IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit f6564fce256a3944aa1bc76cb3c40e792d97c1eb upstream.
Alexander Potapenko writes in [1]: "For every memory access in the code
instrumented by KMSAN we call kmsan_get_metadata() to obtain the metadata
for the memory being accessed. For virtual memory the metadata pointers
are stored in the corresponding `struct page`, therefore we need to call
virt_to_page() to get them.
According to the comment in arch/x86/include/asm/page.h,
virt_to_page(kaddr) returns a valid pointer iff virt_addr_valid(kaddr) is
true, so KMSAN needs to call virt_addr_valid() as well.
To avoid recursion, kmsan_get_metadata() must not call instrumented code,
therefore ./arch/x86/include/asm/kmsan.h forks parts of
arch/x86/mm/physaddr.c to check whether a virtual address is valid or not.
But the introduction of rcu_read_lock() to pfn_valid() added instrumented
RCU API calls to virt_to_page_or_null(), which is called by
kmsan_get_metadata(), so there is an infinite recursion now. I do not
think it is correct to stop that recursion by doing
kmsan_enter_runtime()/kmsan_exit_runtime() in kmsan_get_metadata(): that
would prevent instrumented functions called from within the runtime from
tracking the shadow values, which might introduce false positives."
Fix the issue by switching pfn_valid() to the _sched() variant of
rcu_read_lock/unlock(), which does not require calling into RCU. Given
the critical section in pfn_valid() is very small, this is a reasonable
trade-off (with preemptible RCU).
KMSAN further needs to be careful to suppress calls into the scheduler,
which would be another source of recursion. This can be done by wrapping
the call to pfn_valid() into preempt_disable/enable_no_resched(). The
downside is that this sacrifices breaking scheduling guarantees; however,
a kernel compiled with KMSAN has already given up any performance
guarantees due to being heavily instrumented.
Note, KMSAN code already disables tracing via Makefile, and since mmzone.h
is included, it is not necessary to use the notrace variant, which is
generally preferred in all other cases.
Link: https://lkml.kernel.org/r/20240115184430.2710652-1-glider@google.com [1]
Link: https://lkml.kernel.org/r/20240118110022.2538350-1-elver@google.com
Fixes: 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Alexander Potapenko <glider@google.com>
Reported-by: syzbot+93a9e8a3dea8d6085e12@syzkaller.appspotmail.com
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 64bac5ea17d527872121adddfee869c7a0618f8f ]
The prototype was hidden in an #ifdef on x86, which causes a warning:
kernel/irq_work.c:72:13: error: no previous prototype for 'arch_irq_work_raise' [-Werror=missing-prototypes]
Some architectures have a working prototype, while others don't.
Fix this by providing it in only one place that is always visible.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Guo Ren <guoren@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 56062d60f117dccfb5281869e0ab61e090baf864 upstream.
Presently ia32 registers stored in ptregs are unconditionally cast to
unsigned int by the ia32 stub. They are then cast to long when passed to
__se_sys*, but will not be sign extended.
This takes the sign of the syscall argument into account in the ia32
stub. It still casts to unsigned int to avoid implementation specific
behavior. However then casts to int or unsigned int as necessary. So that
the following cast to long sign extends the value.
This fixes the io_pgetevents02 LTP test when compiled with -m32. Presently
the systemcall io_pgetevents_time64() unexpectedly accepts -1 for the
maximum number of events.
It doesn't appear other systemcalls with signed arguments are effected
because they all have compat variants defined and wired up.
Fixes: ebeb8c82ffaf ("syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240110130122.3836513-1-nik.borisov@suse.com
Link: https://lore.kernel.org/ltp/20210921130127.24131-1-rpalethorpe@suse.com/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cbb359d81a2695bb5e63ec9de06fcbef28518891 upstream.
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.
There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.
Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.
Make the .reset() hook optional as SVM no longer needs vendor specific
handling.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit edc8fc01f608108b0b7580cb2c29dfb5135e5f0e ]
intel_idle_irq() re-enables IRQs very early. As a result, an interrupt
may fire before mwait() is eventually called. If such an interrupt queues
a timer, it may go unnoticed until mwait returns and the idle loop
handles the tick re-evaluation. And monitoring TIF_NEED_RESCHED doesn't
help because a local timer enqueue doesn't set that flag.
The issue is mitigated by the fact that this idle handler is only invoked
for shallow C-states when, presumably, the next tick is supposed to be
close enough. There may still be rare cases though when the next tick
is far away and the selected C-state is shallow, resulting in a timer
getting ignored for a while.
Fix this with using sti_mwait() whose IRQ-reenablement only triggers
upon calling mwait(), dealing with the race while keeping the interrupt
latency within acceptable bounds.
Fixes: c227233ad64c (intel_idle: enable interrupts before C1 on Xeons)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lkml.kernel.org/r/20231115151325.6262-3-frederic@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a4aebe936554dac6a91e5d091179c934f8325708 ]
Only the posix timer system calls use this (when the posix timer support
is disabled, which does not actually happen in any normal case), because
they had debug code to print out a warning about missing system calls.
Get rid of that special case, and just use the standard COND_SYSCALL
interface that creates weak system call stubs that return -ENOSYS for
when the system call does not exist.
This fixes a kCFI issue with the SYS_NI() hackery:
CFI failure at int80_emulation+0x67/0xb0 (target: sys_ni_posix_timers+0x0/0x70; expected type: 0xb02b34d9)
WARNING: CPU: 0 PID: 48 at int80_emulation+0x67/0xb0
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit b8ec60e1186cdcfce41e7db4c827cb107e459002 upstream.
.discard.retpoline_safe sections do not have the SHF_ALLOC flag. These
sections referencing text sections' STT_SECTION symbols with PC-relative
relocations like R_386_PC32 [0] is conceptually not suitable. Newer
LLD will report warnings for REL relocations even for relocatable links [1]:
ld.lld: warning: vmlinux.a(drivers/i2c/busses/i2c-i801.o):(.discard.retpoline_safe+0x120): has non-ABS relocation R_386_PC32 against symbol ''
Switch to absolute relocations instead, which indicate link-time
addresses. In a relocatable link, these addresses are also output
section offsets, used by checks in tools/objtool/check.c. When linking
vmlinux, these .discard.* sections will be discarded, therefore it is
not a problem that R_X86_64_32 cannot represent a kernel address.
Alternatively, we could set the SHF_ALLOC flag for .discard.* sections,
but I think non-SHF_ALLOC for sections to be discarded makes more sense.
Note: if we decide to never support REL architectures (e.g. arm, i386),
we can utilize R_*_NONE relocations (.reloc ., BFD_RELOC_NONE, sym),
making .discard.* sections zero-sized. That said, the section content
waste is 4 bytes per entry, much smaller than sizeof(Elf{32,64}_Rel).
[0] commit 1c0c1faf5692 ("objtool: Use relative pointers for annotations")
[1] https://github.com/ClangBuiltLinux/linux/issues/1937
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20230920001728.1439947-1-maskray@google.com
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit be5341eb0d43b1e754799498bd2e8756cc167a41 ]
There is no real reason to have a separate ASM entry point implementation
for the legacy INT 0x80 syscall emulation on 64-bit.
IDTENTRY provides all the functionality needed with the only difference
that it does not:
- save the syscall number (AX) into pt_regs::orig_ax
- set pt_regs::ax to -ENOSYS
Both can be done safely in the C code of an IDTENTRY before invoking any of
the syscall related functions which depend on this convention.
Aside of ASM code reduction this prepares for detecting and handling a
local APIC injected vector 0x80.
[ kirill.shutemov: More verbose comments ]
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit b82a8dbd3d2f4563156f7150c6f2ecab6e960b30 ]
The INT 0x80 instruction is used for 32-bit x86 Linux syscalls. The
kernel expects to receive a software interrupt as a result of the INT
0x80 instruction. However, an external interrupt on the same vector
triggers the same handler.
The kernel interprets an external interrupt on vector 0x80 as a 32-bit
system call that came from userspace.
A VMM can inject external interrupts on any arbitrary vector at any
time. This remains true even for TDX and SEV guests where the VMM is
untrusted.
Put together, this allows an untrusted VMM to trigger int80 syscall
handling at any given point. The content of the guest register file at
that moment defines what syscall is triggered and its arguments. It
opens the guest OS to manipulation from the VMM side.
Disable 32-bit emulation by default for TDX and SEV. User can override
it with the ia32_emulation=y command line option.
[ dhansen: reword the changelog ]
Reported-by: Supraja Sridhara <supraja.sridhara@inf.ethz.ch>
Reported-by: Benedict Schlüter <benedict.schlueter@inf.ethz.ch>
Reported-by: Mark Kuhne <mark.kuhne@inf.ethz.ch>
Reported-by: Andrin Bertschi <andrin.bertschi@inf.ethz.ch>
Reported-by: Shweta Shinde <shweta.shinde@inf.ethz.ch>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # 6.0+: 1da5c9b x86: Introduce ia32_enabled()
Cc: <stable@vger.kernel.org> # 6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit 1da5c9bc119d3a749b519596b93f9b2667e93c4a ]
IA32 support on 64bit kernels depends on whether CONFIG_IA32_EMULATION
is selected or not. As it is a compile time option it doesn't
provide the flexibility to have distributions set their own policy for
IA32 support and give the user the flexibility to override it.
As a first step introduce ia32_enabled() which abstracts whether IA32
compat is turned on or off. Upcoming patches will implement
the ability to set IA32 compat state at boot time.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-2-nik.borisov@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bfa993b355d33a438a746523e7129391c8664e8a upstream.
The Processor capability bits notify ACPI of the OS capabilities, and
so ACPI can adjust the return of other Processor methods taking the OS
capabilities into account.
When Linux is running as a Xen dom0, the hypervisor is the entity
in charge of processor power management, and hence Xen needs to make
sure the capabilities reported by _OSC/_PDC match the capabilities of
the driver in Xen.
Introduce a small helper to sanitize the buffer when running as Xen
dom0.
When Xen supports HWP, this serves as the equivalent of commit
a21211672c9a ("ACPI / processor: Request native thermal interrupt
handling via _OSC") to avoid SMM crashes. Xen will set bit
ACPI_PROC_CAP_COLLAB_PROC_PERF (bit 12) in the capability bits and the
_OSC/_PDC call will apply it.
[ jandryuk: Mention Xen HWP's need. Support _OSC & _PDC ]
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jason Andryuk <jandryuk@gmail.com>
Reviewed-by: Michal Wilczynski <michal.wilczynski@intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20231108212517.72279-1-jandryuk@gmail.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9cfec6d097c607e36199cf0cfbb8cf5acbd8e9b2 upstream.
When running android emulator (which is based on QEMU 2.12) on
certain Intel hosts with kernel version 6.3-rc1 or above, guest
will freeze after loading a snapshot. This is almost 100%
reproducible. By default, the android emulator will use snapshot
to speed up the next launching of the same android guest. So
this breaks the android emulator badly.
I tested QEMU 8.0.4 from Debian 12 with an Ubuntu 22.04 guest by
running command "loadvm" after "savevm". The same issue is
observed. At the same time, none of our AMD platforms is impacted.
More experiments show that loading the KVM module with
"enable_apicv=false" can workaround it.
The issue started to show up after commit 8e6ed96cdd50 ("KVM: x86:
fire timer when it is migrated and expired, and in oneshot mode").
However, as is pointed out by Sean Christopherson, it is introduced
by commit 967235d32032 ("KVM: vmx: clear pending interrupts on
KVM_SET_LAPIC"). commit 8e6ed96cdd50 ("KVM: x86: fire timer when
it is migrated and expired, and in oneshot mode") just makes it
easier to hit the issue.
Having both commits, the oneshot lapic timer gets fired immediately
inside the KVM_SET_LAPIC call when loading the snapshot. On Intel
platforms with APIC virtualization and posted interrupt processing,
this eventually leads to setting the corresponding PIR bit. However,
the whole PIR bits get cleared later in the same KVM_SET_LAPIC call
by apicv_post_state_restore. This leads to timer interrupt lost.
The fix is to move vmx_apicv_post_state_restore to the beginning of
the KVM_SET_LAPIC call and rename to vmx_apicv_pre_state_restore.
What vmx_apicv_post_state_restore does is actually clearing any
former apicv state and this behavior is more suitable to carry out
in the beginning.
Fixes: 967235d32032 ("KVM: vmx: clear pending interrupts on KVM_SET_LAPIC")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haitao Shan <hshan@google.com>
Link: https://lore.kernel.org/r/20230913000215.478387-1-hshan@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2770d4722036d6bd24bcb78e9cd7f6e572077d03 upstream.
Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen
since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED +
STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP
in the guest kernel).
This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't
handle receiving a #GP when doing so.
Give this MSR the same treatment that commit 2e32b7190641
("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave
MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant
only.
Although apparently it was then needed for Linux guests, not Windows as in
this case.
With this change, the aforementioned guest setup is able to finish booting
successfully.
This issue can be reproduced either on a Summit Ridge Ryzen (with
just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since
EPYC is ordinarily stepping 2).
Alternatively, userspace could solve the problem by using MSR filters, but
forcing every userspace to define a filter isn't very friendly and doesn't
add much, if any, value. The only potential hiccup is if one of these
"baremetal-only" MSRs ever requires actual emulation and/or has F/M/S
specific behavior. But if that happens, then KVM can still punt *that*
handling to userspace since userspace MSR filters "win" over KVM's default
handling.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com
[sean: call out MSR filtering alternative]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a1e2b8b36820d8c91275f207e77e91645b7c6836 ]
Qi Zheng reported crashes in a production environment and provided a
simplified example as a reproducer:
| For example, if we use Qemu to start a two NUMA node kernel,
| one of the nodes has 2M memory (less than NODE_MIN_SIZE),
| and the other node has 2G, then we will encounter the
| following panic:
|
| BUG: kernel NULL pointer dereference, address: 0000000000000000
| <...>
| RIP: 0010:_raw_spin_lock_irqsave+0x22/0x40
| <...>
| Call Trace:
| <TASK>
| deactivate_slab()
| bootstrap()
| kmem_cache_init()
| start_kernel()
| secondary_startup_64_no_verify()
The crashes happen because of inconsistency between the nodemask that
has nodes with less than 4MB as memoryless, and the actual memory fed
into the core mm.
The commit:
9391a3f9c7f1 ("[PATCH] x86_64: Clear more state when ignoring empty node in SRAT parsing")
... that introduced minimal size of a NUMA node does not explain why
a node size cannot be less than 4MB and what boot failures this
restriction might fix.
Fixes have been submitted to the core MM code to tighten up the
memory topologies it accepts and to not crash on weird input:
mm: page_alloc: skip memoryless nodes entirely
mm: memory_hotplug: drop memoryless node from fallback lists
Andrew has accepted them into the -mm tree, but there are no
stable SHA1's yet.
This patch drops the limitation for minimal node size on x86:
- which works around the crash without the fixes to the core MM.
- makes x86 topologies less weird,
- removes an arbitrary and undocumented limitation on NUMA topologies.
[ mingo: Improved changelog clarity. ]
Reported-by: Qi Zheng <zhengqi.arch@bytedance.com>
Tested-by: Mario Casquero <mcasquer@redhat.com>
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/ZS+2qqjEO5/867br@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8f012db27c9516be1a7aca93ea4a6ca9c75056c9 ]
numa_fill_memblks() fills in the gaps in numa_meminfo memblks
over an physical address range.
The ACPI driver will use numa_fill_memblks() to implement a new Linux
policy that prescribes extending proximity domains in a portion of a
CFMWS window to the entire window.
Dan Williams offered this explanation of the policy:
A CFWMS is an ACPI data structure that indicates *potential* locations
where CXL memory can be placed. It is the playground where the CXL
driver has free reign to establish regions. That space can be populated
by BIOS created regions, or driver created regions, after hotplug or
other reconfiguration.
When BIOS creates a region in a CXL Window it additionally describes
that subset of the Window range in the other typical ACPI tables SRAT,
SLIT, and HMAT. The rationale for BIOS not pre-describing the entire
CXL Window in SRAT, SLIT, and HMAT is that it can not predict the
future. I.e. there is nothing stopping higher or lower performance
devices being placed in the same Window. Compare that to ACPI memory
hotplug that just onlines additional capacity in the proximity domain
with little freedom for dynamic performance differentiation.
That leaves the OS with a choice, should unpopulated window capacity
match the proximity domain of an existing region, or should it allocate
a new one? This patch takes the simple position of minimizing proximity
domain proliferation by reusing any proximity domain intersection for
the entire Window. If the Window has no intersections then allocate a
new proximity domain. Note that SRAT, SLIT and HMAT information can be
enumerated dynamically in a standard way from device provided data.
Think of CXL as the end of ACPI needing to describe memory attributes,
CXL offers a standard discovery model for performance attributes, but
Linux still needs to interoperate with the old regime.
Reported-by: Derick Marks <derick.w.marks@intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Derick Marks <derick.w.marks@intel.com>
Link: https://lore.kernel.org/all/ef078a6f056ca974e5af85997013c0fda9e3326d.1689018477.git.alison.schofield%40intel.com
Stable-dep-of: 8f1004679987 ("ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eeb9f34df065f42f0c9195b322ba6df420c9fc92 ]
CONFIG_CPU_SRSO isn't dependent on CONFIG_CPU_UNRET_ENTRY (AMD
Retbleed), so the two features are independently configurable. Fix
several issues for the (presumably rare) case where CONFIG_CPU_SRSO is
enabled but CONFIG_CPU_UNRET_ENTRY isn't.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/299fb7740174d0f2335e91c58af0e9c242b4bac1.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 066baf92bed934c9fb4bcee97a193f47aa63431c ]
copy_mc_to_user() has the destination marked __user on powerpc, but not on
x86; the latter results in a sparse warning in lib/iov_iter.c.
Fix this by applying the tag on x86 too.
Fixes: ec6347bb4339 ("x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20230925120309.1731676-3-dhowells@redhat.com
cc: Dan Williams <dan.j.williams@intel.com>
cc: Thomas Gleixner <tglx@linutronix.de>
cc: Ingo Molnar <mingo@redhat.com>
cc: Borislav Petkov <bp@alien8.de>
cc: Dave Hansen <dave.hansen@linux.intel.com>
cc: "H. Peter Anvin" <hpa@zytor.com>
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Jens Axboe <axboe@kernel.dk>
cc: Christoph Hellwig <hch@lst.de>
cc: Christian Brauner <christian@brauner.io>
cc: Matthew Wilcox <willy@infradead.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: David Laight <David.Laight@ACULAB.COM>
cc: x86@kernel.org
cc: linux-block@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
David and a few others reported that on certain newer systems some legacy
interrupts fail to work correctly.
Debugging revealed that the BIOS of these systems leaves the legacy PIC in
uninitialized state which makes the PIC detection fail and the kernel
switches to a dummy implementation.
Unfortunately this fallback causes quite some code to fail as it depends on
checks for the number of legacy PIC interrupts or the availability of the
real PIC.
In theory there is no reason to use the PIC on any modern system when
IO/APIC is available, but the dependencies on the related checks cannot be
resolved trivially and on short notice. This needs lots of analysis and
rework.
The PIC detection has been added to avoid quirky checks and force selection
of the dummy implementation all over the place, especially in VM guest
scenarios. So it's not an option to revert the relevant commit as that
would break a lot of other scenarios.
One solution would be to try to initialize the PIC on detection fail and
retry the detection, but that puts the burden on everything which does not
have a PIC.
Fortunately the ACPI/MADT table header has a flag field, which advertises
in bit 0 that the system is PCAT compatible, which means it has a legacy
8259 PIC.
Evaluate that bit and if set avoid the detection routine and keep the real
PIC installed, which then gets initialized (for nothing) and makes the rest
of the code with all the dependencies work again.
Fixes: e179f6914152 ("x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately")
Reported-by: David Lazar <dlazar@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218003
Link: https://lore.kernel.org/r/875y2u5s8g.ffs@tglx
For "reasons" Intel has code-named this CPU with a "_H" suffix.
[ dhansen: As usual, apply this and send it upstream quickly to
make it easier for anyone who is doing work that
consumes this. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20231025202513.12358-1-tony.luck%40intel.com
- Fix the handling of the phycal timer offset when FEAT_ECV
and CNTPOFF_EL2 are implemented.
- Restore the functionnality of Permission Indirection that
was broken by the Fine Grained Trapping rework
- Cleanup some PMU event sharing code
MIPS:
- Fix W=1 build.
s390:
- One small fix for gisa to avoid stalls.
x86:
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
- Fix for loading XSAVE state from an old kernel into a new one.
- Fixes for AMD AVIC
selftests:
- Play nice with %llx when formatting guest printf and assert statements.
- Clean up stale test metadata.
- Zero-initialize structures in memslot perf test to workaround a suspected
"may be used uninitialized" false positives from GCC.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmUtvXgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOE3gf/Q0Xvi/oU/+iDMuvfCbMZg/nhbrsa
WmE/zXLrCF0DknppAsWulkhLGL2ceL6X+f37f2vWpBdG9SVDG/vSAg+QQDwsXiKN
hTJoaybtMMPZM64emPZKeLMrq3A/U32qIMmWMJkoQRyz6dftUhGqZEuy1jw8oomJ
n9idRDCMkbo+bick4URt0FEuI3Tf6dPIlG7P5hObFTw+nenzzxTjoxWZ432Mgyod
yqveEke4hcQ+6K1zdAcDNZqT9ZhxeTxAO4yrBAYfnFoPLhUXKDUumkqAQPNOhKTo
YN+b29kHBm+HvYkHN785FQla/13wjE1aq5TUj5J7NEDv4uRXDefDq2OAeg==
=b9AY
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix the handling of the phycal timer offset when FEAT_ECV and
CNTPOFF_EL2 are implemented
- Restore the functionnality of Permission Indirection that was
broken by the Fine Grained Trapping rework
- Cleanup some PMU event sharing code
MIPS:
- Fix W=1 build
s390:
- One small fix for gisa to avoid stalls
x86:
- Truncate writes to PMU counters to the counter's width to avoid
spurious overflows when emulating counter events in software
- Set the LVTPC entry mask bit when handling a PMI (to match
Intel-defined architectural behavior)
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work
to kick the guest out of emulated halt
- Fix for loading XSAVE state from an old kernel into a new one
- Fixes for AMD AVIC
selftests:
- Play nice with %llx when formatting guest printf and assert
statements
- Clean up stale test metadata
- Zero-initialize structures in memslot perf test to workaround a
suspected 'may be used uninitialized' false positives from GCC"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits)
KVM: arm64: timers: Correctly handle TGE flip with CNTPOFF_EL2
KVM: arm64: POR{E0}_EL1 do not need trap handlers
KVM: arm64: Add nPIR{E0}_EL1 to HFG traps
KVM: MIPS: fix -Wunused-but-set-variable warning
KVM: arm64: pmu: Drop redundant check for non-NULL kvm_pmu_events
KVM: SVM: Fix build error when using -Werror=unused-but-set-variable
x86: KVM: SVM: refresh AVIC inhibition in svm_leave_nested()
x86: KVM: SVM: add support for Invalid IPI Vector interception
x86: KVM: SVM: always update the x2avic msr interception
KVM: selftests: Force load all supported XSAVE state in state test
KVM: selftests: Load XSAVE state into untouched vCPU during state test
KVM: selftests: Touch relevant XSAVE state in guest for state test
KVM: x86: Constrain guest-supported xfeatures only at KVM_GET_XSAVE{2}
x86/fpu: Allow caller to constrain xfeatures when copying to uabi buffer
KVM: selftests: Zero-initialize entire test_result in memslot perf test
KVM: selftests: Remove obsolete and incorrect test case metadata
KVM: selftests: Treat %llx like %lx when formatting guest printf
KVM: x86/pmu: Synthesize at most one PMI per VM-exit
KVM: x86: Mask LVTPC when handling a PMI
KVM: x86/pmu: Truncate counter value to allowed width on write
...
This reverts commit 45e34c8af58f23db4474e2bfe79183efec09a18b, and the
two subsequent fixes to it:
3f874c9b2aae ("x86/smp: Don't send INIT to non-present and non-booted CPUs")
b1472a60a584 ("x86/smp: Don't send INIT to boot CPU")
because it seems to result in hung machines at shutdown. Particularly
some Dell machines, but Thomas says
"The rest seems to be Lenovo and Sony with Alderlake/Raptorlake CPUs -
at least that's what I could figure out from the various bug reports.
I don't know which CPUs the DELL machines have, so I can't say it's a
pattern.
I agree with the revert for now"
Ashok Raj chimes in:
"There was a report (probably this same one), and it turns out it was a
bug in the BIOS SMI handler.
The client BIOS's were waiting for the lowest APICID to be the SMI
rendevous master. If this is MeteorLake, the BSP wasn't the one with
the lowest APIC and it triped here.
The BIOS change is also being pushed to others for assimilation :)
Server BIOS's had this correctly for a while now"
and it does look likely to be some bad interaction between SMI and the
non-BSP cores having put into INIT (and thus unresponsive until reset).
Link: https://bbs.archlinux.org/viewtopic.php?pid=2124429
Link: https://www.reddit.com/r/openSUSE/comments/16qq99b/tumbleweed_shutdown_did_not_finish_completely/
Link: https://forum.artixlinux.org/index.php/topic,5997.0.html
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2241279
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
prototypes between architectures.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUrobMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ggUw/7BGHe360tsrsMAcOHcwvvGhnQ0UKuoqLs
IJl3dfsdX+JnL7cpbNcRBVDqgH2seIwdQFa73gALColcxntEBbnC/gVS4QLLSxSp
HIq5C1OELT/jPMOjc6aimJx/qPvW/CLgo2WJx78rv0ykkf1RJIzqCTVKf8VQX6Vu
t0/9jEhBNuL8DZthJ5ZV448WtlJcdnWXVGxq/UHEheV219Rjtp3NGf8s/K+WMzF3
x9Zhmb+/UPgjhaZtrQDP2mf7ZYgmVhLvJTRSQdQNrcDe/ZaNrCrEGOwHuOpQ0vXw
v42rd1AVGV/xgIhfBOABLdb5snBbQMDvYLcma04bkBd6H6WPFJZ1PvnGovTagxUO
FP4117VBA5ARwZemxwGEPJkNF9lVEPSBVDv7bx2OO0zVCViuAbKJXxGzCW/GiSGA
BRk5FogxJ7TcjWsYWWaZfYlq8RFI5UI3K/IEQIUpQKtC9OMhScdp532xEP48dc8u
pHjPjVoYCXtoD/ZD73ZJJduN6Hn30HEE/IJ6+YKJRo4EZquUrGtbgG46QbFBqxqW
xIPPTx7OPAaAfq020+c6BuUnta1iEY6I4De/+XbRdQf+AIWqfLsWNI8en8aO4t5p
rtlrYD2Si1F0KBWtDWR7JhCm8CD2klWVWrD9d4DLpz9ljHXKa9d7BYp3BxkvgcQm
x8f1D9yC9X4=
=20Na
-----END PGP SIGNATURE-----
Merge tag 'smp-urgent-2023-10-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug fix from Ingo Molnar:
"Fix a Longsoon build warning by harmonizing the
arch_[un]register_cpu() prototypes between architectures"
* tag 'smp-urgent-2023-10-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu-hotplug: Provide prototypes for arch CPU registration
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmUp1FESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5IRsQAIsk+UwTP+q+ZzkpkSOJ+ocmKU97/GbW
snB+F5FwNXnWEPzHIV+Ldv+WUpmHilTrylk2t5jLyew783TPxTnLmNAa+D3iSSBP
jSGzCIqR2uRHOxhuJgkKvdOkfuS7vob1KcKrfOwKCSss78VhKGkMGIi66/81RTxo
zxpzva+F2YtbCwKWXewOvR4CsWhjVqOGRTCmjF6t8PpFDGqwZdu0ornBHC2gvkUI
iDHWVBg5Rz/akqxjEVL94SP5qdFSaVG+F3Z8xpnn+tfPncEK/xPFdGHGKwOy5Jvt
4dQLc6TGmS2+NGPU3eAJOr+GZKryQth1CI+5RDlnoKQXjQ3laJwjmgyCRbUYLoZh
/R7f5YJrhGheUvCCmagY1g2x41qp/CTG1RnX1SVTIGH9h+5LSVcCukCL9Tx2/B4v
eU8nrzhUuijSqG6TiyAV5hvFqMQf3LWWcjSSW58kIWmXLpqdb/Xp6wiFHjOM7wZM
c1br+6AwKZwKNdqn3/cnlBnLc+1jq/PWFnuF9svjKn5JTOyg8kddmyWUkDqiLOeZ
/jqqwRJQUZppy4DxFHdkuQxnTsrztNzs/vhQtF6MIgFRULrs4FaiTUxuAs72skqm
Fv/IIuyHWjST9HY8dgTx8PLqUevEc7zekmhN1Cj5KwhlHxKYWSZfew80CO7h2qhJ
IvAC70QC+BsW
=g8g3
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.6-fixes' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu fixes for 6.6:
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
In later revisions of AMD's APM, there is a new 'incomplete IPI' exit code:
"Invalid IPI Vector - The vector for the specified IPI was set to an
illegal value (VEC < 16)"
Note that tests on Zen2 machine show that this VM exit doesn't happen and
instead AVIC just does nothing.
Add support for this exit code by doing nothing, instead of filling
the kernel log with errors.
Also replace an unthrottled 'pr_err()' if another unknown incomplete
IPI exit happens with vcpu_unimpl()
(e.g in case AMD adds yet another 'Invalid IPI' exit reason)
Cc: <stable@vger.kernel.org>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928173354.217464-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Plumb an xfeatures mask into __copy_xstate_to_uabi_buf() so that KVM can
constrain which xfeatures are saved into the userspace buffer without
having to modify the user_xfeatures field in KVM's guest_fpu state.
KVM's ABI for KVM_GET_XSAVE{2} is that features that are not exposed to
guest must not show up in the effective xstate_bv field of the buffer.
Saving only the guest-supported xfeatures allows userspace to load the
saved state on a different host with a fewer xfeatures, so long as the
target host supports the xfeatures that are exposed to the guest.
KVM currently sets user_xfeatures directly to restrict KVM_GET_XSAVE{2} to
the set of guest-supported xfeatures, but doing so broke KVM's historical
ABI for KVM_SET_XSAVE, which allows userspace to load any xfeatures that
are supported by the *host*.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928001956.924301-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide common prototypes for arch_register_cpu() and
arch_unregister_cpu(). These are called by acpi_processor.c, with weak
versions, so the prototype for this is already set. It is generally not
necessary for function prototypes to be conditional on preprocessor macros.
Some architectures (e.g. Loongarch) are missing the prototype for this, and
rather than add it to Loongarch's asm/cpu.h, do the job once for everyone.
Since this covers everyone, remove the now unnecessary prototypes in
asm/cpu.h, and therefore remove the 'static' from one of ia64's
arch_register_cpu() definitions.
[ tglx: Bring back the ia64 part and remove the ACPI prototypes ]
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/E1qkoRr-0088Q8-Da@rmk-PC.armlinux.org.uk
Fix erratum #1485 on Zen4 parts where running with STIBP disabled can
cause an #UD exception. The performance impact of the fix is negligible.
Reported-by: René Rebe <rene@exactcode.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: René Rebe <rene@exactcode.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/D99589F4-BC5D-430B-87B2-72C20370CF57@exactcode.com
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmUk4fcTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXhhqCACWsBYTB0EJ3oMJnzfnHeuN418ZDx/O
AL0k0O5MT6roEFmvGUhzJ/jsoxL+W+Wj3aFwzReyOSQpgjTTF/Ja26LPvxRzDxKi
sZPojnR2ykW31l7y+eh1p9qSM/aYvTMDP5zO7L1fBnWMAGMv8w8RezpCJ7bh4BgA
FTMZZrvKYVT9hCGkYqKUZGBtDTPZ56WE+MCiRxTWQvF+4QKaIff0tpno8V7203bE
D/b4+Ouh19RXFTC5dUq/0JtAdV2AadrPHnScUupc8Hk/MMFiU5CzvH4bAqiwXBcU
YqqlD3kZbIqqbKE93+03jvyrRDvDGlq+rpA3KMk5MBAfrkM4DytpWvMs
=SVq1
-----END PGP SIGNATURE-----
Merge tag 'hyperv-fixes-signed-20231009' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- fixes for Hyper-V VTL code (Saurabh Sengar and Olaf Hering)
- fix hv_kvp_daemon to support keyfile based connection profile
(Shradha Gupta)
* tag 'hyperv-fixes-signed-20231009' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
hv/hv_kvp_daemon:Support for keyfile based connection profile
hyperv: reduce size of ms_hyperv_info
x86/hyperv: Add common print prefix "Hyper-V" in hv_init
x86/hyperv: Remove hv_vtl_early_init initcall
x86/hyperv: Restrict get_vtl to only VTL platforms
to issues which were introduced after 6.5.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZRmSDAAKCRDdBJ7gKXxA
jlSaAQCe3SnBdjRmuzbp5iIfNJOY7GXLN4NwMsArRUxRGY27IwD+KWhXZP/ydVnt
ZgS4x9rmarHuh5Pxds+6SRGhihRz/Ak=
=sf/5
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-10-01-08-34' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"Fourteen hotfixes, eleven of which are cc:stable. The remainder
pertain to issues which were introduced after 6.5"
* tag 'mm-hotfixes-stable-2023-10-01-08-34' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
Crash: add lock to serialize crash hotplug handling
selftests/mm: fix awk usage in charge_reserved_hugetlb.sh and hugetlb_reparenting_test.sh that may cause error
mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified
mm/damon/vaddr-test: fix memory leak in damon_do_test_apply_three_regions()
mm, memcg: reconsider kmem.limit_in_bytes deprecation
mm: zswap: fix potential memory corruption on duplicate store
arm64: hugetlb: fix set_huge_pte_at() to work with all swap entries
mm: hugetlb: add huge page size param to set_huge_pte_at()
maple_tree: add MAS_UNDERFLOW and MAS_OVERFLOW states
maple_tree: add mas_is_active() to detect in-tree walks
nilfs2: fix potential use after free in nilfs_gccache_submit_read_data()
mm: abstract moving to the next PFN
mm: report success more often from filemap_map_folio_range()
fs: binfmt_elf_efpic: fix personality for ELF-FDPIC
In order to fix the L1TF vulnerability, x86 can invert the PTE bits for
PROT_NONE VMAs, which means we cannot move from one PTE to the next by
adding 1 to the PFN field of the PTE. This results in the BUG reported at
[1].
Abstract advancing the PTE to the next PFN through a pte_next_pfn()
function/macro.
Link: https://lkml.kernel.org/r/20230920040958.866520-1-willy@infradead.org
Fixes: bcc6cc832573 ("mm: add default definition of set_ptes()")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: syzbot+55cc72f8cc3a549119df@syzkaller.appspotmail.com
Closes: https://lkml.kernel.org/r/000000000000d099fa0604f03351@google.com [1]
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When the irq_work callback, kvm_pmi_trigger_fn(), is invoked during a
VM-exit that also invokes __kvm_perf_overflow() as a result of
instruction emulation, kvm_pmu_deliver_pmi() will be called twice
before the next VM-entry.
Calling kvm_pmu_deliver_pmi() twice is unlikely to be problematic now that
KVM sets the LVTPC mask bit when delivering a PMI. But using IRQ work to
trigger the PMI is still broken, albeit very theoretically.
E.g. if the self-IPI to trigger IRQ work is be delayed long enough for the
vCPU to be migrated to a different pCPU, then it's possible for
kvm_pmi_trigger_fn() to race with the kvm_pmu_deliver_pmi() from
KVM_REQ_PMI and still generate two PMIs.
KVM could set the mask bit using an atomic operation, but that'd just be
piling on unnecessary code to workaround what is effectively a hack. The
*only* reason KVM uses IRQ work is to ensure the PMI is treated as a wake
event, e.g. if the vCPU just executed HLT.
Remove the irq_work callback for synthesizing a PMI, and all of the
logic for invoking it. Instead, to prevent a vcpu from leaving C0 with
a PMI pending, add a check for KVM_REQ_PMI to kvm_vcpu_has_events().
Fixes: 9cd803d496e7 ("KVM: x86: Update vPMCs when retiring instructions")
Signed-off-by: Jim Mattson <jmattson@google.com>
Tested-by: Mingwei Zhang <mizhang@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20230925173448.3518223-2-mizhang@google.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
* Fix EL2 Stage-1 MMIO mappings where a random address was used
* Fix SMCCC function number comparison when the SVE hint is set
RISC-V:
* Fix KVM_GET_REG_LIST API for ISA_EXT registers
* Fix reading ISA_EXT register of a missing extension
* Fix ISA_EXT register handling in get-reg-list test
* Fix filtering of AIA registers in get-reg-list test
x86:
* Fixes for TSC_AUX virtualization
* Stop zapping page tables asynchronously, since we don't
zap them as often as before
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmUQU5YUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNcdwf/X8eHQ5yfAE0J70xs4VZ1z7B8i77q
P54401z/q0FyQ4yyTHwbUv/FgVYscZ0efYogrkd3uuoPNtLmN2xKj1tM95A2ncP/
v318ljevZ0FWZ6J471Xu9MM3u15QmjC3Wai9z6IP4tz0S2rUhOYTJdFqlNf6gQSu
P8n9l2j3ZLAiUNizXa8M7350gCUFCBi37dvLLVTYOxbu17hZtmNjhNpz5G7YNc9y
zmJIJh30ZnMGUgMylLfcW0ZoqQFNIkNg3yyr9YjY68bTW5aspXdhp9u0zI+01xYF
sT+tOXBPPLi9MBuckX+oLMsvNXEZWxos2oMow3qziMo83neG+jU+WhjLHg==
=+sqe
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix EL2 Stage-1 MMIO mappings where a random address was used
- Fix SMCCC function number comparison when the SVE hint is set
RISC-V:
- Fix KVM_GET_REG_LIST API for ISA_EXT registers
- Fix reading ISA_EXT register of a missing extension
- Fix ISA_EXT register handling in get-reg-list test
- Fix filtering of AIA registers in get-reg-list test
x86:
- Fixes for TSC_AUX virtualization
- Stop zapping page tables asynchronously, since we don't zap them as
often as before"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: SVM: Do not use user return MSR support for virtualized TSC_AUX
KVM: SVM: Fix TSC_AUX virtualization setup
KVM: SVM: INTERCEPT_RDTSCP is never intercepted anyway
KVM: x86/mmu: Stop zapping invalidated TDP MMU roots asynchronously
KVM: x86/mmu: Do not filter address spaces in for_each_tdp_mmu_root_yield_safe()
KVM: x86/mmu: Open code leaf invalidation from mmu_notifier
KVM: riscv: selftests: Selectively filter-out AIA registers
KVM: riscv: selftests: Fix ISA_EXT register handling in get-reg-list
RISC-V: KVM: Fix riscv_vcpu_get_isa_ext_single() for missing extensions
RISC-V: KVM: Fix KVM_GET_REG_LIST API for ISA_EXT registers
KVM: selftests: Assert that vasprintf() is successful
KVM: arm64: nvhe: Ignore SVE hint in SMCCC function ID
KVM: arm64: Properly return allocated EL2 VA from hyp_alloc_private_va_range()
- Fix KVM_GET_REG_LIST API for ISA_EXT registers
- Fix reading ISA_EXT register of a missing extension
- Fix ISA_EXT register handling in get-reg-list test
- Fix filtering of AIA registers in get-reg-list test
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmUMDssACgkQrUjsVaLH
LAckSg/+IZ5DPvPs81rUpL3i1Z5SrK4jXWL2zyvMIksBEYmFD2NPNvinVZ4Sxv6u
IzWNKJcAp4nA/+qPGPLXCURDe1W6PCDvO4SShjYm2UkPtNIfiskmFr3MunXZysgm
I7USJgj9ev+46yfOnwlYrwpZ8sQk7Z6nLTI/6Osk4Q7Sm0Vjoobh6krub7LNjeKQ
y6p+vxrXj+Owc5H9bgl0wAi6GOmOJKAM+cZU5DygQxjOgiUgNbOzsVgbLDTvExNq
gISUU4PoAO7/U1NKEaaopbe7C0KNQHTnegedtXsDzg7WTBah77/MNBt4snbfiR27
6rODklZlG/kAGIHdVtYC+zf8AfPqvGTIT8SLGmzQlyVlHujFBGn0L41NmMzW+EeA
7UpfUk8vPiiGhefBE+Ml3yqiReogo+aRhL1mZoI39rPusd7DMnwx97KpBlAcYuTI
PTgqycIMRmq2dSCHya+nrOVpwwV3Qx4G8Alpq1jOa7XDMeGMj4h521NQHjWckIK2
IJ2a0RtzB10+Z91nLV+amdAno326AnxJC7dR26O6uqVSPJy/nHE2GAc49gFKeWq6
QmzgzY1sU2Y02/TM8miyKSl3i+bpZSIPzXCKlOm1TowBKO+sfJzn/yMon9sVaVhb
4Wjgg3vgE74y9FVsL4JXR/PfrZH5Aq77J1R+/pMtsNTtVYrt1Sk=
=ytFs
-----END PGP SIGNATURE-----
Merge tag 'kvm-riscv-fixes-6.6-1' of https://github.com/kvm-riscv/linux into HEAD
KVM/riscv fixes for 6.6, take #1
- Fix KVM_GET_REG_LIST API for ISA_EXT registers
- Fix reading ISA_EXT register of a missing extension
- Fix ISA_EXT register handling in get-reg-list test
- Fix filtering of AIA registers in get-reg-list test
Stop zapping invalidate TDP MMU roots via work queue now that KVM
preserves TDP MMU roots until they are explicitly invalidated. Zapping
roots asynchronously was effectively a workaround to avoid stalling a vCPU
for an extended during if a vCPU unloaded a root, which at the time
happened whenever the guest toggled CR0.WP (a frequent operation for some
guest kernels).
While a clever hack, zapping roots via an unbound worker had subtle,
unintended consequences on host scheduling, especially when zapping
multiple roots, e.g. as part of a memslot. Because the work of zapping a
root is no longer bound to the task that initiated the zap, things like
the CPU affinity and priority of the original task get lost. Losing the
affinity and priority can be especially problematic if unbound workqueues
aren't affined to a small number of CPUs, as zapping multiple roots can
cause KVM to heavily utilize the majority of CPUs in the system, *beyond*
the CPUs KVM is already using to run vCPUs.
When deleting a memslot via KVM_SET_USER_MEMORY_REGION, the async root
zap can result in KVM occupying all logical CPUs for ~8ms, and result in
high priority tasks not being scheduled in in a timely manner. In v5.15,
which doesn't preserve unloaded roots, the issues were even more noticeable
as KVM would zap roots more frequently and could occupy all CPUs for 50ms+.
Consuming all CPUs for an extended duration can lead to significant jitter
throughout the system, e.g. on ChromeOS with virtio-gpu, deleting memslots
is a semi-frequent operation as memslots are deleted and recreated with
different host virtual addresses to react to host GPU drivers allocating
and freeing GPU blobs. On ChromeOS, the jitter manifests as audio blips
during games due to the audio server's tasks not getting scheduled in
promptly, despite the tasks having a high realtime priority.
Deleting memslots isn't exactly a fast path and should be avoided when
possible, and ChromeOS is working towards utilizing MAP_FIXED to avoid the
memslot shenanigans, but KVM is squarely in the wrong. Not to mention
that removing the async zapping eliminates a non-trivial amount of
complexity.
Note, one of the subtle behaviors hidden behind the async zapping is that
KVM would zap invalidated roots only once (ignoring partial zaps from
things like mmu_notifier events). Preserve this behavior by adding a flag
to identify roots that are scheduled to be zapped versus roots that have
already been zapped but not yet freed.
Add a comment calling out why kvm_tdp_mmu_invalidate_all_roots() can
encounter invalid roots, as it's not at all obvious why zapping
invalidated roots shouldn't simply zap all invalid roots.
Reported-by: Pattara Teerapong <pteerapong@google.com>
Cc: David Stevens <stevensd@google.com>
Cc: Yiwei Zhang<zzyiwei@google.com>
Cc: Paul Hsia <paulhsia@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230916003916.2545000-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix a kexec bug,
- Fix an UML build bug,
- Fix a handful of SRSO related bugs,
- Fix a shadow stacks handling bug & robustify related code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUNbQIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jVIg/9EChW7qFTda8joR41Uayg07VIOpGirDLu
7hjzOnt4Ni93cfFNUBkKDKXoWxGAiOD+cRDnT6+zsJAvAZR26Y3UNVLYlAy+lFKK
9kRxeDM7nOEKqCC+zneinMFcIKmZRttMLpj8O901jB2S08x4UarnNx5SaWEcqYbn
rf1XIEuEvlxqMfafNueS/TRadV52qVU8Y+2+inkDnM7dDNwt+rCs5tQ9ebJos8QO
tsAoQes1G+0mjPrpqAgsIic5e3QCHliwVr8ASQrKZ9KR+fokEJRbSBNjgHUCNeVN
0bHBhuDJBSniC7QmAQGEizrZWmHl2HxwYYnCE0gd0g24b7sDTwWBFSXWratCrPdX
e4qYq36xonWdQcbpVF8ijMXF/R810vDyis/yc/BTeo5EBWf6aM/cx1dmS9DUxRpA
QsIW2amSCPVYwYE5MAC+K/DM9nq1tk8YnKi4Mob3L28+W3CmVwSwT9S86z2QLlZu
+KgVV4yBtJY1FJqVur5w3awhFtqLfBdfIvs6uQCd9VZXVPbBfS8+rOQmmhFixEDu
FSPlAChmXYTAM2R+UxcEvw1Zckrtd2BCOa8UrY2lq57mduBK1EymdpfjlrUAChLG
x7fQBOGNgOTLwYcsurIdS5jAqiudpnJ/KDG8ZAmKsVoW96JCPp9B3tVZMp9tT30C
8HRwSPX4384=
=58St
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-09-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar:
- Fix a kexec bug
- Fix an UML build bug
- Fix a handful of SRSO related bugs
- Fix a shadow stacks handling bug & robustify related code
* tag 'x86-urgent-2023-09-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/shstk: Add warning for shadow stack double unmap
x86/shstk: Remove useless clone error handling
x86/shstk: Handle vfork clone failure correctly
x86/srso: Fix SBPB enablement for spec_rstack_overflow=off
x86/srso: Don't probe microcode in a guest
x86/srso: Set CPUID feature bits independently of bug or mitigation status
x86/srso: Fix srso_show_state() side effect
x86/asm: Fix build of UML with KASAN
x86/mm, kexec, ima: Use memblock_free_late() from ima_free_kexec_buffer()
There has been cases reported where HYPERV_VTL_MODE is enabled by mistake,
on a non Hyper-V platforms. This causes the hv_vtl_early_init function to
be called in an non Hyper-V/VTL platforms which results the memory
corruption.
Remove the early_initcall for hv_vtl_early_init and call it at the end of
hyperv_init to make sure it is never called in a non Hyper-V platform by
mistake.
Reported-by: Mathias Krause <minipli@grsecurity.net>
Closes: https://lore.kernel.org/lkml/40467722-f4ab-19a5-4989-308225b1f9f0@grsecurity.net/
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Acked-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/1695358720-27681-1-git-send-email-ssengar@linux.microsoft.com
Shadow stacks are allocated automatically and freed on exit, depending
on the clone flags. The two cases where new shadow stacks are not
allocated are !CLONE_VM (fork()) and CLONE_VFORK (vfork()). For
!CLONE_VM, although a new stack is not allocated, it can be freed normally
because it will happen in the child's copy of the VM.
However, for CLONE_VFORK the parent and the child are actually using the
same shadow stack. So the kernel doesn't need to allocate *or* free a
shadow stack for a CLONE_VFORK child. CLONE_VFORK children already need
special tracking to avoid returning to userspace until the child exits or
execs. Shadow stack uses this same tracking to avoid freeing CLONE_VFORK
shadow stacks.
However, the tracking is not setup until the clone has succeeded
(internally). Which means, if a CLONE_VFORK fails, the existing logic will
not know it is a CLONE_VFORK and proceed to unmap the parents shadow stack.
This error handling cleanup logic runs via exit_thread() in the
bad_fork_cleanup_thread label in copy_process(). The issue was seen in
the glibc test "posix/tst-spawn3-pidfd" while running with shadow stack
using currently out-of-tree glibc patches.
Fix it by not unmapping the vfork shadow stack in the error case as well.
Since clone is implemented in core code, it is not ideal to pass the clone
flags along the error path in order to have shadow stack code have
symmetric logic in the freeing half of the thread shadow stack handling.
Instead use the existing state for thread shadow stacks to track whether
the thread is managing its own shadow stack. For CLONE_VFORK, simply set
shstk->base and shstk->size to 0, and have it mean the thread is not
managing a shadow stack and so should skip cleanup work. Implement this
by breaking up the CLONE_VFORK and !CLONE_VM cases in
shstk_alloc_thread_stack() to separate conditionals since, the logic is
now different between them. In the case of CLONE_VFORK && !CLONE_VM, the
existing behavior is to not clean up the shadow stack in the child (which
should go away quickly with either be exit or exec), so maintain that
behavior by handling the CLONE_VFORK case first in the allocation path.
This new logioc cleanly handles the case of normal, successful
CLONE_VFORK's skipping cleaning up their shadow stack's on exit as well.
So remove the existing, vfork shadow stack freeing logic. This is in
deactivate_mm() where vfork_done is used to tell if it is a vfork child
that can skip cleaning up the thread shadow stack.
Fixes: b2926a36b97a ("x86/shstk: Handle thread shadow stack")
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: H.J. Lu <hjl.tools@gmail.com>
Link: https://lore.kernel.org/all/20230908203655.543765-2-rick.p.edgecombe%40intel.com
Booting with mitigations=off incorrectly prevents the
X86_FEATURE_{IBPB_BRTYPE,SBPB} CPUID bits from getting set.
Also, future CPUs without X86_BUG_SRSO might still have IBPB with branch
type prediction flushing, in which case SBPB should be used instead of
IBPB. The current code doesn't allow for that.
Also, cpu_has_ibpb_brtype_microcode() has some surprising side effects
and the setting of these feature bits really doesn't belong in the
mitigation code anyway. Move it to earlier.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/869a1709abfe13b673bdd10c2f4332ca253a40bc.1693889988.git.jpoimboe@kernel.org
When running as a paravirtualized guest under Xen, Linux is using
"lazy mode" for issuing hypercalls which don't need to take immediate
effect in order to improve performance (examples are e.g. multiple
PTE changes).
There are two different lazy modes defined: MMU and CPU lazy mode.
Today it is not possible to nest multiple lazy mode sections, even if
they are of the same kind. A recent change in memory management added
nesting of MMU lazy mode sections, resulting in a regression when
running as Xen PV guest.
Technically there is no reason why nesting of multiple sections of the
same kind of lazy mode shouldn't be allowed. So add support for that
for fixing the regression.
Fixes: bcc6cc832573 ("mm: add default definition of set_ptes()")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20230913113828.18421-4-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Only Xen is using the paravirt lazy mode code, so it can be moved to
Xen specific sources.
This allows to make some of the functions static or to merge them into
their only call sites.
While at it do a rename from "paravirt" to "xen" for all moved
specifiers.
No functional change.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20230913113828.18421-3-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Building UML with KASAN fails since commit 69d4c0d32186 ("entry, kasan,
x86: Disallow overriding mem*() functions") with the following errors:
$ tools/testing/kunit/kunit.py run --kconfig_add CONFIG_KASAN=y
...
ld: mm/kasan/shadow.o: in function `memset':
shadow.c:(.text+0x40): multiple definition of `memset';
arch/x86/lib/memset_64.o:(.noinstr.text+0x0): first defined here
ld: mm/kasan/shadow.o: in function `memmove':
shadow.c:(.text+0x90): multiple definition of `memmove';
arch/x86/lib/memmove_64.o:(.noinstr.text+0x0): first defined here
ld: mm/kasan/shadow.o: in function `memcpy':
shadow.c:(.text+0x110): multiple definition of `memcpy';
arch/x86/lib/memcpy_64.o:(.noinstr.text+0x0): first defined here
UML does not use GENERIC_ENTRY and is still supposed to be allowed to
override the mem*() functions, so use weak aliases in that case.
Fixes: 69d4c0d32186 ("entry, kasan, x86: Disallow overriding mem*() functions")
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230918-uml-kasan-v3-1-7ad6db477df6@axis.com
- Fix an UV boot crash,
- Skip spurious ENDBR generation on _THIS_IP_,
- Fix ENDBR use in putuser() asm methods,
- Fix corner case boot crashes on 5-level paging,
- and fix a false positive WARNING on LTO kernels.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUHOrwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j6Jw/+PjUfh/4+KM/Z8VzcBy2UhY3NMF2ptGCN
47FPLy+8ADqOvIfgsPsBEO9VXwdvkHfH64YWRUlULjvPNOSs+37drBYMe9AI9xKE
u6NhoBHmsnOtoLkBFIQYlJys9GyAeoMlwSSHxzRwQS+3VztRjoH636jiBcg/h7DR
zhakfnJD1SSOZuEyyDPnO0uIUarrcqC2jdZwucSqZnvZFdA/pexUHQEe2RtMXLln
EIA5kuEo7UdADcSr/Lbty7MKO+6xpRTjxF0yNItPtwPWsnxrSAC7P+dQ37uB975U
Z0CJ/kw54XG5Sdoech7XCWYmJzDxSPhiziA1USKpZJMo5phAG/apTJK6NG4TG94r
U+3QhLopUoSd8N74/VtZn0FjOrMsk7YKD5o8twlTbpCd2VaiJk4X5oBIns6Tvq05
0Vmsx15XO3mEzg1wWbbdjhjHW0czRgBpikS9QyexZKVkukYcW8QT6bk1gK1ypg94
do4PHKB53QIt31dedy/ddpQj4u1sJ4+a9/+IG29kjUB33M4+uFedtw11vfe+CDN0
XLRc6HfPblogIIEO/figJgwSq/TPCOsNHTwKkejq+D1Ey6DsrnX9Gg4BWVz/3dDW
84SW7TaO2FGEDh4NkR2ijkZlbpofFnCvhCh/uohodPlqDrTVTuRKCZW9I5plmGVa
qeXUpNDFs1E=
=BMjT
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- Fix an UV boot crash
- Skip spurious ENDBR generation on _THIS_IP_
- Fix ENDBR use in putuser() asm methods
- Fix corner case boot crashes on 5-level paging
- and fix a false positive WARNING on LTO kernels"
* tag 'x86-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/purgatory: Remove LTO flags
x86/boot/compressed: Reserve more memory for page tables
x86/ibt: Avoid duplicate ENDBR in __put_user_nocheck*()
x86/ibt: Suppress spurious ENDBR
x86/platform/uv: Use alternate source for socket to node data
The decompressor has a hard limit on the number of page tables it can
allocate. This limit is defined at compile-time and will cause boot
failure if it is reached.
The kernel is very strict and calculates the limit precisely for the
worst-case scenario based on the current configuration. However, it is
easy to forget to adjust the limit when a new use-case arises. The
worst-case scenario is rarely encountered during sanity checks.
In the case of enabling 5-level paging, a use-case was overlooked. The
limit needs to be increased by one to accommodate the additional level.
This oversight went unnoticed until Aaron attempted to run the kernel
via kexec with 5-level paging and unaccepted memory enabled.
Update wost-case calculations to include 5-level paging.
To address this issue, let's allocate some extra space for page tables.
128K should be sufficient for any use-case. The logic can be simplified
by using a single value for all kernel configurations.
[ Also add a warning, should this memory run low - by Dave Hansen. ]
Fixes: 34bbb0009f3b ("x86/boot/compressed: Enable 5-level paging during decompression stage")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915070221.10266-1-kirill.shutemov@linux.intel.com
It was reported that under certain circumstances GCC emits ENDBR
instructions for _THIS_IP_ usage. Specifically, when it appears at the
start of a basic block -- but not elsewhere.
Since _THIS_IP_ is never used for control flow, these ENDBR
instructions are completely superfluous. Override the _THIS_IP_
definition for x86_64 to avoid this.
Less ENDBR instructions is better.
Fixes: 156ff4a544ae ("x86/ibt: Base IBT bits")
Reported-by: David Kaplan <David.Kaplan@amd.com>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230802110323.016197440@infradead.org
Only the arch_efi_call_virt() macro that some architectures override
needs to be a macro, given that it is variadic and encapsulates calls
via function pointers that have different prototypes.
The associated setup and teardown code are not special in this regard,
and don't need to be instantiated at each call site. So turn them into
ordinary C functions and move them out of line.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
fix a ld.lld linker (in)compatibility quirk and make the x86 SMP init code a bit
more conservative to fix kexec() lockups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmT97boRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jObA//X7nug+d+IMLIs+c4579z4ZhkltMRxJVI
Btf8sdHpwgTUtKaOLmJnGiJ7f0GK5NtoaNtGUJF28aQETVOhco0Fvg/R8k1FE2Tc
CJqw6oy2FjVqD9qzZPCXh6QCvTtGjN5GF+xmoUbf7eZ9U8IVvOxBG+7yDMorQw3P
zzjIccLLg/aDvNLN/yZD2oqw6UGHZuh/Qr/0Q4PkZ7zL+yWV8EC+HOx3rlQklq0x
hh6YMwa4LGr3przUObHsfNS11EDzLDhg2WtTQMr12vlnpUB2eXnXWLklr6rpWjcz
qJiMxkrEkygB7seXnuQ0b4KHN/17zdkJ+t6vZoznUTXs1ohIDLWdiNTSl03qCs9B
V98a1x3MPT6aro9O/5ywyAJwPb0hvsg2S0ODFWab0Z3oRUbIG/k6dTEYlP7qZw8v
EFMtLy6M2EILXetj8q2ZGcA0rKz7pj/z9SosWDzqNj76w7xGwDKrSWoKJckkCwG+
j+ycBuKfrpxVYOF4ywvONSf35QTIW8BR0sM9Lg1GZuwaeincFwLf0cmS4ljGRyZ1
Vsi0SfpIgVQkeY/17onTa1C5X6c2wIE9nq253M58Xnc9B2EWpYImr+4PVZk6s4GI
GExvdPC/rIIwYa0LmvYTTlpHEd7f5qIAhfcEtMAuGSjVDLvmdDGFkaU7TgJ6Jcw2
D12wKSAAgPU=
=S38E
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Fix preemption delays in the SGX code, remove unnecessarily
UAPI-exported code, fix a ld.lld linker (in)compatibility quirk and
make the x86 SMP init code a bit more conservative to fix kexec()
lockups"
* tag 'x86-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Break up long non-preemptible delays in sgx_vepc_release()
x86: Remove the arch_calc_vm_prot_bits() macro from the UAPI
x86/build: Fix linker fill bytes quirk/incompatibility for ld.lld
x86/smp: Don't send INIT to non-present and non-booted CPUs
* Clean up vCPU targets, always returning generic v8 as the preferred target
* Trap forwarding infrastructure for nested virtualization (used for traps
that are taken from an L2 guest and are needed by the L1 hypervisor)
* FEAT_TLBIRANGE support to only invalidate specific ranges of addresses
when collapsing a table PTE to a block PTE. This avoids that the guest
refills the TLBs again for addresses that aren't covered by the table PTE.
* Fix vPMU issues related to handling of PMUver.
* Don't unnecessary align non-stack allocations in the EL2 VA space
* Drop HCR_VIRT_EXCP_MASK, which was never used...
* Don't use smp_processor_id() in kvm_arch_vcpu_load(),
but the cpu parameter instead
* Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
* Remove prototypes without implementations
RISC-V:
* Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
* Added ONE_REG interface for SATP mode
* Added ONE_REG interface to enable/disable multiple ISA extensions
* Improved error codes returned by ONE_REG interfaces
* Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
* Added get-reg-list selftest for KVM RISC-V
s390:
* PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
* Guest debug fixes (Ilya)
x86:
* Clean up KVM's handling of Intel architectural events
* Intel bugfixes
* Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug
registers and generate/handle #DBs
* Clean up LBR virtualization code
* Fix a bug where KVM fails to set the target pCPU during an IRTE update
* Fix fatal bugs in SEV-ES intrahost migration
* Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
* Retry APIC map recalculation if a vCPU is added/enabled
* Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
* Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR cannot diverge from the default when TSC scaling is disabled
up related code
* Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
* Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
* Fix KVM's handling of !visible guest roots to avoid premature triple fault
injection
* Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface
that is needed by external users (currently only KVMGT), and fix a variety
of issues in the process
This last item had a silly one-character bug in the topic branch that
was sent to me. Because it caused pretty bad selftest failures in
some configurations, I decided to squash in the fix. So, while the
exact commit ids haven't been in linux-next, the code has (from the
kvm-x86 tree).
Generic:
* Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
action specific data without needing to constantly update the main handlers.
* Drop unused function declarations
Selftests:
* Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
* Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
* Clean up the PMU event filter test and add new testcases
* Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1
CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj
5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM
v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n
hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu
RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g==
=W+4p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
The arch_calc_vm_prot_bits() macro uses VM_PKEY_BIT0 etc. which are
not part of the UAPI, so the macro is completely useless for userspace.
It is also hidden behind the CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
config switch which we shouldn't expose to userspace. Thus let's move
this macro into a new internal header instead.
Fixes: 8f62c883222c ("x86/mm/pkeys: Add arch-specific VMA protection bits")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lore.kernel.org/r/20230906162658.142511-1-thuth@redhat.com
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmT0EE8THHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXg5FCACGJ6n2ikhtRHAENHIVY/mTh+HbhO07
ERzjADfqKF43u1Nt9cslgT4MioqwLjQsAu/A0YcJgVxVSOtg7dnbDmurRAjrGT/3
iKqcVvnaiwSV44TkF8evpeMttZSOg29ImmpyQjoZJJvDMfpxleEK53nuKB9EsjKL
Mz/0gSPoNc79bWF+85cVhgPnGIh9nBarxHqVsuWjMhc+UFhzjf9mOtk34qqPfJ1Q
4RsKGEjkVkeXoG6nGd6Gl/+8WoTpenOZQLchhInocY+k9FlAzW1Kr+ICLDx+Topw
8OJ6fv2rMDOejT9aOaA3/imf7LMer0xSUKb6N0sqQAQX8KzwcOYyKtQJ
=rC/v
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20230902' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Support for SEV-SNP guests on Hyper-V (Tianyu Lan)
- Support for TDX guests on Hyper-V (Dexuan Cui)
- Use SBRM API in Hyper-V balloon driver (Mitchell Levy)
- Avoid dereferencing ACPI root object handle in VMBus driver (Maciej
Szmigiero)
- A few misecllaneous fixes (Jiapeng Chong, Nathan Chancellor, Saurabh
Sengar)
* tag 'hyperv-next-signed-20230902' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (24 commits)
x86/hyperv: Remove duplicate include
x86/hyperv: Move the code in ivm.c around to avoid unnecessary ifdef's
x86/hyperv: Remove hv_isolation_type_en_snp
x86/hyperv: Use TDX GHCI to access some MSRs in a TDX VM with the paravisor
Drivers: hv: vmbus: Bring the post_msg_page back for TDX VMs with the paravisor
x86/hyperv: Introduce a global variable hyperv_paravisor_present
Drivers: hv: vmbus: Support >64 VPs for a fully enlightened TDX/SNP VM
x86/hyperv: Fix serial console interrupts for fully enlightened TDX guests
Drivers: hv: vmbus: Support fully enlightened TDX guests
x86/hyperv: Support hypercalls for fully enlightened TDX guests
x86/hyperv: Add hv_isolation_type_tdx() to detect TDX guests
x86/hyperv: Fix undefined reference to isolation_type_en_snp without CONFIG_HYPERV
x86/hyperv: Add missing 'inline' to hv_snp_boot_ap() stub
hv: hyperv.h: Replace one-element array with flexible-array member
Drivers: hv: vmbus: Don't dereference ACPI root object handle
x86/hyperv: Add hyperv-specific handling for VMMCALL under SEV-ES
x86/hyperv: Add smp support for SEV-SNP guest
clocksource: hyper-v: Mark hyperv tsc page unencrypted in sev-snp enlightened guest
x86/hyperv: Use vmmcall to implement Hyper-V hypercall in sev-snp enlightened guest
drivers: hv: Mark percpu hvcall input arg page unencrypted in SEV-SNP enlightened guest
...