in load balancing but not
considered when looking for busiest group and computing load imbalance.
Add this consideration in find_busiest_group() and calculate_imbalance().

In addition, update the logic determining the busier group when one group
is SMT and the other group is non SMT but both groups are partially busy
with idle CPU. The busier group should be the group with idle cores rather
than the group with one busy SMT CPU.  We do not want to make the SMT group
the busiest one to pull the only task off SMT CPU and causing the whole core to
go empty.

Otherwise suppose in the search for the busiest group, we first encounter
an SMT group with 1 task and set it as the busiest.  The destination
group is an atom cluster with 1 task and we next encounter an atom
cluster group with 3 tasks, we will not pick this atom cluster over the
SMT group, even though we should.  As a result, we do not load balance
the busier Atom cluster (with 3 tasks) towards the local atom cluster
(with 1 task).  And it doesn't make sense to pick the 1 task SMT group
as the busier group as we also should not pull task off the SMT towards
the 1 task atom cluster and make the SMT core completely empty.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e24f35d142308790f69be65930b82794ef6658a2.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13 15:21:51 +02:00
Josh Don
677ea015f2 sched: add throttled time stat for throttled children
We currently export the total throttled time for cgroups that are given
a bandwidth limit. This patch extends this accounting to also account
the total time that each children cgroup has been throttled.

This is useful to understand the degree to which children have been
affected by the throttling control. Children which are not runnable
during the entire throttled period, for example, will not show any
self-throttling time during this period.

Expose this in a new interface, 'cpu.stat.local', which is similar to
how non-hierarchical events are accounted in 'memory.events.local'.

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230620183247.737942-2-joshdon@google.com
2023-07-13 15:21:49 +02:00
Josh Don
79462e8c87 sched: don't account throttle time for empty groups
It is easy for a cfs_rq to become throttled even when it has no enqueued
entities (for example, if we have just put_prev()'d the last runnable
task of the cfs_rq, and the cfs_rq is out of quota).

Avoid accounting this time towards total throttle time, since it
otherwise falsely inflates the stats.

Note that the dequeue path is special, since we normally disallow
migrations when a task is in a throttled hierarchy (see
throttled_lb_pair()).

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230620183247.737942-1-joshdon@google.com
2023-07-13 15:21:49 +02:00
Miaohe Lin
ae2ad293d6 sched/fair: Use recent_used_cpu to test p->cpus_ptr
When checking whether a recently used CPU can be a potential idle
candidate, recent_used_cpu should be used to test p->cpus_ptr as
p->recent_used_cpu is not equal to recent_used_cpu and candidate
decision is made based on recent_used_cpu here.

Fixes: 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20230620080747.359122-1-linmiaohe@huawei.com
2023-07-10 09:52:30 +02:00
Hao Jia
ebb83d84e4 sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
After commit 8ad075c2eb1f ("sched: Async unthrottling for cfs
bandwidth"), we may update the rq clock multiple times in the loop of
__cfsb_csd_unthrottle().

A prior (although less common) instance of this problem exists in
unthrottle_offline_cfs_rqs().

Cure both by ensuring update_rq_clock() is called before the loop and
setting RQCF_ACT_SKIP during the loop, to supress further updates.
The alternative would be pulling update_rq_clock() out of
unthrottle_cfs_rq(), but that gives an even bigger mess.

Fixes: 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth")
Reviewed-By: Ben Segall <bsegall@google.com>
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-4-jiahao.os@bytedance.com
2023-06-16 22:08:13 +02:00
Tom Rix
a707df30c9 sched/fair: Rename variable cpu_util eff_util
cppcheck reports
kernel/sched/fair.c:7436:17: style: Local variable 'cpu_util' shadows outer function [shadowFunction]
  unsigned long cpu_util;
                ^

Clean this up by renaming the variable to eff_util

Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20230611122535.183654-1-trix@redhat.com
2023-06-16 17:08:01 +02:00
Dietmar Eggemann
7d0583cf9e sched/fair, cpufreq: Introduce 'runnable boosting'
The responsiveness of the Per Entity Load Tracking (PELT) util_avg in
mobile devices is still considered too low for utilization changes
during task ramp-up.

In Android this manifests in the fact that the first frames of a UI
activity are very prone to be jankframes (a frame which doesn't meet
the required frame rendering time, e.g. 16ms@60Hz) since the CPU
frequency is normally low at this point and has to ramp up quickly.

The beginning of an UI activity is also characterized by the occurrence
of CPU contention, especially on little CPUs. Current little CPUs can
have an original CPU capacity of only ~ 150 which means that the actual
CPU capacity at lower frequency can even be much smaller.

Schedutil maps CPU util_avg into CPU frequency request via:

  util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) ->
  util = map_util_perf(util) -> freq = map_util_freq(util, ...)

CPU contention for CFS tasks can be detected by 'CPU runnable > CPU
utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1).
Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost().

To be in sync with schedutil's CPU frequency selection, Energy Aware
Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util
detection.

Moreover, 'runnable boosting' is also used in load-balance for busiest
CPU selection when the migration type is 'migrate_util', i.e. only at
sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set.

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230515115735.296329-3-dietmar.eggemann@arm.com
2023-06-05 21:13:44 +02:00
Dietmar Eggemann
3eb6d6ecec sched/fair: Refactor CPU utilization functions
There is a lot of code duplication in cpu_util_next() & cpu_util_cfs().

Remove this by allowing cpu_util_next() to be called with p = NULL.
Rename cpu_util_next() to cpu_util() since the '_next' suffix is no
longer necessary to distinct cpu utilization related functions.
Implement cpu_util_cfs(cpu) as cpu_util(cpu, p = NULL, -1).

This will allow to code future related cpu util changes only in one
place, namely in cpu_util().

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230515115735.296329-2-dietmar.eggemann@arm.com
2023-06-05 21:13:43 +02:00
Yicong Yang
0dd37d6dd3 sched/fair: Don't balance task to its current running CPU
We've run into the case that the balancer tries to balance a migration
disabled task and trigger the warning in set_task_cpu() like below:

 ------------[ cut here ]------------
 WARNING: CPU: 7 PID: 0 at kernel/sched/core.c:3115 set_task_cpu+0x188/0x240
 Modules linked in: hclgevf xt_CHECKSUM ipt_REJECT nf_reject_ipv4 <...snip>
 CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G           O       6.1.0-rc4+ #1
 Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V5.B221.01 12/09/2021
 pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : set_task_cpu+0x188/0x240
 lr : load_balance+0x5d0/0xc60
 sp : ffff80000803bc70
 x29: ffff80000803bc70 x28: ffff004089e190e8 x27: ffff004089e19040
 x26: ffff007effcabc38 x25: 0000000000000000 x24: 0000000000000001
 x23: ffff80000803be84 x22: 000000000000000c x21: ffffb093e79e2a78
 x20: 000000000000000c x19: ffff004089e19040 x18: 0000000000000000
 x17: 0000000000001fad x16: 0000000000000030 x15: 0000000000000000
 x14: 0000000000000003 x13: 0000000000000000 x12: 0000000000000000
 x11: 0000000000000001 x10: 0000000000000400 x9 : ffffb093e4cee530
 x8 : 00000000fffffffe x7 : 0000000000ce168a x6 : 000000000000013e
 x5 : 00000000ffffffe1 x4 : 0000000000000001 x3 : 0000000000000b2a
 x2 : 0000000000000b2a x1 : ffffb093e6d6c510 x0 : 0000000000000001
 Call trace:
  set_task_cpu+0x188/0x240
  load_balance+0x5d0/0xc60
  rebalance_domains+0x26c/0x380
  _nohz_idle_balance.isra.0+0x1e0/0x370
  run_rebalance_domains+0x6c/0x80
  __do_softirq+0x128/0x3d8
  ____do_softirq+0x18/0x24
  call_on_irq_stack+0x2c/0x38
  do_softirq_own_stack+0x24/0x3c
  __irq_exit_rcu+0xcc/0xf4
  irq_exit_rcu+0x18/0x24
  el1_interrupt+0x4c/0xe4
  el1h_64_irq_handler+0x18/0x2c
  el1h_64_irq+0x74/0x78
  arch_cpu_idle+0x18/0x4c
  default_idle_call+0x58/0x194
  do_idle+0x244/0x2b0
  cpu_startup_entry+0x30/0x3c
  secondary_start_kernel+0x14c/0x190
  __secondary_switched+0xb0/0xb4
 ---[ end trace 0000000000000000 ]---

Further investigation shows that the warning is superfluous, the migration
disabled task is just going to be migrated to its current running CPU.
This is because that on load balance if the dst_cpu is not allowed by the
task, we'll re-select a new_dst_cpu as a candidate. If no task can be
balanced to dst_cpu we'll try to balance the task to the new_dst_cpu
instead. In this case when the migration disabled task is not on CPU it
only allows to run on its current CPU, load balance will select its
current CPU as new_dst_cpu and later triggers the warning above.

The new_dst_cpu is chosen from the env->dst_grpmask. Currently it
contains CPUs in sched_group_span() and if we have overlapped groups it's
possible to run into this case. This patch makes env->dst_grpmask of
group_balance_mask() which exclude any CPUs from the busiest group and
solve the issue. For balancing in a domain with no overlapped groups
the behaviour keeps same as before.

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230530082507.10444-1-yangyicong@huawei.com
2023-06-05 21:08:24 +02:00
Arnd Bergmann
7aa55f2a59 sched/fair: Move unused stub functions to header
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED,
and empty one that is only referenced when FAIR_GROUP_SCHED is disabled
but CGROUP_SCHED is still enabled. If both are turned off, the functions
are still defined but the misisng prototype causes a W=1 warning:

kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group'
kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group'
kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group'
kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group'

Move the alternatives into the header as static inline functions with
the correct combination of #ifdef checks to avoid the warning without
adding even more complexity.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230522195021.3456768-6-arnd@kernel.org
2023-05-30 22:46:26 +02:00
Arnd Bergmann
c0bdfd72fb sched/fair: Hide unused init_cfs_bandwidth() stub
init_cfs_bandwidth() is only used when CONFIG_FAIR_GROUP_SCHED is
enabled, and without this causes a W=1 warning for the missing prototype:

kernel/sched/fair.c:6131:6: error: no previous prototype for 'init_cfs_bandwidth'

The normal implementation is only defined for CONFIG_CFS_BANDWIDTH,
so the stub exists when CFS_BANDWIDTH is disabled but FAIR_GROUP_SCHED
is enabled.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230522195021.3456768-4-arnd@kernel.org
2023-05-30 22:46:25 +02:00
Arnd Bergmann
d55ebae3f3 sched: Hide unused sched_update_scaling()
This function is only used when CONFIG_SMP is enabled, without that there
is no caller and no prototype:

kernel/sched/fair.c:688:5: error: no previous prototype for 'sched_update_scaling' [-Werror=missing-prototypes

Hide the definition in the same #ifdef check as the declaration.

Fixes: 8a99b6833c88 ("sched: Move SCHED_DEBUG sysctl to debugfs")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230522195021.3456768-2-arnd@kernel.org
2023-05-30 22:46:24 +02:00
Ricardo Neri
c9ca07886a sched/fair: Do not even the number of busy CPUs via asym_packing
Now that find_busiest_group() triggers load balancing between a fully_
busy SMT2 core and an idle non-SMT core, it is no longer needed to force
balancing via asym_packing. Use asym_packing only as intended: when there
is high-priority CPU that is idle.

After this change, the same logic apply to SMT and non-SMT local groups.
It makes less sense having a separate function to deal specifically with
SMT. Fold the logic in asym_smt_can_pull_tasks() into sched_asym().

Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-8-ricardo.neri-calderon@linux.intel.com
2023-05-08 10:58:36 +02:00
Ricardo Neri
43726bdedd sched/fair: Use the busiest group to set prefer_sibling
The prefer_sibling setting acts on the busiest group to move excess tasks
to the local group. This should be done as per request of the child of the
busiest group's sched domain, not the local group's.

Using the flags of the child domain of the local group works fortuitously
if both groups have child domains.

There are cases, however, in which the busiest group's sched domain has
child but the local group's does not. Consider, for instance a non-SMT
core (or an SMT core with only one online sibling) doing load balance with
an SMT core at the MC level. SD_PREFER_SIBLING of the busiest group's child
domain will not be honored. We are left with a fully busy SMT core and an
idle non-SMT core.

Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-7-ricardo.neri-calderon@linux.intel.com
2023-05-08 10:58:35 +02:00