45004 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
6d9ef0c369 x86: set SPECTRE_BHI_ON as default
commit 2bb69f5fc72183e1c62547d900f560d0e9334925 upstream.

Part of a merge commit from Linus that adjusted the default setting of
SPECTRE_BHI_ON.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Daniel Sneddon
cb238e95ee KVM: x86: Add BHI_NO
commit ed2e8d49b54d677f3123668a21a57822d679651f upstream.

Intel processors that aren't vulnerable to BHI will set
MSR_IA32_ARCH_CAPABILITIES[BHI_NO] = 1;. Guests may use this BHI_NO bit to
determine if they need to implement BHI mitigations or not.  Allow this bit
to be passed to the guests.

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Pawan Gupta
1c42ff893a x86/bhi: Mitigate KVM by default
commit 95a6ccbdc7199a14b71ad8901cb788ba7fb5167b upstream.

BHI mitigation mode spectre_bhi=auto does not deploy the software
mitigation by default. In a cloud environment, it is a likely scenario
where userspace is trusted but the guests are not trusted. Deploying
system wide mitigation in such cases is not desirable.

Update the auto mode to unconditionally mitigate against malicious
guests. Deploy the software sequence at VMexit in auto mode also, when
hardware mitigation is not available. Unlike the force =on mode,
software sequence is not deployed at syscalls in auto mode.

Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Pawan Gupta
d414b401f9 x86/bhi: Add BHI mitigation knob
commit ec9404e40e8f36421a2b66ecb76dc2209fe7f3ef upstream.

Branch history clearing software sequences and hardware control
BHI_DIS_S were defined to mitigate Branch History Injection (BHI).

Add cmdline spectre_bhi={on|off|auto} to control BHI mitigation:

 auto - Deploy the hardware mitigation BHI_DIS_S, if available.
 on   - Deploy the hardware mitigation BHI_DIS_S, if available,
        otherwise deploy the software sequence at syscall entry and
	VMexit.
 off  - Turn off BHI mitigation.

The default is auto mode which does not deploy the software sequence
mitigation.  This is because of the hardening done in the syscall
dispatch path, which is the likely target of BHI.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Pawan Gupta
118794d0a5 x86/bhi: Enumerate Branch History Injection (BHI) bug
commit be482ff9500999f56093738f9219bbabc729d163 upstream.

Mitigation for BHI is selected based on the bug enumeration. Add bits
needed to enumerate BHI bug.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Daniel Sneddon
c6e3d590d0 x86/bhi: Define SPEC_CTRL_BHI_DIS_S
commit 0f4a837615ff925ba62648d280a861adf1582df7 upstream.

Newer processors supports a hardware control BHI_DIS_S to mitigate
Branch History Injection (BHI). Setting BHI_DIS_S protects the kernel
from userspace BHI attacks without having to manually overwrite the
branch history.

Define MSR_SPEC_CTRL bit BHI_DIS_S and its enumeration CPUID.BHI_CTRL.
Mitigation is enabled later.

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:08 +02:00
Pawan Gupta
eb36b0dce2 x86/bhi: Add support for clearing branch history at syscall entry
commit 7390db8aea0d64e9deb28b8e1ce716f5020c7ee5 upstream.

Branch History Injection (BHI) attacks may allow a malicious application to
influence indirect branch prediction in kernel by poisoning the branch
history. eIBRS isolates indirect branch targets in ring0.  The BHB can
still influence the choice of indirect branch predictor entry, and although
branch predictor entries are isolated between modes when eIBRS is enabled,
the BHB itself is not isolated between modes.

Alder Lake and new processors supports a hardware control BHI_DIS_S to
mitigate BHI.  For older processors Intel has released a software sequence
to clear the branch history on parts that don't support BHI_DIS_S. Add
support to execute the software sequence at syscall entry and VMexit to
overwrite the branch history.

For now, branch history is not cleared at interrupt entry, as malicious
applications are not believed to have sufficient control over the
registers, since previous register state is cleared at interrupt
entry. Researchers continue to poke at this area and it may become
necessary to clear at interrupt entry as well in the future.

This mitigation is only defined here. It is enabled later.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Linus Torvalds
eb0f175b34 x86/syscall: Don't force use of indirect calls for system calls
commit 1e3ad78334a69b36e107232e337f9d693dcc9df2 upstream.

Make <asm/syscall.h> build a switch statement instead, and the compiler can
either decide to generate an indirect jump, or - more likely these days due
to mitigations - just a series of conditional branches.

Yes, the conditional branches also have branch prediction, but the branch
prediction is much more controlled, in that it just causes speculatively
running the wrong system call (harmless), rather than speculatively running
possibly wrong random less controlled code gadgets.

This doesn't mitigate other indirect calls, but the system call indirection
is the first and most easily triggered case.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Josh Poimboeuf
108feca9e4 x86/bugs: Change commas to semicolons in 'spectre_v2' sysfs file
commit 0cd01ac5dcb1e18eb18df0f0d05b5de76522a437 upstream.

Change the format of the 'spectre_v2' vulnerabilities sysfs file
slightly by converting the commas to semicolons, so that mitigations for
future variants can be grouped together and separated by commas.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Ard Biesheuvel
046545314c x86/boot: Move mem_encrypt= parsing to the decompressor
commit cd0d9d92c8bb46e77de62efd7df13069ddd61e7d upstream.

The early SME/SEV code parses the command line very early, in order to
decide whether or not memory encryption should be enabled, which needs
to occur even before the initial page tables are created.

This is problematic for a number of reasons:
- this early code runs from the 1:1 mapping provided by the decompressor
  or firmware, which uses a different translation than the one assumed by
  the linker, and so the code needs to be built in a special way;
- parsing external input while the entire kernel image is still mapped
  writable is a bad idea in general, and really does not belong in
  security minded code;
- the current code ignores the built-in command line entirely (although
  this appears to be the case for the entire decompressor)

Given that the decompressor/EFI stub is an intrinsic part of the x86
bootable kernel image, move the command line parsing there and out of
the core kernel. This removes the need to build lib/cmdline.o in a
special way, or to use RIP-relative LEA instructions in inline asm
blocks.

This involves a new xloadflag in the setup header to indicate
that mem_encrypt=on appeared on the kernel command line.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240227151907.387873-17-ardb+git@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Ard Biesheuvel
ccde70aa54 x86/efistub: Remap kernel text read-only before dropping NX attribute
commit 9c55461040a9264b7e44444c53d26480b438eda6 upstream.

Currently, the EFI stub invokes the EFI memory attributes protocol to
strip any NX restrictions from the entire loaded kernel, resulting in
all code and data being mapped read-write-execute.

The point of the EFI memory attributes protocol is to remove the need
for all memory allocations to be mapped with both write and execute
permissions by default, and make it the OS loader's responsibility to
transition data mappings to code mappings where appropriate.

Even though the UEFI specification does not appear to leave room for
denying memory attribute changes based on security policy, let's be
cautious and avoid relying on the ability to create read-write-execute
mappings. This is trivially achievable, given that the amount of kernel
code executing via the firmware's 1:1 mapping is rather small and
limited to the .head.text region. So let's drop the NX restrictions only
on that subregion, but not before remapping it as read-only first.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Ard Biesheuvel
56408ed929 x86/sev: Move early startup code into .head.text section
commit 428080c9b19bfda37c478cd626dbd3851db1aff9 upstream.

In preparation for implementing rigorous build time checks to enforce
that only code that can support it will be called from the early 1:1
mapping of memory, move SEV init code that is called in this manner to
the .head.text section.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240227151907.387873-19-ardb+git@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Ard Biesheuvel
af90ced752 x86/sme: Move early SME kernel encryption handling into .head.text
commit 48204aba801f1b512b3abed10b8e1a63e03f3dd1 upstream.

The .head.text section is the initial primary entrypoint of the core
kernel, and is entered with the CPU executing from a 1:1 mapping of
memory. Such code must never access global variables using absolute
references, as these are based on the kernel virtual mapping which is
not active yet at this point.

Given that the SME startup code is also called from this early execution
context, move it into .head.text as well. This will allow more thorough
build time checks in the future to ensure that early startup code only
uses RIP-relative references to global variables.

Also replace some occurrences of __pa_symbol() [which relies on the
compiler generating an absolute reference, which is not guaranteed] and
an open coded RIP-relative access with RIP_REL_REF().

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240227151907.387873-18-ardb+git@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Hou Wenlong
5447cb97e9 x86/head/64: Move the __head definition to <asm/init.h>
commit d2a285d65bfde3218fd0c3b88794d0135ced680b upstream.

Move the __head section definition to a header to widen its use.

An upcoming patch will mark the code as __head in mem_encrypt_identity.c too.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/0583f57977be184689c373fe540cbd7d85ca2047.1697525407.git.houwenlong.hwl@antgroup.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:07 +02:00
Greg Kroah-Hartman
37b81aed64 Revert "x86/mpparse: Register APIC address only once"
This reverts commit bebb5af001dc6cb4f505bb21c4d5e2efbdc112e2 which is
commit f2208aa12c27bfada3c15c550c03ca81d42dcac2 upstream.

It is reported to cause problems in the stable branches, so revert it.

Link: https://lore.kernel.org/r/899b7c1419a064a2b721b78eade06659@stwm.de
Reported-by: Wolfgang Walter <linux@stwm.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:06 +02:00
Kan Liang
92f32f1086 perf/x86/intel/ds: Don't clear ->pebs_data_cfg for the last PEBS event
commit 312be9fc2234c8acfb8148a9f4c358b70d358dee upstream.

The MSR_PEBS_DATA_CFG MSR register is used to configure which data groups
should be generated into a PEBS record, and it's shared among all counters.

If there are different configurations among counters, perf combines all the
configurations.

The first perf command as below requires a complete PEBS record
(including memory info, GPRs, XMMs, and LBRs). The second perf command
only requires a basic group. However, after the second perf command is
running, the MSR_PEBS_DATA_CFG register is cleared. Only a basic group is
generated in a PEBS record, which is wrong. The required information
for the first perf command is missed.

 $ perf record --intr-regs=AX,SP,XMM0 -a -C 8 -b -W -d -c 100000003 -o /dev/null -e cpu/event=0xd0,umask=0x81/upp &
 $ sleep 5
 $ perf record  --per-thread  -c 1  -e cycles:pp --no-timestamp --no-tid taskset -c 8 ./noploop 1000

The first PEBS event is a system-wide PEBS event. The second PEBS event
is a per-thread event. When the thread is scheduled out, the
intel_pmu_pebs_del() function is invoked to update the PEBS state.
Since the system-wide event is still available, the cpuc->n_pebs is 1.
The cpuc->pebs_data_cfg is cleared. The data configuration for the
system-wide PEBS event is lost.

The (cpuc->n_pebs == 1) check was introduced in commit:

  b6a32f023fcc ("perf/x86: Fix PEBS threshold initialization")

At that time, it indeed didn't hurt whether the state was updated
during the removal, because only the threshold is updated.

The calculation of the threshold takes the last PEBS event into
account.

However, since commit:

  b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")

we delay the threshold update, and clear the PEBS data config, which triggers
the bug.

The PEBS data config update scope should not be shrunk during removal.

[ mingo: Improved the changelog & comments. ]

Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240401133320.703971-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:03 +02:00
Jason A. Donenfeld
453b5f2dec x86/coco: Require seeding RNG with RDRAND on CoCo systems
commit 99485c4c026f024e7cb82da84c7951dbe3deb584 upstream.

There are few uses of CoCo that don't rely on working cryptography and
hence a working RNG. Unfortunately, the CoCo threat model means that the
VM host cannot be trusted and may actively work against guests to
extract secrets or manipulate computation. Since a malicious host can
modify or observe nearly all inputs to guests, the only remaining source
of entropy for CoCo guests is RDRAND.

If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole
is meant to gracefully continue on gathering entropy from other sources,
but since there aren't other sources on CoCo, this is catastrophic.
This is mostly a concern at boot time when initially seeding the RNG, as
after that the consequences of a broken RDRAND are much more
theoretical.

So, try at boot to seed the RNG using 256 bits of RDRAND output. If this
fails, panic(). This will also trigger if the system is booted without
RDRAND, as RDRAND is essential for a safe CoCo boot.

Add this deliberately to be "just a CoCo x86 driver feature" and not
part of the RNG itself. Many device drivers and platforms have some
desire to contribute something to the RNG, and add_device_randomness()
is specifically meant for this purpose.

Any driver can call it with seed data of any quality, or even garbage
quality, and it can only possibly make the quality of the RNG better or
have no effect, but can never make it worse.

Rather than trying to build something into the core of the RNG, consider
the particular CoCo issue just a CoCo issue, and therefore separate it
all out into driver (well, arch/platform) code.

  [ bp: Massage commit message. ]

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240326160735.73531-1-Jason@zx2c4.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:03 +02:00
Borislav Petkov (AMD)
5a02df3e92 x86/mce: Make sure to grab mce_sysfs_mutex in set_bank()
commit 3ddf944b32f88741c303f0b21459dbb3872b8bc5 upstream.

Modifying a MCA bank's MCA_CTL bits which control which error types to
be reported is done over

  /sys/devices/system/machinecheck/
  ├── machinecheck0
  │   ├── bank0
  │   ├── bank1
  │   ├── bank10
  │   ├── bank11
  ...

sysfs nodes by writing the new bit mask of events to enable.

When the write is accepted, the kernel deletes all current timers and
reinits all banks.

Doing that in parallel can lead to initializing a timer which is already
armed and in the timer wheel, i.e., in use already:

  ODEBUG: init active (active state 0) object: ffff888063a28000 object
  type: timer_list hint: mce_timer_fn+0x0/0x240 arch/x86/kernel/cpu/mce/core.c:2642
  WARNING: CPU: 0 PID: 8120 at lib/debugobjects.c:514
  debug_print_object+0x1a0/0x2a0 lib/debugobjects.c:514

Fix that by grabbing the sysfs mutex as the rest of the MCA sysfs code
does.

Reported by: Yue Sun <samsun1006219@gmail.com>
Reported by: xingwei lee <xrivendell7@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/CAEkJfYNiENwQY8yV1LYJ9LjJs%2Bx_-PqMv98gKig55=2vbzffRw@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:03 +02:00
David Hildenbrand
51b7841f3f x86/mm/pat: fix VM_PAT handling in COW mappings
commit 04c35ab3bdae7fefbd7c7a7355f29fa03a035221 upstream.

PAT handling won't do the right thing in COW mappings: the first PTE (or,
in fact, all PTEs) can be replaced during write faults to point at anon
folios.  Reliably recovering the correct PFN and cachemode using
follow_phys() from PTEs will not work in COW mappings.

Using follow_phys(), we might just get the address+protection of the anon
folio (which is very wrong), or fail on swap/nonswap entries, failing
follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and
track_pfn_copy(), not properly calling free_pfn_range().

In free_pfn_range(), we either wouldn't call memtype_free() or would call
it with the wrong range, possibly leaking memory.

To fix that, let's update follow_phys() to refuse returning anon folios,
and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings
if we run into that.

We will now properly handle untrack_pfn() with COW mappings, where we
don't need the cachemode.  We'll have to fail fork()->track_pfn_copy() if
the first page was replaced by an anon folio, though: we'd have to store
the cachemode in the VMA to make this work, likely growing the VMA size.

For now, lets keep it simple and let track_pfn_copy() just fail in that
case: it would have failed in the past with swap/nonswap entries already,
and it would have done the wrong thing with anon folios.

Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn():

<--- C reproducer --->
 #include <stdio.h>
 #include <sys/mman.h>
 #include <unistd.h>
 #include <liburing.h>

 int main(void)
 {
         struct io_uring_params p = {};
         int ring_fd;
         size_t size;
         char *map;

         ring_fd = io_uring_setup(1, &p);
         if (ring_fd < 0) {
                 perror("io_uring_setup");
                 return 1;
         }
         size = p.sq_off.array + p.sq_entries * sizeof(unsigned);

         /* Map the submission queue ring MAP_PRIVATE */
         map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
                    ring_fd, IORING_OFF_SQ_RING);
         if (map == MAP_FAILED) {
                 perror("mmap");
                 return 1;
         }

         /* We have at least one page. Let's COW it. */
         *map = 0;
         pause();
         return 0;
 }
<--- C reproducer --->

On a system with 16 GiB RAM and swap configured:
 # ./iouring &
 # memhog 16G
 # killall iouring
[  301.552930] ------------[ cut here ]------------
[  301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100
[  301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g
[  301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1
[  301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4
[  301.559569] RIP: 0010:untrack_pfn+0xf4/0x100
[  301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000
[  301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282
[  301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047
[  301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200
[  301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000
[  301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000
[  301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000
[  301.564186] FS:  0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000
[  301.564773] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0
[  301.565725] PKRU: 55555554
[  301.565944] Call Trace:
[  301.566148]  <TASK>
[  301.566325]  ? untrack_pfn+0xf4/0x100
[  301.566618]  ? __warn+0x81/0x130
[  301.566876]  ? untrack_pfn+0xf4/0x100
[  301.567163]  ? report_bug+0x171/0x1a0
[  301.567466]  ? handle_bug+0x3c/0x80
[  301.567743]  ? exc_invalid_op+0x17/0x70
[  301.568038]  ? asm_exc_invalid_op+0x1a/0x20
[  301.568363]  ? untrack_pfn+0xf4/0x100
[  301.568660]  ? untrack_pfn+0x65/0x100
[  301.568947]  unmap_single_vma+0xa6/0xe0
[  301.569247]  unmap_vmas+0xb5/0x190
[  301.569532]  exit_mmap+0xec/0x340
[  301.569801]  __mmput+0x3e/0x130
[  301.570051]  do_exit+0x305/0xaf0
...

Link: https://lkml.kernel.org/r/20240403212131.929421-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Wupeng Ma <mawupeng1@huawei.com>
Closes: https://lkml.kernel.org/r/20240227122814.3781907-1-mawupeng1@huawei.com
Fixes: b1a86e15dc03 ("x86, pat: remove the dependency on 'vm_pgoff' in track/untrack pfn vma routines")
Fixes: 5899329b1910 ("x86: PAT: implement track/untrack of pfnmap regions for x86 - v3")
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:03 +02:00
Borislav Petkov (AMD)
63bd08629a x86/retpoline: Add NOENDBR annotation to the SRSO dummy return thunk
commit b377c66ae3509ccea596512d6afb4777711c4870 upstream.

srso_alias_untrain_ret() is special code, even if it is a dummy
which is called in the !SRSO case, so annotate it like its real
counterpart, to address the following objtool splat:

  vmlinux.o: warning: objtool: .export_symbol+0x2b290: data relocation to !ENDBR: srso_alias_untrain_ret+0x0

Fixes: 4535e1a4174c ("x86/bugs: Fix the SRSO mitigation on Zen3/4")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240405144637.17908-1-bp@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:36:01 +02:00
Ashish Kalra
ab7a6fe9c1 KVM: SVM: Add support for allowing zero SEV ASIDs
[ Upstream commit 0aa6b90ef9d75b4bd7b6d106d85f2a3437697f91 ]

Some BIOSes allow the end user to set the minimum SEV ASID value
(CPUID 0x8000001F_EDX) to be greater than the maximum number of
encrypted guests, or maximum SEV ASID value (CPUID 0x8000001F_ECX)
in order to dedicate all the SEV ASIDs to SEV-ES or SEV-SNP.

The SEV support, as coded, does not handle the case where the minimum
SEV ASID value can be greater than the maximum SEV ASID value.
As a result, the following confusing message is issued:

[   30.715724] kvm_amd: SEV enabled (ASIDs 1007 - 1006)

Fix the support to properly handle this case.

Fixes: 916391a2d1dc ("KVM: SVM: Add support for SEV-ES capability in KVM")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Cc: stable@vger.kernel.org
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240104190520.62510-1-Ashish.Kalra@amd.com
Link: https://lore.kernel.org/r/20240131235609.4161407-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:57 +02:00
Sean Christopherson
79b79ea2b3 KVM: SVM: Use unsigned integers when dealing with ASIDs
[ Upstream commit 466eec4a22a76c462781bf6d45cb02cbedf21a61 ]

Convert all local ASID variables and parameters throughout the SEV code
from signed integers to unsigned integers.  As ASIDs are fundamentally
unsigned values, and the global min/max variables are appropriately
unsigned integers, too.

Functionally, this is a glorified nop as KVM guarantees min_sev_asid is
non-zero, and no CPU supports -1u as the _only_ asid, i.e. the signed vs.
unsigned goof won't cause problems in practice.

Opportunistically use sev_get_asid() in sev_flush_encrypted_page() instead
of open coding an equivalent.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240131235609.4161407-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: 0aa6b90ef9d7 ("KVM: SVM: Add support for allowing zero SEV ASIDs")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:57 +02:00
Borislav Petkov (AMD)
3ec21104c8 x86/retpoline: Do the necessary fixup to the Zen3/4 srso return thunk for !SRSO
commit 0e110732473e14d6520e49d75d2c88ef7d46fe67 upstream.

The srso_alias_untrain_ret() dummy thunk in the !CONFIG_MITIGATION_SRSO
case is there only for the altenative in CALL_UNTRAIN_RET to have
a symbol to resolve.

However, testing with kernels which don't have CONFIG_MITIGATION_SRSO
enabled, leads to the warning in patch_return() to fire:

  missing return thunk: srso_alias_untrain_ret+0x0/0x10-0x0: eb 0e 66 66 2e
  WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:826 apply_returns (arch/x86/kernel/alternative.c:826

Put in a plain "ret" there so that gcc doesn't put a return thunk in
in its place which special and gets checked.

In addition:

  ERROR: modpost: "srso_alias_untrain_ret" [arch/x86/kvm/kvm-amd.ko] undefined!
  make[2]: *** [scripts/Makefile.modpost:145: Module.symvers] Chyba 1
  make[1]: *** [/usr/src/linux-6.8.3/Makefile:1873: modpost] Chyba 2
  make: *** [Makefile:240: __sub-make] Chyba 2

since !SRSO builds would use the dummy return thunk as reported by
petr.pisar@atlas.cz, https://bugzilla.kernel.org/show_bug.cgi?id=218679.

Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202404020901.da75a60f-oliver.sang@intel.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/202404020901.da75a60f-oliver.sang@intel.com/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:51 +02:00
Borislav Petkov (AMD)
e40f32f176 x86/bugs: Fix the SRSO mitigation on Zen3/4
Commit 4535e1a4174c4111d92c5a9a21e542d232e0fcaa upstream.

The original version of the mitigation would patch in the calls to the
untraining routines directly.  That is, the alternative() in UNTRAIN_RET
will patch in the CALL to srso_alias_untrain_ret() directly.

However, even if commit e7c25c441e9e ("x86/cpu: Cleanup the untrain
mess") meant well in trying to clean up the situation, due to micro-
architectural reasons, the untraining routine srso_alias_untrain_ret()
must be the target of a CALL instruction and not of a JMP instruction as
it is done now.

Reshuffle the alternative macros to accomplish that.

Fixes: e7c25c441e9e ("x86/cpu: Cleanup the untrain mess")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:50 +02:00
Josh Poimboeuf
93eae88e34 x86/nospec: Refactor UNTRAIN_RET[_*]
Commit e8efc0800b8b5045ba8c0d1256bfbb47e92e192a upstream.

Factor out the UNTRAIN_RET[_*] common bits into a helper macro.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/f06d45489778bd49623297af2a983eea09067a74.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:50 +02:00
Josh Poimboeuf
820a3626f3 x86/srso: Disentangle rethunk-dependent options
Commit 34a3cae7474c6e6f4a85aad4a7b8191b8b35cdcd upstream.

CONFIG_RETHUNK, CONFIG_CPU_UNRET_ENTRY and CONFIG_CPU_SRSO are all
tangled up.  De-spaghettify the code a bit.

Some of the rethunk-related code has been shuffled around within the
'.text..__x86.return_thunk' section, but otherwise there are no
functional changes.  srso_alias_untrain_ret() and srso_alias_safe_ret()
((which are very address-sensitive) haven't moved.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/2845084ed303d8384905db3b87b77693945302b4.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:50 +02:00
Josh Poimboeuf
6b10edf916 x86/srso: Improve i-cache locality for alias mitigation
Commit aa730cff0c26244e88066b5b461a9f5fbac13823 upstream.

Move srso_alias_return_thunk() to the same section as
srso_alias_safe_ret() so they can share a cache line.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/eadaf5530b46a7ae8b936522da45ae555d2b3393.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:50 +02:00
Uros Bizjak
3f9d57c771 x86/bpf: Fix IP after emitting call depth accounting
commit 9d98aa088386aee3db1b7b60b800c0fde0654a4a upstream.

Adjust the IP passed to `emit_patch` so it calculates the correct offset
for the CALL instruction if `x86_call_depth_emit_accounting` emits code.
Otherwise we will skip some instructions and most likely crash.

Fixes: b2e9dfe54be4 ("x86/bpf: Emit call depth accounting if required")
Link: https://lore.kernel.org/lkml/20230105214922.250473-1-joanbrugueram@gmail.com/
Co-developed-by: Joan Bruguera Micó <joanbrugueram@gmail.com>
Signed-off-by: Joan Bruguera Micó <joanbrugueram@gmail.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20240401185821.224068-2-ubizjak@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:48 +02:00
Sean Christopherson
4d47169ab6 x86/cpufeatures: Add CPUID_LNX_5 to track recently added Linux-defined word
commit 8cb4a9a82b21623dbb4b3051dd30d98356cf95bc upstream.

Add CPUID_LNX_5 to track cpufeatures' word 21, and add the appropriate
compile-time assert in KVM to prevent direct lookups on the features in
CPUID_LNX_5.  KVM uses X86_FEATURE_* flags to manage guest CPUID, and so
must translate features that are scattered by Linux from the Linux-defined
bit to the hardware-defined bit, i.e. should never try to directly access
scattered features in guest CPUID.

Opportunistically add NR_CPUID_WORDS to enum cpuid_leafs, along with a
compile-time assert in KVM's CPUID infrastructure to ensure that future
additions update cpuid_leafs along with NCAPINTS.

No functional change intended.

Fixes: 7f274e609f3d ("x86/cpufeatures: Add new word for scattered features")
Cc: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:35:48 +02:00
Sandipan Das
55ed6c4778 perf/x86/amd/lbr: Use freeze based on availability
[ Upstream commit 598c2fafc06fe5c56a1a415fb7b544b31453d637 ]

Currently, the LBR code assumes that LBR Freeze is supported on all processors
when X86_FEATURE_AMD_LBR_V2 is available i.e. CPUID leaf 0x80000022[EAX]
bit 1 is set. This is incorrect as the availability of the feature is
additionally dependent on CPUID leaf 0x80000022[EAX] bit 2 being set,
which may not be set for all Zen 4 processors.

Define a new feature bit for LBR and PMC freeze and set the freeze enable bit
(FLBRI) in DebugCtl (MSR 0x1d9) conditionally.

It should still be possible to use LBR without freeze for profile-guided
optimization of user programs by using an user-only branch filter during
profiling. When the user-only filter is enabled, branches are no longer
recorded after the transition to CPL 0 upon PMI arrival. When branch
entries are read in the PMI handler, the branch stack does not change.

E.g.

  $ perf record -j any,u -e ex_ret_brn_tkn ./workload

Since the feature bit is visible under flags in /proc/cpuinfo, it can be
used to determine the feasibility of use-cases which require LBR Freeze
to be supported by the hardware such as profile-guided optimization of
kernels.

Fixes: ca5b7c0d9621 ("perf/x86/amd/lbr: Add LbrExtV2 branch record support")
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/69a453c97cfd11c6f2584b19f937fe6df741510f.1711091584.git.sandipan.das@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:47 +02:00
Sandipan Das
56e7373f9a x86/cpufeatures: Add new word for scattered features
[ Upstream commit 7f274e609f3d5f45c22b1dd59053f6764458b492 ]

Add a new word for scattered features because all free bits among the
existing Linux-defined auxiliary flags have been exhausted.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/8380d2a0da469a1f0ad75b8954a79fb689599ff6.1711091584.git.sandipan.das@amd.com
Stable-dep-of: 598c2fafc06f ("perf/x86/amd/lbr: Use freeze based on availability")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:47 +02:00
Sandipan Das
69fe5f177a perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later
[ Upstream commit c7b2edd8377be983442c1344cb940cd2ac21b601 ]

AMD processors based on Zen 2 and later microarchitectures do not
support PMCx087 (instruction pipe stalls) which is used as the backing
event for "stalled-cycles-frontend" and "stalled-cycles-backend".

Use PMCx0A9 (cycles where micro-op queue is empty) instead to count
frontend stalls and remove the entry for backend stalls since there
is no direct replacement.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ian Rogers <irogers@google.com>
Fixes: 3fe3331bb285 ("perf/x86/amd: Add event map for AMD Family 17h")
Link: https://lore.kernel.org/r/03d7fc8fa2a28f9be732116009025bdec1b3ec97.1711352180.git.sandipan.das@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:47 +02:00
Borislav Petkov (AMD)
d2be2f872f x86/CPU/AMD: Add X86_FEATURE_ZEN1
[ Upstream commit 232afb557835d6f6859c73bf610bad308c96b131 ]

Add a synthetic feature flag specifically for first generation Zen
machines. There's need to have a generic flag for all Zen generations so
make X86_FEATURE_ZEN be that flag.

Fixes: 30fa92832f40 ("x86/CPU/AMD: Add ZenX generations flags")
Suggested-by: Brian Gerst <brgerst@gmail.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/dc3835e3-0731-4230-bbb9-336bbe3d042b@amd.com
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:47 +02:00
Borislav Petkov (AMD)
54273025be x86/CPU/AMD: Get rid of amd_erratum_1054[]
[ Upstream commit 54c33e23f75d5c9925495231c57d3319336722ef ]

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-10-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:47 +02:00
Borislav Petkov (AMD)
8245498166 x86/CPU/AMD: Move the DIV0 bug detection to the Zen1 init function
[ Upstream commit bfff3c6692ce64fa9d86eb829d18229c307a0855 ]

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-9-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Borislav Petkov (AMD)
702a65272d x86/CPU/AMD: Move Zenbleed check to the Zen2 init function
[ Upstream commit f69759be251dce722942594fbc62e53a40822a82 ]

Prefix it properly so that it is clear which generation it is dealing
with.

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: http://lore.kernel.org/r/20231120104152.13740-8-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Borislav Petkov (AMD)
2577e2a7ca x86/CPU/AMD: Move erratum 1076 fix into the Zen1 init function
[ Upstream commit 0da91912fc150d6d321b15e648bead202ced1a27 ]

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-5-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Borislav Petkov (AMD)
eae590201d x86/CPU/AMD: Carve out the erratum 1386 fix
[ Upstream commit a7c32a1ae9ee43abfe884f5af376877c4301d166 ]

Call it on the affected CPU generations.

No functional changes.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-3-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Borislav Petkov (AMD)
936e59cb56 x86/CPU/AMD: Add ZenX generations flags
[ Upstream commit 30fa92832f405d5ac9f263e99f62445fa3084008 ]

Add X86_FEATURE flags for each Zen generation. They should be used from
now on instead of checking f/m/s.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lore.kernel.org/r/20231120104152.13740-2-bp@alien8.de
Stable-dep-of: c7b2edd8377b ("perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and later")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Ingo Molnar
fbc0a833c0 Revert "x86/mm/ident_map: Use gbpages only where full GB page should be mapped."
[ Upstream commit c567f2948f57bdc03ed03403ae0234085f376b7d ]

This reverts commit d794734c9bbfe22f86686dc2909c25f5ffe1a572.

While the original change tries to fix a bug, it also unintentionally broke
existing systems, see the regressions reported at:

  https://lore.kernel.org/all/3a1b9909-45ac-4f97-ad68-d16ef1ce99db@pavinjoseph.com/

Since d794734c9bbf was also marked for -stable, let's back it out before
causing more damage.

Note that due to another upstream change the revert was not 100% automatic:

  0a845e0f6348 mm/treewide: replace pud_large() with pud_leaf()

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Steve Wahl <steve.wahl@hpe.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/3a1b9909-45ac-4f97-ad68-d16ef1ce99db@pavinjoseph.com/
Fixes: d794734c9bbf ("x86/mm/ident_map: Use gbpages only where full GB page should be mapped.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Peter Xu
907835e6de mm/treewide: replace pud_large() with pud_leaf()
[ Upstream commit 0a845e0f6348ccfa2dcc8c450ffd1c9ffe8c4add ]

pud_large() is always defined as pud_leaf().  Merge their usages.  Chose
pud_leaf() because pud_leaf() is a global API, while pud_large() is not.

Link: https://lkml.kernel.org/r/20240305043750.93762-9-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: c567f2948f57 ("Revert "x86/mm/ident_map: Use gbpages only where full GB page should be mapped."")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:46 +02:00
Kevin Loughlin
4338e40da8 x86/sev: Skip ROM range scans and validation for SEV-SNP guests
commit 0f4a1e80989aca185d955fcd791d7750082044a2 upstream.

SEV-SNP requires encrypted memory to be validated before access.
Because the ROM memory range is not part of the e820 table, it is not
pre-validated by the BIOS. Therefore, if a SEV-SNP guest kernel wishes
to access this range, the guest must first validate the range.

The current SEV-SNP code does indeed scan the ROM range during early
boot and thus attempts to validate the ROM range in probe_roms().
However, this behavior is neither sufficient nor necessary for the
following reasons:

* With regards to sufficiency, if EFI_CONFIG_TABLES are not enabled and
  CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK is set, the kernel will
  attempt to access the memory at SMBIOS_ENTRY_POINT_SCAN_START (which
  falls in the ROM range) prior to validation.

  For example, Project Oak Stage 0 provides a minimal guest firmware
  that currently meets these configuration conditions, meaning guests
  booting atop Oak Stage 0 firmware encounter a problematic call chain
  during dmi_setup() -> dmi_scan_machine() that results in a crash
  during boot if SEV-SNP is enabled.

* With regards to necessity, SEV-SNP guests generally read garbage
  (which changes across boots) from the ROM range, meaning these scans
  are unnecessary. The guest reads garbage because the legacy ROM range
  is unencrypted data but is accessed via an encrypted PMD during early
  boot (where the PMD is marked as encrypted due to potentially mapping
  actually-encrypted data in other PMD-contained ranges).

In one exceptional case, EISA probing treats the ROM range as
unencrypted data, which is inconsistent with other probing.

Continuing to allow SEV-SNP guests to use garbage and to inconsistently
classify ROM range encryption status can trigger undesirable behavior.
For instance, if garbage bytes appear to be a valid signature, memory
may be unnecessarily reserved for the ROM range. Future code or other
use cases may result in more problematic (arbitrary) behavior that
should be avoided.

While one solution would be to overhaul the early PMD mapping to always
treat the ROM region of the PMD as unencrypted, SEV-SNP guests do not
currently rely on data from the ROM region during early boot (and even
if they did, they would be mostly relying on garbage data anyways).

As a simpler solution, skip the ROM range scans (and the otherwise-
necessary range validation) during SEV-SNP guest early boot. The
potential SEV-SNP guest crash due to lack of ROM range validation is
thus avoided by simply not accessing the ROM range.

In most cases, skip the scans by overriding problematic x86_init
functions during sme_early_init() to SNP-safe variants, which can be
likened to x86_init overrides done for other platforms (ex: Xen); such
overrides also avoid the spread of cc_platform_has() checks throughout
the tree.

In the exceptional EISA case, still use cc_platform_has() for the
simplest change, given (1) checks for guest type (ex: Xen domain status)
are already performed here, and (2) these checks occur in a subsys
initcall instead of an x86_init function.

  [ bp: Massage commit message, remove "we"s. ]

Fixes: 9704c07bf9f7 ("x86/kernel: Validate ROM memory before accessing when SEV-SNP is active")
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20240313121546.2964854-1-kevinloughlin@google.com
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:29:03 +02:00
Dave Hansen
70977e7d5e Revert "x86/bugs: Use fixed addressing for VERW operand"
commit 532a0c57d7ff75e8f07d4e25cba4184989e2a241 upstream.

This was reverts commit 8009479ee919b9a91674f48050ccbff64eafedaa.

It was originally in x86/urgent, but was deemed wrong so got zapped.
But in the meantime, x86/urgent had been merged into x86/apic to
resolve a conflict.  I didn't notice the merge so didn't zap it
from x86/apic and it managed to make it up with the x86/apic
material.

The reverted commit is known to cause some KASAN problems.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:29:03 +02:00
Pawan Gupta
367b4ce0d7 x86/bugs: Use fixed addressing for VERW operand
commit 8009479ee919b9a91674f48050ccbff64eafedaa upstream.

The macro used for MDS mitigation executes VERW with relative
addressing for the operand. This was necessary in earlier versions of
the series. Now it is unnecessary and creates a problem for backports
on older kernels that don't support relocations in alternatives.
Relocation support was added by commit 270a69c4485d ("x86/alternative:
Support relocations in alternatives").  Also asm for fixed addressing
is much cleaner than relative RIP addressing.

Simplify the asm by using fixed addressing for VERW operand.

[ dhansen: tweak changelog ]

Closes: https://lore.kernel.org/lkml/20558f89-299b-472e-9a96-171403a83bd6@suse.com/
Fixes: baf8361e5455 ("x86/bugs: Add asm helpers for executing VERW")
Reported-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240226-verw-arg-fix-v1-1-7b37ee6fd57d%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:29:02 +02:00
Ard Biesheuvel
01666eece4 x86/efistub: Add missing boot_params for mixed mode compat entry
commit d21f5a59ea773826cc489acb287811d690b703cc upstream.

The pure EFI stub entry point does not take a struct boot_params from
the boot loader, but creates it from scratch, and populates only the
fields that still have meaning in this context (command line, initrd
base and size, etc)

The original mixed mode implementation used the EFI handover protocol
instead, where the boot loader (i.e., GRUB) populates a boot_params
struct and passes it to a special Linux specific EFI entry point that
takes the boot_params pointer as its third argument.

When the new mixed mode implementation was introduced, using a special
32-bit PE entrypoint in the 64-bit kernel, it adopted the pure approach,
and relied on the EFI stub to create the struct boot_params.  This is
preferred because it makes the bootloader side much easier to implement,
as it does not need any x86-specific knowledge on how struct boot_params
and struct setup_header are put together. This mixed mode implementation
was adopted by systemd-boot version 252 and later.

When commit

  e2ab9eab324c ("x86/boot/compressed: Move 32-bit entrypoint code into .text section")

refactored this code and moved it out of head_64.S, the fact that ESI
was populated with the address of the base of the image was overlooked,
and to simplify the code flow, ESI is now zeroed and stored to memory
unconditionally in shared code, so that the NULL-ness of that variable
can still be used later to determine which mixed mode boot protocol is
in use.

With ESI pointing to the base of the image, it can serve as a struct
boot_params pointer for startup_32(), which only accesses the init_data
and kernel_alignment fields (and the scratch field as a temporary
stack). Zeroing ESI means that those accesses produce garbage now, even
though things appear to work if the first page of memory happens to be
zeroed, and the region right before LOAD_PHYSICAL_ADDR (== 16 MiB)
happens to be free.

The solution is to pass a special, temporary struct boot_params to
startup_32() via ESI, one that is sufficient for getting it to create
the page tables correctly and is discarded right after. This involves
setting a minimal alignment of 4k, only to get the statically allocated
page tables line up correctly, and setting init_size to the executable
image size (_end - startup_32). This ensures that the page tables are
covered by the static footprint of the PE image.

Given that EFI boot no longer calls the decompressor and no longer pads
the image to permit the decompressor to execute in place, the same
temporary struct boot_params should be used in the EFI handover protocol
based mixed mode implementation as well, to prevent the page tables from
being placed outside of allocated memory.

Fixes: e2ab9eab324c ("x86/boot/compressed: Move 32-bit entrypoint code into .text section")
Cc: <stable@kernel.org> # v6.1+
Closes: https://lore.kernel.org/all/20240321150510.GI8211@craftyguy.net/
Reported-by: Clayton Craft <clayton@craftyguy.net>
Tested-by: Clayton Craft <clayton@craftyguy.net>
Tested-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:53 +02:00
Adamos Ttofari
1acbca9333 x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
[ Upstream commit 10e4b5166df9ff7a2d5316138ca668b42d004422 ]

Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.

On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.

As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.

To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.

Fixes: 672365477ae8 ("x86/fpu: Update XFD state where required")
Signed-off-by: Adamos Ttofari <attofari@amazon.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240322230439.456571-1-chang.seok.bae@intel.com

Closes: https://lore.kernel.org/lkml/20230511152818.13839-1-attofari@amazon.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:52 +02:00
Thomas Gleixner
bebb5af001 x86/mpparse: Register APIC address only once
[ Upstream commit f2208aa12c27bfada3c15c550c03ca81d42dcac2 ]

The APIC address is registered twice. First during the early detection and
afterwards when actually scanning the table for APIC IDs. The APIC and
topology core warn about the second attempt.

Restrict it to the early detection call.

Fixes: 81287ad65da5 ("x86/apic: Sanitize APIC address setup")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.297774848@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:52 +02:00
Masami Hiramatsu (Google)
f13edd1871 kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address
[ Upstream commit 4e51653d5d871f40f1bd5cf95cc7f2d8b33d063b ]

Read from an unsafe address with copy_from_kernel_nofault() in
arch_adjust_kprobe_addr() because this function is used before checking
the address is in text or not. Syzcaller bot found a bug and reported
the case if user specifies inaccessible data area,
arch_adjust_kprobe_addr() will cause a kernel panic.

[ mingo: Clarified the comment. ]

Fixes: cc66bb914578 ("x86/ibt,kprobes: Cure sym+0 equals fentry woes")
Reported-by: Qiang Zhang <zzqq0103.hey@gmail.com>
Tested-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/171042945004.154897.2221804961882915806.stgit@devnote2
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:52 +02:00
Ard Biesheuvel
0982fd6bf0 x86/sev: Fix position dependent variable references in startup code
commit 1c811d403afd73f04bde82b83b24c754011bd0e8 upstream.

The early startup code executes from a 1:1 mapping of memory, which
differs from the mapping that the code was linked and/or relocated to
run at. The latter mapping is not active yet at this point, and so
symbol references that rely on it will fault.

Given that the core kernel is built without -fPIC, symbol references are
typically emitted as absolute, and so any such references occuring in
the early startup code will therefore crash the kernel.

While an attempt was made to work around this for the early SEV/SME
startup code, by forcing RIP-relative addressing for certain global
SEV/SME variables via inline assembly (see snp_cpuid_get_table() for
example), RIP-relative addressing must be pervasively enforced for
SEV/SME global variables when accessed prior to page table fixups.

__startup_64() already handles this issue for select non-SEV/SME global
variables using fixup_pointer(), which adjusts the pointer relative to a
`physaddr` argument. To avoid having to pass around this `physaddr`
argument across all functions needing to apply pointer fixups, introduce
a macro RIP_RELATIVE_REF() which generates a RIP-relative reference to
a given global variable. It is used where necessary to force
RIP-relative accesses to global variables.

For backporting purposes, this patch makes no attempt at cleaning up
other occurrences of this pattern, involving either inline asm or
fixup_pointer(). Those will be addressed later.

  [ bp: Call it "rip_rel_ref" everywhere like other code shortens
    "rIP-relative reference" and make the asm wrapper __always_inline. ]

Co-developed-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/all/20240130220845.1978329-1-kevinloughlin@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:50 +02:00
Borislav Petkov (AMD)
ecd16da39d x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
commit 29956748339aa8757a7e2f927a8679dd08f24bb6 upstream.

It was meant well at the time but nothing's using it so get rid of it.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240202163510.GDZb0Zvj8qOndvFOiZ@fat_crate.local
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:50 +02:00