IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 98e948fb60d41447fd8d2d0c3b8637fc6b6dc26d ]
We have seen an influx of syzkaller reports where a BPF program attached to
a tracepoint triggers a locking rule violation by performing a map_delete
on a sockmap/sockhash.
We don't intend to support this artificial use scenario. Extend the
existing verifier allowed-program-type check for updating sockmap/sockhash
to also cover deleting from a map.
From now on only BPF programs which were previously allowed to update
sockmap/sockhash can delete from these map types.
Fixes: ff9105993240 ("bpf, sockmap: Prevent lock inversion deadlock in map delete elem")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Reported-by: syzbot+ec941d6e24f633a59172@syzkaller.appspotmail.com
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: syzbot+ec941d6e24f633a59172@syzkaller.appspotmail.com
Acked-by: John Fastabend <john.fastabend@gmail.com>
Closes: https://syzkaller.appspot.com/bug?extid=ec941d6e24f633a59172
Link: https://lore.kernel.org/bpf/20240527-sockmap-verify-deletes-v1-1-944b372f2101@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e64746e74f717961250a155e14c156616fcd981f ]
cpumask_of_node() can be called for NUMA_NO_NODE inside do_map_benchmark()
resulting in the following sanitizer report:
UBSAN: array-index-out-of-bounds in ./arch/x86/include/asm/topology.h:72:28
index -1 is out of range for type 'cpumask [64][1]'
CPU: 1 PID: 990 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
ubsan_epilogue (lib/ubsan.c:232)
__ubsan_handle_out_of_bounds (lib/ubsan.c:429)
cpumask_of_node (arch/x86/include/asm/topology.h:72) [inline]
do_map_benchmark (kernel/dma/map_benchmark.c:104)
map_benchmark_ioctl (kernel/dma/map_benchmark.c:246)
full_proxy_unlocked_ioctl (fs/debugfs/file.c:333)
__x64_sys_ioctl (fs/ioctl.c:890)
do_syscall_64 (arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Use cpumask_of_node() in place when binding a kernel thread to a cpuset
of a particular node.
Note that the provided node id is checked inside map_benchmark_ioctl().
It's just a NUMA_NO_NODE case which is not handled properly later.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa8087 ("dma-mapping: add benchmark support for streaming DMA APIs")
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Acked-by: Barry Song <baohua@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1ff05e723f7ca30644b8ec3fb093f16312e408ad ]
While validating node ids in map_benchmark_ioctl(), node_possible() may
be provided with invalid argument outside of [0,MAX_NUMNODES-1] range
leading to:
BUG: KASAN: wild-memory-access in map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
Read of size 8 at addr 1fffffff8ccb6398 by task dma_map_benchma/971
CPU: 7 PID: 971 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #37
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
kasan_report (mm/kasan/report.c:603)
kasan_check_range (mm/kasan/generic.c:189)
variable_test_bit (arch/x86/include/asm/bitops.h:227) [inline]
arch_test_bit (arch/x86/include/asm/bitops.h:239) [inline]
_test_bit at (include/asm-generic/bitops/instrumented-non-atomic.h:142) [inline]
node_state (include/linux/nodemask.h:423) [inline]
map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
full_proxy_unlocked_ioctl (fs/debugfs/file.c:333)
__x64_sys_ioctl (fs/ioctl.c:890)
do_syscall_64 (arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Compare node ids with sane bounds first. NUMA_NO_NODE is considered a
special valid case meaning that benchmarking kthreads won't be bound to a
cpuset of a given node.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa8087 ("dma-mapping: add benchmark support for streaming DMA APIs")
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bb9025f4432f8c158322cf2c04c2b492f23eb511 ]
kthread creation failure is invalidly handled inside do_map_benchmark().
The put_task_struct() calls on the error path are supposed to balance the
get_task_struct() calls which only happen after all the kthreads are
successfully created. Rollback using kthread_stop() for already created
kthreads in case of such failure.
In normal situation call kthread_stop_put() to gracefully stop kthreads
and put their task refcounts. This should be done for all started
kthreads.
Found by Linux Verification Center (linuxtesting.org).
Fixes: 65789daa8087 ("dma-mapping: add benchmark support for streaming DMA APIs")
Suggested-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6309727ef27162deabd5c095c11af24970fba5a2 ]
Add a kthread_stop_put() helper that stops a thread and puts its task
struct. Use it to replace the various instances of kthread_stop()
followed by put_task_struct().
Remove the kthread_stop_put() macro in usbip that is similar but doesn't
return the result of kthread_stop().
[agruenba@redhat.com: fix kerneldoc comment]
Link: https://lkml.kernel.org/r/20230911111730.2565537-1-agruenba@redhat.com
[akpm@linux-foundation.org: document kthread_stop_put()'s argument]
Link: https://lkml.kernel.org/r/20230907234048.2499820-1-agruenba@redhat.com
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: bb9025f4432f ("dma-mapping: benchmark: fix up kthread-related error handling")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e569eb34970281438e2b48a3ef11c87459fcfbcb ]
btf_find_struct_member() might return NULL or an error via the
ERR_PTR() macro. However, its caller in parse_btf_field() only checks
for the NULL condition. Fix this by using IS_ERR() and returning the
error up the stack.
Link: https://lore.kernel.org/all/20240527094351.15687-1-clopez@suse.de/
Fixes: c440adfbe3025 ("tracing/probes: Support BTF based data structure field access")
Signed-off-by: Carlos López <clopez@suse.de>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1e8b7b3dbb3103d577a586ca72bc329f7b67120b ]
The patch updates the function documentation comment for
rv_en(dis)able_monitor to adhere to the kernel-doc specification.
Link: https://lore.kernel.org/linux-trace-kernel/20240520054239.61784-1-yang.lee@linux.alibaba.com
Fixes: 102227b970a15 ("rv: Add Runtime Verification (RV) interface")
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b63db58e2fa5d6963db9c45df88e60060f0ff35f ]
Synthetic events create and destroy tracefs files when they are created
and removed. The tracing subsystem has its own file descriptor
representing the state of the events attached to the tracefs files.
There's a race between the eventfs files and this file descriptor of the
tracing system where the following can cause an issue:
With two scripts 'A' and 'B' doing:
Script 'A':
echo "hello int aaa" > /sys/kernel/tracing/synthetic_events
while :
do
echo 0 > /sys/kernel/tracing/events/synthetic/hello/enable
done
Script 'B':
echo > /sys/kernel/tracing/synthetic_events
Script 'A' creates a synthetic event "hello" and then just writes zero
into its enable file.
Script 'B' removes all synthetic events (including the newly created
"hello" event).
What happens is that the opening of the "enable" file has:
{
struct trace_event_file *file = inode->i_private;
int ret;
ret = tracing_check_open_get_tr(file->tr);
[..]
But deleting the events frees the "file" descriptor, and a "use after
free" happens with the dereference at "file->tr".
The file descriptor does have a reference counter, but there needs to be a
way to decrement it from the eventfs when the eventfs_inode is removed
that represents this file descriptor.
Add an optional "release" callback to the eventfs_entry array structure,
that gets called when the eventfs file is about to be removed. This allows
for the creating on the eventfs file to increment the tracing file
descriptor ref counter. When the eventfs file is deleted, it can call the
release function that will call the put function for the tracing file
descriptor.
This will protect the tracing file from being freed while a eventfs file
that references it is being opened.
Link: https://lore.kernel.org/linux-trace-kernel/20240426073410.17154-1-Tze-nan.Wu@mediatek.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240502090315.448cba46@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 5790b1fb3d672 ("eventfs: Remove eventfs_file and just use eventfs_inode")
Reported-by: Tze-nan wu <Tze-nan.Wu@mediatek.com>
Tested-by: Tze-nan Wu (吳澤南) <Tze-nan.Wu@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 49217ea147df7647cb89161b805c797487783fc0 ]
In the cgroup v2 CPU subsystem, assuming we have a
cgroup named 'test', and we set cpu.max and cpu.max.burst:
# echo 1000000 > /sys/fs/cgroup/test/cpu.max
# echo 1000000 > /sys/fs/cgroup/test/cpu.max.burst
then we check cpu.max and cpu.max.burst:
# cat /sys/fs/cgroup/test/cpu.max
1000000 100000
# cat /sys/fs/cgroup/test/cpu.max.burst
1000000
Next we set cpu.max again and check cpu.max and
cpu.max.burst:
# echo 2000000 > /sys/fs/cgroup/test/cpu.max
# cat /sys/fs/cgroup/test/cpu.max
2000000 100000
# cat /sys/fs/cgroup/test/cpu.max.burst
1000
... we find that the cpu.max.burst value changed unexpectedly.
In cpu_max_write(), the unit of the burst value returned
by tg_get_cfs_burst() is microseconds, while in cpu_max_write(),
the burst unit used for calculation should be nanoseconds,
which leads to the bug.
To fix it, get the burst value directly from tg->cfs_bandwidth.burst.
Fixes: f4183717b370 ("sched/fair: Introduce the burstable CFS controller")
Reported-by: Qixin Liao <liaoqixin@huawei.com>
Signed-off-by: Cheng Yu <serein.chengyu@huawei.com>
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240424132438.514720-1-serein.chengyu@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a1fd0b9d751f840df23ef0e75b691fc00cfd4743 ]
Change relax_domain_level checks so that it would be possible
to include or exclude all domains from newidle balancing.
This matches the behavior described in the documentation:
-1 no request. use system default or follow request of others.
0 no search.
1 search siblings (hyperthreads in a core).
"2" enables levels 0 and 1, level_max excludes the last (level_max)
level, and level_max+1 includes all levels.
Fixes: 1d3504fcf560 ("sched, cpuset: customize sched domains, core")
Signed-off-by: Vitalii Bursov <vitaly@bursov.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/bd6de28e80073c79466ec6401cdeae78f0d4423d.1714488502.git.vitaly@bursov.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bd125a084091396f3e796bb3dc009940d9771811 ]
When the ABI was updated to prevent same name w/different args, it
missed an important corner case when fields don't end with a space.
Typically, space is used for fields to help separate them, like
"u8 field1; u8 field2". If no spaces are used, like
"u8 field1;u8 field2", then the parsing works for the first time.
However, the match check fails on a subsequent register, leading to
confusion.
This is because the match check uses argv_split() and assumes that all
fields will be split upon the space. When spaces are used, we get back
{ "u8", "field1;" }, without spaces we get back { "u8", "field1;u8" }.
This causes a mismatch, and the user program gets back -EADDRINUSE.
Add a method to detect this case before calling argv_split(). If found
force a space after the field separator character ';'. This ensures all
cases work properly for matching.
With this fix, the following are all treated as matching:
u8 field1;u8 field2
u8 field1; u8 field2
u8 field1;\tu8 field2
u8 field1;\nu8 field2
Link: https://lore.kernel.org/linux-trace-kernel/20240423162338.292-2-beaub@linux.microsoft.com
Fixes: ba470eebc2f6 ("tracing/user_events: Prevent same name but different args event")
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1e953de9e9b4ca77a9ce0fc17a0778eba3a4ca64 ]
The current code for finding and deleting events assumes that there will
never be cases when user_events are registered with the same name, but
different formats. Scenarios exist where programs want to use the same
name but have different formats. An example is multiple versions of a
program running side-by-side using the same event name, but with updated
formats in each version.
This change does not yet allow for multi-format events. If user_events
are registered with the same name but different arguments the programs
see the same return values as before. This change simply makes it
possible to easily accommodate for this.
Update find_user_event() to take in argument parameters and register
flags to accommodate future multi-format event scenarios. Have find
validate argument matching and return error pointers to cover when
an existing event has the same name but different format. Update
callers to handle error pointer logic.
Move delete_user_event() to use hash walking directly now that
find_user_event() has changed. Delete all events found that match the
register name, stop if an error occurs and report back to the user.
Update user_fields_match() to cover list_empty() scenarios now that
find_user_event() uses it directly. This makes the logic consistent
across several callsites.
Link: https://lore.kernel.org/linux-trace-kernel/20240222001807.1463-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: bd125a084091 ("tracing/user_events: Fix non-spaced field matching")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5dbd04eddb2c0841d1b3930e0a9944a2343c9cac ]
There are several scenarios that have come up where having a user_event
persist even if the process that registered it exits. The main one is
having a daemon create events on bootup that shouldn't get deleted if
the daemon has to exit or reload. Another is within OpenTelemetry
exporters, they wish to potentially check if a user_event exists on the
system to determine if exporting the data out should occur. The
user_event in this case must exist even in the absence of the owning
process running (such as the above daemon case).
Expose the previously internal flag USER_EVENT_REG_PERSIST to user
processes. Upon register or delete of events with this flag, ensure the
user is perfmon_capable to prevent random user processes with access to
tracefs from creating events that persist after exit.
Link: https://lkml.kernel.org/r/20230912180704.1284-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: bd125a084091 ("tracing/user_events: Fix non-spaced field matching")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d7a73e3f089204aee3393687e23fd45a22657b08 ]
Moving these stub functions to a .c file means we can kill a sched.h
dependency on printk.h.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Stable-dep-of: f9f67e5adc8d ("x86/numa: Fix SRAT lookup of CFMWS ranges with numa_fill_memblks()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 543576ec15b17c0c93301ac8297333c7b6e84ac7 ]
bpf_prog_attach uses attach_type_to_prog_type to enforce proper
attach type for BPF_PROG_TYPE_CGROUP_SKB. link_create uses
bpf_prog_get and relies on bpf_prog_attach_check_attach_type
to properly verify prog_type <> attach_type association.
Add missing attach_type enforcement for the link_create case.
Otherwise, it's currently possible to attach cgroup_skb prog
types to other cgroup hooks.
Fixes: af6eea57437a ("bpf: Implement bpf_link-based cgroup BPF program attachment")
Link: https://lore.kernel.org/bpf/0000000000004792a90615a1dde0@google.com/
Reported-by: syzbot+838346b979830606c854@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240426231621.2716876-2-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0db63c0b86e981a1e97d2596d64ceceba1a5470e ]
The verifier assumes that 'sk' field in 'struct socket' is valid
and non-NULL when 'socket' pointer itself is trusted and non-NULL.
That may not be the case when socket was just created and
passed to LSM socket_accept hook.
Fix this verifier assumption and adjust tests.
Reported-by: Liam Wisehart <liamwisehart@meta.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 6fcd486b3a0a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20240427002544.68803-1-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f2a74b41ea8b902687eb97c4e7e3f558801865b ]
r10 is a special register that is not under BPF program's control and is
always effectively precise. The rest of precision logic assumes that
only r0-r9 SCALAR registers are marked as precise, so prevent r10 from
being marked precise.
This can happen due to signed cast instruction allowing to do something
like `r0 = (s8)r10;`, which later, if r0 needs to be precise, would lead
to an attempt to mark r10 as precise.
Prevent this with an extra check during instruction backtracking.
Fixes: 8100928c8814 ("bpf: Support new sign-extension mov insns")
Reported-by: syzbot+148110ee7cf72f39f33e@syzkaller.appspotmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240404214536.3551295-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit be3a51e68f2f1b17250ce40d8872c7645b7a2991 ]
root_domain::overutilized is only used for EAS(energy aware scheduler)
to decide whether to do load balance or not. It is not used if EAS
not possible.
Currently enqueue_task_fair and task_tick_fair accesses, sometime updates
this field. In update_sd_lb_stats it is updated often. This causes cache
contention due to true sharing and burns a lot of cycles. ::overload and
::overutilized are part of the same cacheline. Updating it often invalidates
the cacheline. That causes access to ::overload to slow down due to
false sharing. Hence add EAS check before accessing/updating this field.
EAS check is optimized at compile time or it is a static branch.
Hence it shouldn't cost much.
With the patch, both enqueue_task_fair and newidle_balance don't show
up as hot routines in perf profile.
6.8-rc4:
7.18% swapper [kernel.vmlinux] [k] enqueue_task_fair
6.78% s [kernel.vmlinux] [k] newidle_balance
+patch:
0.14% swapper [kernel.vmlinux] [k] enqueue_task_fair
0.00% swapper [kernel.vmlinux] [k] newidle_balance
While at it: trace_sched_overutilized_tp expect that second argument to
be bool. So do a int to bool conversion for that.
Fixes: 2802bf3cd936 ("sched/fair: Add over-utilization/tipping point indicator")
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Srikar Dronamraju <srikar@linux.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240307085725.444486-2-sshegde@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3758f7d9917bd7ef0482c4184c0ad673b4c4e069 ]
The rcuc-starvation output from print_cpu_stall_info() might overflow the
buffer if there is a huge difference in jiffies difference. The situation
might seem improbable, but computers sometimes get very confused about
time, which can result in full-sized integers, and, in this case,
buffer overflow.
Also, the unsigned jiffies difference is printed using %ld, which is
normally for signed integers. This is intentional for debugging purposes,
but it is not obvious from the code.
This commit therefore changes sprintf() to snprintf() and adds a
clarifying comment about intention of %ld format.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: 245a62982502 ("rcu: Dump rcuc kthread status for CPUs not reporting quiescent state")
Signed-off-by: Nikita Kiryushin <kiryushin@ancud.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cc5645fddb0ce28492b15520306d092730dffa48 ]
There is a possibility of buffer overflow in
show_rcu_tasks_trace_gp_kthread() if counters, passed
to sprintf() are huge. Counter numbers, needed for this
are unrealistically high, but buffer overflow is still
possible.
Use snprintf() with buffer size instead of sprintf().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: edf3775f0ad6 ("rcu-tasks: Add count for idle tasks on offline CPUs")
Signed-off-by: Nikita Kiryushin <kiryushin@ancud.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1dd1eff161bd55968d3d46bc36def62d71fb4785 ]
Currently, the condition "__this_cpu_read(ksoftirqd) == current" is used to
invoke rcu_softirq_qs() in ksoftirqd tasks context for non-RT kernels.
This works correctly as long as the context is actually task context but
this condition is wrong when:
- the current task is ksoftirqd
- the task is interrupted in a RCU read side critical section
- __do_softirq() is invoked on return from interrupt
Syzkaller triggered the following scenario:
-> finish_task_switch()
-> put_task_struct_rcu_user()
-> call_rcu(&task->rcu, delayed_put_task_struct)
-> __kasan_record_aux_stack()
-> pfn_valid()
-> rcu_read_lock_sched()
<interrupt>
__irq_exit_rcu()
-> __do_softirq)()
-> if (!IS_ENABLED(CONFIG_PREEMPT_RT) &&
__this_cpu_read(ksoftirqd) == current)
-> rcu_softirq_qs()
-> RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map))
The rcu quiescent state is reported in the rcu-read critical section, so
the lockdep warning is triggered.
Fix this by splitting out the inner working of __do_softirq() into a helper
function which takes an argument to distinguish between ksoftirqd task
context and interrupted context and invoke it from the relevant call sites
with the proper context information and use that for the conditional
invocation of rcu_softirq_qs().
Reported-by: syzbot+dce04ed6d1438ad69656@syzkaller.appspotmail.com
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240427102808.29356-1-qiang.zhang1211@gmail.com
Link: https://lore.kernel.org/lkml/8f281a10-b85a-4586-9586-5bbc12dc784f@paulmck-laptop/T/#mea8aba4abfcb97bbf499d169ce7f30c4cff1b0e3
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 257bf89d84121280904800acd25cc2c444c717ae ]
housekeeping_setup() checks cpumask_intersects(present, online) to ensure
that the kernel will have at least one housekeeping CPU after smp_init(),
but this doesn't work if the maxcpus= kernel parameter limits the number of
processors available after bootup.
For example, a kernel with "maxcpus=2 nohz_full=0-2" parameters crashes at
boot time on a virtual machine with 4 CPUs.
Change housekeeping_setup() to use cpumask_first_and() and check that the
returned CPU number is valid and less than setup_max_cpus.
Another corner case is "nohz_full=0" on a machine with a single CPU or with
the maxcpus=1 kernel argument. In this case non_housekeeping_mask is empty
and tick_nohz_full_setup() makes no sense. And indeed, the kernel hits the
WARN_ON(tick_nohz_full_running) in tick_sched_do_timer().
And how should the kernel interpret the "nohz_full=" parameter? It should
be silently ignored, but currently cpulist_parse() happily returns the
empty cpumask and this leads to the same problem.
Change housekeeping_setup() to check cpumask_empty(non_housekeeping_mask)
and do nothing in this case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240413141746.GA10008@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ce0abef6a1d540acef85068e0e82bdf1fbeeb0e9 ]
Explicitly disallow enabling mitigations at runtime for kernels that were
built with CONFIG_CPU_MITIGATIONS=n, as some architectures may omit code
entirely if mitigations are disabled at compile time.
E.g. on x86, a large pile of Kconfigs are buried behind CPU_MITIGATIONS,
and trying to provide sane behavior for retroactively enabling mitigations
is extremely difficult, bordering on impossible. E.g. page table isolation
and call depth tracking require build-time support, BHI mitigations will
still be off without additional kernel parameters, etc.
[ bp: Touchups. ]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240420000556.2645001-3-seanjc@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c2274b908db05529980ec056359fae916939fdaa upstream.
The reader code in rb_get_reader_page() swaps a new reader page into the
ring buffer by doing cmpxchg on old->list.prev->next to point it to the
new page. Following that, if the operation is successful,
old->list.next->prev gets updated too. This means the underlying
doubly-linked list is temporarily inconsistent, page->prev->next or
page->next->prev might not be equal back to page for some page in the
ring buffer.
The resize operation in ring_buffer_resize() can be invoked in parallel.
It calls rb_check_pages() which can detect the described inconsistency
and stop further tracing:
[ 190.271762] ------------[ cut here ]------------
[ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0
[ 190.271789] Modules linked in: [...]
[ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1
[ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f
[ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014
[ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0
[ 190.272023] Code: [...]
[ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206
[ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80
[ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700
[ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000
[ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720
[ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000
[ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000
[ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0
[ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 190.272077] Call Trace:
[ 190.272098] <TASK>
[ 190.272189] ring_buffer_resize+0x2ab/0x460
[ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0
[ 190.272206] tracing_resize_ring_buffer+0x65/0x90
[ 190.272216] tracing_entries_write+0x74/0xc0
[ 190.272225] vfs_write+0xf5/0x420
[ 190.272248] ksys_write+0x67/0xe0
[ 190.272256] do_syscall_64+0x82/0x170
[ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 190.272373] RIP: 0033:0x7f1bd657d263
[ 190.272381] Code: [...]
[ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263
[ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001
[ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000
[ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500
[ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002
[ 190.272412] </TASK>
[ 190.272414] ---[ end trace 0000000000000000 ]---
Note that ring_buffer_resize() calls rb_check_pages() only if the parent
trace_buffer has recording disabled. Recent commit d78ab792705c
("tracing: Stop current tracer when resizing buffer") causes that it is
now always the case which makes it more likely to experience this issue.
The window to hit this race is nonetheless very small. To help
reproducing it, one can add a delay loop in rb_get_reader_page():
ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
if (!ret)
goto spin;
for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */
__asm__ __volatile__ ("" : : : "memory");
rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
.. and then run the following commands on the target system:
echo 1 > /sys/kernel/tracing/events/sched/sched_switch/enable
while true; do
echo 16 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
echo 8 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
done &
while true; do
for i in /sys/kernel/tracing/per_cpu/*; do
timeout 0.1 cat $i/trace_pipe; sleep 0.2
done
done
To fix the problem, make sure ring_buffer_resize() doesn't invoke
rb_check_pages() concurrently with a reader operating on the same
ring_buffer_per_cpu by taking its cpu_buffer->reader_lock.
Link: https://lore.kernel.org/linux-trace-kernel/20240517134008.24529-3-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 659f451ff213 ("ring-buffer: Add integrity check at end of iter read")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
[ Fixed whitespace ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e60b613df8b6253def41215402f72986fee3fc8d upstream.
KASAN reports a bug:
BUG: KASAN: use-after-free in ftrace_location+0x90/0x120
Read of size 8 at addr ffff888141d40010 by task insmod/424
CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+
[...]
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xa0
print_report+0xcf/0x610
kasan_report+0xb5/0xe0
ftrace_location+0x90/0x120
register_kprobe+0x14b/0xa40
kprobe_init+0x2d/0xff0 [kprobe_example]
do_one_initcall+0x8f/0x2d0
do_init_module+0x13a/0x3c0
load_module+0x3082/0x33d0
init_module_from_file+0xd2/0x130
__x64_sys_finit_module+0x306/0x440
do_syscall_64+0x68/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause is that, in lookup_rec(), ftrace record of some address
is being searched in ftrace pages of some module, but those ftrace pages
at the same time is being freed in ftrace_release_mod() as the
corresponding module is being deleted:
CPU1 | CPU2
register_kprobes() { | delete_module() {
check_kprobe_address_safe() { |
arch_check_ftrace_location() { |
ftrace_location() { |
lookup_rec() // USE! | ftrace_release_mod() // Free!
To fix this issue:
1. Hold rcu lock as accessing ftrace pages in ftrace_location_range();
2. Use ftrace_location_range() instead of lookup_rec() in
ftrace_location();
3. Call synchronize_rcu() before freeing any ftrace pages both in
ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem().
Link: https://lore.kernel.org/linux-trace-kernel/20240509192859.1273558-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mathieu.desnoyers@efficios.com>
Fixes: ae6aa16fdc16 ("kprobes: introduce ftrace based optimization")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57a01eafdcf78f6da34fad9ff075ed5dfdd9f420 upstream.
With cpu_possible_mask=0-63 and cpu_online_mask=0-7 the following
kernel oops was observed:
smp: Bringing up secondary CPUs ...
smp: Brought up 1 node, 8 CPUs
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000803
[..]
Call Trace:
arch_vcpu_is_preempted+0x12/0x80
select_idle_sibling+0x42/0x560
select_task_rq_fair+0x29a/0x3b0
try_to_wake_up+0x38e/0x6e0
kick_pool+0xa4/0x198
__queue_work.part.0+0x2bc/0x3a8
call_timer_fn+0x36/0x160
__run_timers+0x1e2/0x328
__run_timer_base+0x5a/0x88
run_timer_softirq+0x40/0x78
__do_softirq+0x118/0x388
irq_exit_rcu+0xc0/0xd8
do_ext_irq+0xae/0x168
ext_int_handler+0xbe/0xf0
psw_idle_exit+0x0/0xc
default_idle_call+0x3c/0x110
do_idle+0xd4/0x158
cpu_startup_entry+0x40/0x48
rest_init+0xc6/0xc8
start_kernel+0x3c4/0x5e0
startup_continue+0x3c/0x50
The crash is caused by calling arch_vcpu_is_preempted() for an offline
CPU. To avoid this, select the cpu with cpumask_any_and_distribute()
to mask __pod_cpumask with cpu_online_mask. In case no cpu is left in
the pool, skip the assignment.
tj: This doesn't fully fix the bug as CPUs can still go down between picking
the target CPU and the wake call. Fixing that likely requires adding
cpu_online() test to either the sched or s390 arch code. However, regardless
of how that is fixed, workqueue shouldn't be picking a CPU which isn't
online as that would result in unpredictable and worse behavior.
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Fixes: 8639ecebc9b1 ("workqueue: Implement non-strict affinity scope for unbound workqueues")
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a8d89feba7e54e691ca7c4efc2a6264fa83f3687 ]
This patch adds a missing check to bloom filter creating, rejecting
values above KMALLOC_MAX_SIZE. This brings the bloom map in line with
many other map types.
The lack of this protection can cause kernel crashes for value sizes
that overflow int's. Such a crash was caught by syzkaller. The next
patch adds more guard-rails at a lower level.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240327024245.318299-2-andreimatei1@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 75961ffb5cb3e5196f19cae7683f35cc88b50800 ]
Using restricted DMA pools (CONFIG_DMA_RESTRICTED_POOL=y) in conjunction
with dynamic SWIOTLB (CONFIG_SWIOTLB_DYNAMIC=y) leads to the following
crash when initialising the restricted pools at boot-time:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
| Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
| pc : rmem_swiotlb_device_init+0xfc/0x1ec
| lr : rmem_swiotlb_device_init+0xf0/0x1ec
| Call trace:
| rmem_swiotlb_device_init+0xfc/0x1ec
| of_reserved_mem_device_init_by_idx+0x18c/0x238
| of_dma_configure_id+0x31c/0x33c
| platform_dma_configure+0x34/0x80
faddr2line reveals that the crash is in the list validation code:
include/linux/list.h:83
include/linux/rculist.h:79
include/linux/rculist.h:106
kernel/dma/swiotlb.c:306
kernel/dma/swiotlb.c:1695
because add_mem_pool() is trying to list_add_rcu() to a NULL
'mem->pools'.
Fix the crash by initialising the 'mem->pools' list_head in
rmem_swiotlb_device_init() before calling add_mem_pool().
Reported-by: Nikita Ioffe <ioffe@google.com>
Tested-by: Nikita Ioffe <ioffe@google.com>
Fixes: 1aaa736815eb ("swiotlb: allocate a new memory pool when existing pools are full")
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 37eacb9f6e89fb399a79e952bc9c78eb3e16290e ]
Long ago a map file descriptor in a pseudo ldimm64 instruction could
only be present as an immediate value insn[0].imm, and thus this value
was used in a verbose verifier message printed when the file descriptor
wasn't valid. Since addition of BPF_PSEUDO_MAP_IDX_VALUE/BPF_PSEUDO_MAP_IDX
the insn[0].imm field can also contain an index pointing to the file
descriptor in the attr.fd_array array. However, if the file descriptor
is invalid, the verifier still prints the verbose message containing
value of insn[0].imm. Patch the verifier message to always print the
actual file descriptor value.
Fixes: 387544bfa291 ("bpf: Introduce fd_idx")
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240412141100.3562942-1-aspsk@isovalent.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5af385f5f4cddf908f663974847a4083b2ff2c79 upstream.
bits_per() rounds up to the next power of two when passed a power of
two. This causes crashes on some machines and configurations.
Reported-by: Михаил Новоселов <m.novosyolov@rosalinux.ru>
Tested-by: Ильфат Гаптрахманов <i.gaptrakhmanov@rosalinux.ru>
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/3347
Link: https://lore.kernel.org/all/1c978cf1-2934-4e66-e4b3-e81b04cb3571@rosalinux.ru/
Fixes: f2d5dcb48f7b (bounds: support non-power-of-two CONFIG_NR_CPUS)
Cc: <stable@vger.kernel.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1560d1f6eb6b398bddd80c16676776c0325fe5fe ]
It was possible to have pick_eevdf() return NULL, which then causes a
NULL-deref. This turned out to be due to entity_eligible() returning
falsely negative because of a s64 multiplcation overflow.
Specifically, reweight_eevdf() computes the vlag without considering
the limit placed upon vlag as update_entity_lag() does, and then the
scaling multiplication (remember that weight is 20bit fixed point) can
overflow. This then leads to the new vruntime being weird which then
causes the above entity_eligible() to go side-ways and claim nothing
is eligible.
Thus limit the range of vlag accordingly.
All this was quite rare, but fatal when it does happen.
Closes: https://lore.kernel.org/all/ZhuYyrh3mweP_Kd8@nz.home/
Closes: https://lore.kernel.org/all/CA+9S74ih+45M_2TPUY_mPPVDhNvyYfy1J1ftSix+KjiTVxg8nw@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/202401301012.2ed95df0-oliver.sang@intel.com/
Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight")
Reported-by: Sergei Trofimovich <slyich@gmail.com>
Reported-by: Igor Raits <igor@gooddata.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Reviewed-and-tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240422082238.5784-1-xuewen.yan@unisoc.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit afae8002b4fd3560c8f5f1567f3c3202c30a70fa ]
reweight_eevdf() only keeps V unchanged inside itself. When se !=
cfs_rq->curr, it would be dequeued from rb tree first. So that V is
changed and the result is wrong. Pass the original V to reweight_eevdf()
to fix this issue.
Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
[peterz: flip if() condition for clarity]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lkml.kernel.org/r/20240306022133.81008-3-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 11b1b8bc2b98e21ddf47e08b56c21502c685b2c3 ]
reweight_eevdf() needs the latest V to do accurate calculation for new
ve and vd. So update V unconditionally when se is runnable.
Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight")
Suggested-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Link: https://lore.kernel.org/r/20240306022133.81008-2-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d99e3140a4d33e26066183ff727d8f02f56bec64 upstream.
The current folio_test_hugetlb() can be fooled by a concurrent folio split
into returning true for a folio which has never belonged to hugetlbfs.
This can't happen if the caller holds a refcount on it, but we have a few
places (memory-failure, compaction, procfs) which do not and should not
take a speculative reference.
Since hugetlb pages do not use individual page mapcounts (they are always
fully mapped and use the entire_mapcount field to record the number of
mappings), the PageType field is available now that page_mapcount()
ignores the value in this field.
In compaction and with CONFIG_DEBUG_VM enabled, the current implementation
can result in an oops, as reported by Luis. This happens since 9c5ccf2db04b
("mm: remove HUGETLB_PAGE_DTOR") effectively added some VM_BUG_ON() checks
in the PageHuge() testing path.
[willy@infradead.org: update vmcoreinfo]
Link: https://lkml.kernel.org/r/ZgGZUvsdhaT1Va-T@casper.infradead.org
Link: https://lkml.kernel.org/r/20240321142448.1645400-6-willy@infradead.org
Fixes: 9c5ccf2db04b ("mm: remove HUGETLB_PAGE_DTOR")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Luis Chamberlain <mcgrof@kernel.org>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218227
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe42754b94a42d08cf9501790afc25c4f6a5f631 upstream.
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86. A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.
Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing. This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.
Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS. This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.
Fixes: f337a6a21e2f ("x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n")
Closes: https://lkml.kernel.org/r/20240413115324.53303a68%40canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240420000556.2645001-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 35e351780fa9d8240dd6f7e4f245f9ea37e96c19 upstream.
Thorvald reported a WARNING [1]. And the root cause is below race:
CPU 1 CPU 2
fork hugetlbfs_fallocate
dup_mmap hugetlbfs_punch_hole
i_mmap_lock_write(mapping);
vma_interval_tree_insert_after -- Child vma is visible through i_mmap tree.
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private -- Clear vma_lock outside i_mmap_rwsem!
i_mmap_lock_write(mapping);
hugetlb_vmdelete_list
vma_interval_tree_foreach
hugetlb_vma_trylock_write -- Vma_lock is cleared.
tmp->vm_ops->open -- Alloc new vma_lock outside i_mmap_rwsem!
hugetlb_vma_unlock_write -- Vma_lock is assigned!!!
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private() and hugetlb_vm_op_open() are called outside
i_mmap_rwsem lock while vma lock can be used in the same time. Fix this
by deferring linking file vma until vma is fully initialized. Those vmas
should be initialized first before they can be used.
Link: https://lkml.kernel.org/r/20240410091441.3539905-1-linmiaohe@huawei.com
Fixes: 8d9bfb260814 ("hugetlb: add vma based lock for pmd sharing")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reported-by: Thorvald Natvig <thorvald@google.com>
Closes: https://lore.kernel.org/linux-mm/20240129161735.6gmjsswx62o4pbja@revolver/T/ [1]
Reviewed-by: Jane Chu <jane.chu@oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Tycho Andersen <tandersen@netflix.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fd37721803c6e73619108f76ad2e12a9aa5fafaf ]
NR_PAGE_ORDERS defines the number of page orders supported by the page
allocator, ranging from 0 to MAX_ORDER, MAX_ORDER + 1 in total.
NR_PAGE_ORDERS assists in defining arrays of page orders and allows for
more natural iteration over them.
[kirill.shutemov@linux.intel.com: fixup for kerneldoc warning]
Link: https://lkml.kernel.org/r/20240101111512.7empzyifq7kxtzk3@box
Link: https://lkml.kernel.org/r/20231228144704.14033-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: b6976f323a86 ("drm/ttm: stop pooling cached NUMA pages v2")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit fe90f3967bdb3e13f133e5f44025e15f943a99c5 upstream.
Many architectures' switch_mm() (e.g. arm64) do not have an smp_mb()
which the core scheduler code has depended upon since commit:
commit 223baf9d17f25 ("sched: Fix performance regression introduced by mm_cid")
If switch_mm() doesn't call smp_mb(), sched_mm_cid_remote_clear() can
unset the actively used cid when it fails to observe active task after it
sets lazy_put.
There *is* a memory barrier between storing to rq->curr and _return to
userspace_ (as required by membarrier), but the rseq mm_cid has stricter
requirements: the barrier needs to be issued between store to rq->curr
and switch_mm_cid(), which happens earlier than:
- spin_unlock(),
- switch_to().
So it's fine when the architecture switch_mm() happens to have that
barrier already, but less so when the architecture only provides the
full barrier in switch_to() or spin_unlock().
It is a bug in the rseq switch_mm_cid() implementation. All architectures
that don't have memory barriers in switch_mm(), but rather have the full
barrier either in finish_lock_switch() or switch_to() have them too late
for the needs of switch_mm_cid().
Introduce a new smp_mb__after_switch_mm(), defined as smp_mb() in the
generic barrier.h header, and use it in switch_mm_cid() for scheduler
transitions where switch_mm() is expected to provide a memory barrier.
Architectures can override smp_mb__after_switch_mm() if their
switch_mm() implementation provides an implicit memory barrier.
Override it with a no-op on x86 which implicitly provide this memory
barrier by writing to CR3.
Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid")
Reported-by: levi.yun <yeoreum.yun@arm.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> # for arm64
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Cc: <stable@vger.kernel.org> # 6.4.x
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240415152114.59122-2-mathieu.desnoyers@efficios.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f337a6a21e2fd67eadea471e93d05dd37baaa9be upstream.
Initialize cpu_mitigations to CPU_MITIGATIONS_OFF if the kernel is built
with CONFIG_SPECULATION_MITIGATIONS=n, as the help text quite clearly
states that disabling SPECULATION_MITIGATIONS is supposed to turn off all
mitigations by default.
│ If you say N, all mitigations will be disabled. You really
│ should know what you are doing to say so.
As is, the kernel still defaults to CPU_MITIGATIONS_AUTO, which results in
some mitigations being enabled in spite of SPECULATION_MITIGATIONS=n.
Fixes: f43b9876e857 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409175108.1512861-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 325f3fb551f8cd672dbbfc4cf58b14f9ee3fc9e8 upstream.
When unloading a module, its state is changing MODULE_STATE_LIVE ->
MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take
a time. `is_module_text_address()` and `__module_text_address()`
works with MODULE_STATE_LIVE and MODULE_STATE_GOING.
If we use `is_module_text_address()` and `__module_text_address()`
separately, there is a chance that the first one is succeeded but the
next one is failed because module->state becomes MODULE_STATE_UNFORMED
between those operations.
In `check_kprobe_address_safe()`, if the second `__module_text_address()`
is failed, that is ignored because it expected a kernel_text address.
But it may have failed simply because module->state has been changed
to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify
non-exist module text address (use-after-free).
To fix this problem, we should not use separated `is_module_text_address()`
and `__module_text_address()`, but use only `__module_text_address()`
once and do `try_module_get(module)` which is only available with
MODULE_STATE_LIVE.
Link: https://lore.kernel.org/all/20240410015802.265220-1-zhengyejian1@huawei.com/
Fixes: 28f6c37a2910 ("kprobes: Forbid probing on trampoline and BPF code areas")
Cc: stable@vger.kernel.org
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c89a068bfd0698a5478f4cf39493595ef757d5e upstream.
s2idle works like a regular suspend with freezing processes and freezing
devices. All CPUs except the control CPU go into idle. Once this is
completed the control CPU kicks all other CPUs out of idle, so that they
reenter the idle loop and then enter s2idle state. The control CPU then
issues an swait() on the suspend state and therefore enters the idle loop
as well.
Due to being kicked out of idle, the other CPUs leave their NOHZ states,
which means the tick is active and the corresponding hrtimer is programmed
to the next jiffie.
On entering s2idle the CPUs shut down their local clockevent device to
prevent wakeups. The last CPU which enters s2idle shuts down its local
clockevent and freezes timekeeping.
On resume, one of the CPUs receives the wakeup interrupt, unfreezes
timekeeping and its local clockevent and starts the resume process. At that
point all other CPUs are still in s2idle with their clockevents switched
off. They only resume when they are kicked by another CPU or after resuming
devices and then receiving a device interrupt.
That means there is no guarantee that all CPUs will wakeup directly on
resume. As a consequence there is no guarantee that timers which are queued
on those CPUs and should expire directly after resume, are handled. Also
timer list timers which are remotely queued to one of those CPUs after
resume will not result in a reprogramming IPI as the tick is
active. Queueing a hrtimer will also not result in a reprogramming IPI
because the first hrtimer event is already in the past.
The recent introduction of the timer pull model (7ee988770326 ("timers:
Implement the hierarchical pull model")) amplifies this problem, if the
current migrator is one of the non woken up CPUs. When a non pinned timer
list timer is queued and the queuing CPU goes idle, it relies on the still
suspended migrator CPU to expire the timer which will happen by chance.
The problem exists since commit 8d89835b0467 ("PM: suspend: Do not pause
cpuidle in the suspend-to-idle path"). There the cpuidle_pause() call which
in turn invoked a wakeup for all idle CPUs was moved to a later point in
the resume process. This might not be reached or reached very late because
it waits on a timer of a still suspended CPU.
Address this by kicking all CPUs out of idle after the control CPU returns
from swait() so that they resume their timers and restore consistent system
state.
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218641
Fixes: 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: 5.16+ <stable@kernel.org> # 5.16+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ffe3986fece696cf65e0ef99e74c75f848be8e30 upstream.
The "buffer_percent" logic that is used by the ring buffer splice code to
only wake up the tasks when there's no data after the buffer is filled to
the percentage of the "buffer_percent" file is dependent on three
variables that determine the amount of data that is in the ring buffer:
1) pages_read - incremented whenever a new sub-buffer is consumed
2) pages_lost - incremented every time a writer overwrites a sub-buffer
3) pages_touched - incremented when a write goes to a new sub-buffer
The percentage is the calculation of:
(pages_touched - (pages_lost + pages_read)) / nr_pages
Basically, the amount of data is the total number of sub-bufs that have been
touched, minus the number of sub-bufs lost and sub-bufs consumed. This is
divided by the total count to give the buffer percentage. When the
percentage is greater than the value in the "buffer_percent" file, it
wakes up splice readers waiting for that amount.
It was observed that over time, the amount read from the splice was
constantly decreasing the longer the trace was running. That is, if one
asked for 60%, it would read over 60% when it first starts tracing, but
then it would be woken up at under 60% and would slowly decrease the
amount of data read after being woken up, where the amount becomes much
less than the buffer percent.
This was due to an accounting of the pages_touched incrementation. This
value is incremented whenever a writer transfers to a new sub-buffer. But
the place where it was incremented was incorrect. If a writer overflowed
the current sub-buffer it would go to the next one. If it gets preempted
by an interrupt at that time, and the interrupt performs a trace, it too
will end up going to the next sub-buffer. But only one should increment
the counter. Unfortunately, that was not the case.
Change the cmpxchg() that does the real switch of the tail-page into a
try_cmpxchg(), and on success, perform the increment of pages_touched. This
will only increment the counter once for when the writer moves to a new
sub-buffer, and not when there's a race and is incremented for when a
writer and its preempting writer both move to the same new sub-buffer.
Link: https://lore.kernel.org/linux-trace-kernel/20240409151309.0d0e5056@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f1e30cb6369251c03f63c564006f96a54197dcc4 ]
In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read
while other threads may change it. It may cause the time_stamp that read
in the next line come from a different page. Use READ_ONCE() to avoid
having to reason about compiler optimizations now and in future.
Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: linke li <lilinke99@qq.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b9fa16949d18e06bdf728a560f5c8af56d2bdcaf ]
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d988d9a9b9d180bfd5c1d353b3b176cb90d6861b ]
If the kernel crashes in a context where printk() calls always
defer printing (such as in NMI or inside a printk_safe section)
then the final panic messages will be deferred to irq_work. But
if irq_work is not available, the messages will not get printed
unless explicitly flushed. The result is that the final
"end Kernel panic" banner does not get printed.
Add one final flush after the last printk() call to make sure
the final panic messages make it out as well.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-14-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0ab7cdd00491b532591ef065be706301de7e448f ]
Currently @suppress_panic_printk is checked along with
non-matching @panic_cpu and current CPU. This works
because @suppress_panic_printk is only set when
panic_in_progress() is true.
Rather than relying on the @suppress_panic_printk semantics,
use the concise helper function other_cpu_in_progress(). The
helper function exists to avoid open coding such tests.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-7-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1a80dbcb2dbaf6e4c216e62e30fa7d3daa8001ce upstream.
BPF link for some program types is passed as a "context" which can be
used by those BPF programs to look up additional information. E.g., for
multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values.
Because of this runtime dependency, when bpf_link refcnt drops to zero
there could still be active BPF programs running accessing link data.
This patch adds generic support to defer bpf_link dealloc callback to
after RCU GP, if requested. This is done by exposing two different
deallocation callbacks, one synchronous and one deferred. If deferred
one is provided, bpf_link_free() will schedule dealloc_deferred()
callback to happen after RCU GP.
BPF is using two flavors of RCU: "classic" non-sleepable one and RCU
tasks trace one. The latter is used when sleepable BPF programs are
used. bpf_link_free() accommodates that by checking underlying BPF
program's sleepable flag, and goes either through normal RCU GP only for
non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP
(taking into account rcu_trace_implies_rcu_gp() optimization), if BPF
program is sleepable.
We use this for multi-kprobe and multi-uprobe links, which dereference
link during program run. We also preventively switch raw_tp link to use
deferred dealloc callback, as upcoming changes in bpf-next tree expose
raw_tp link data (specifically, cookie value) to BPF program at runtime
as well.
Fixes: 0dcac2725406 ("bpf: Add multi kprobe link")
Fixes: 89ae89f53d20 ("bpf: Add multi uprobe link")
Reported-by: syzbot+981935d9485a560bfbcb@syzkaller.appspotmail.com
Reported-by: syzbot+2cb5a6c573e98db598cc@syzkaller.appspotmail.com
Reported-by: syzbot+62d8b26793e8a2bd0516@syzkaller.appspotmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20240328052426.3042617-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9c856cabefb71d47b2eeb197f72c9c88e9b45b0 upstream.
There is no need to delay putting either path or task to deallocation
step. It can be done right after bpf_uprobe_unregister. Between release
and dealloc, there could be still some running BPF programs, but they
don't access either task or path, only data in link->uprobes, so it is
safe to do.
On the other hand, doing path_put() in dealloc callback makes this
dealloc sleepable because path_put() itself might sleep. Which is
problematic due to the need to call uprobe's dealloc through call_rcu(),
which is what is done in the next bug fix patch. So solve the problem by
releasing these resources early.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240328052426.3042617-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>